JP3522876B2 - In-reactor working robot device and its radiation deterioration diagnosis method - Google Patents

In-reactor working robot device and its radiation deterioration diagnosis method

Info

Publication number
JP3522876B2
JP3522876B2 JP03794195A JP3794195A JP3522876B2 JP 3522876 B2 JP3522876 B2 JP 3522876B2 JP 03794195 A JP03794195 A JP 03794195A JP 3794195 A JP3794195 A JP 3794195A JP 3522876 B2 JP3522876 B2 JP 3522876B2
Authority
JP
Japan
Prior art keywords
dose
reactor
diving
remaining life
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03794195A
Other languages
Japanese (ja)
Other versions
JPH08233980A (en
Inventor
勇一郎 水町
昌隆 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03794195A priority Critical patent/JP3522876B2/en
Publication of JPH08233980A publication Critical patent/JPH08233980A/en
Application granted granted Critical
Publication of JP3522876B2 publication Critical patent/JP3522876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉内で作業を行う
原子炉内作業ロボット装置に係り、特に原子炉内の水中
にて作業を行い、かつ作業ロボットに、ロボット自体の
放射線劣化を診断する放射線劣化診断機能を備えている
原子炉内作業ロボット装置及びその放射線劣化診断方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-reactor work robot apparatus for performing work in a nuclear reactor, and in particular, for performing work in water in a nuclear reactor and for a work robot to prevent radiation deterioration of the robot itself. The present invention relates to a nuclear reactor work robot device having a radiation deterioration diagnosis function and a radiation deterioration diagnosis method thereof.

【0002】[0002]

【従来の技術】原子力発電所点検用機器としての放射線
劣化診断機能としては、例えば特開昭59-92397
号公報、或いは特開昭61−272693号公報に示さ
れているように、移動点検装置に放射線線量計を設けて
移動点検装置が受ける放射線線量率を常時検出してCP
Uで積算し、予め設定しておいた積算値と比較する事に
よって余寿命を把握する方法が知られている。
2. Description of the Related Art As a radiation deterioration diagnosis function as a nuclear power plant inspection device, for example, Japanese Patent Laid-Open No. 59-92397.
JP, or as shown in JP 61-272693 discloses a radiation dose rate movement inspection apparatus receives by providing a radiation dosimeter movement inspection equipment constantly detects and CP
A method is known in which the remaining life is grasped by integrating with U and comparing it with a preset integrated value.

【0003】[0003]

【発明が解決しようとする課題】しかし、この装置ある
いはこの方法を原子炉内の作業をする潜水装置(作業ロ
ボット)に適用すると、次のような問題が生じてくる。
すなわち、炉内には複雑な構造物が設置されており、し
かも水中であることから、この環境下にて作業を行うに
は水中を自走し、複雑な構造物を回避できる機能を有す
る潜水装置とする必要がある。
However, when this device or this method is applied to a diving device (work robot) for working in a nuclear reactor, the following problems occur.
In other words, since a complicated structure is installed in the furnace and it is underwater, diving with the function of self-propelling underwater and avoiding a complicated structure when working in this environment. It should be a device.

【0004】この潜水装置に前述した従来の余寿命判断
技術を適用すれば、炉内に潜水した潜水装置の潜水位置
における被ばく線量のみから余寿命が判断されてしま
う。つまり複雑な構造物の間で潜水している潜水装置が
回収されるまでの被ばく線量を見積もっていないので、
実際はまだ十分使用可能という判断が下されたとして
も、回収する過程で破損する事が考えられ重大事故につ
ながる危険性がある。
If the above-mentioned conventional remaining life judging technique is applied to this diving apparatus, the remaining life is judged only from the exposure dose at the diving position of the diving apparatus which has dived into the furnace. In other words, we do not estimate the exposure dose until the diving device submerged between complicated structures is recovered.
In fact, even if it is judged that it is still usable, there is a danger that it may be damaged during the recovery process, leading to a serious accident.

【0005】さらに、原子炉内に採用されている潜水装
置に、この従来の放射線線量計を設けるには非常に難し
い点がある。すなわち、放射線線量計は微弱な電気信号
を高電圧で増幅させて出力させるものであることから非
常に径の太いケーブルを用いて線量情報を得る必要があ
る。もし、この放射線線量計を直接潜水装置に搭載すれ
ば潜水装置を制御するための電気信号に加え、さらにこ
の径の大きなケーブルを付加させなければならない。
Furthermore, it is very difficult to install this conventional radiation dosimeter in a submersible system used in a nuclear reactor. That is, since the radiation dosimeter amplifies a weak electric signal with a high voltage and outputs the amplified signal, it is necessary to obtain dose information using a cable having a very large diameter. If this radiation dosimeter is mounted directly on the diving equipment, in addition to the electrical signals for controlling the diving equipment, a cable with this large diameter must be added.

【0006】この大径ケーブルの付加は、付加しない場
合に比べて2倍以上の径となる。このケーブルの大径化
は、潜水装置の機動性が低下することは勿論のこと、炉
内を自由に移動できなくなる可能性があり、また原子炉
内の構造物に損傷を与える恐れもある。
The addition of this large-diameter cable has a diameter twice or more as compared with the case where it is not added. This increase in the diameter of the cable not only lowers the mobility of the submersible device, but also may make it impossible to move freely inside the reactor, and may damage the structure inside the reactor.

【0007】本発明はこれに鑑みなされたもので、その
目的とするところは、潜水装置が炉内を機動性良好にし
て自由に移動することができ、かつ炉内作業における正
確な残り余寿命線量と余寿命時間を測定することができ
安全な原子炉内作業ロボット装置及びその放射線劣化診
断方法を提供するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible for the diving device to move freely in the furnace with good maneuverability and to accurately perform the remaining remaining life in the work in the furnace. (EN) It is possible to provide a safe in-reactor work robot apparatus capable of measuring a dose and a remaining life time and a radiation deterioration diagnosis method thereof.

【0008】[0008]

【課題を解決するための手段】本発明の第1の特徴は、
原子炉炉内の水中で点検補修作業を行う潜水装置本体
と、前記潜水装置本体とケーブルを介して結合され、こ
の潜水装置本体を制御する制御装置と、前記制御装置に
連結され、前記潜水装置本体を遠隔操作する遠隔操作用
コントローラと、前記制御装置に連結され、前記潜水装
置本体から送られた信号を処理する計算装置とを備え、
前記潜水装置本体が受ける放射線線量からこの潜水装置
本体の余寿命を予測するに際し、前記潜水装置本体に搭
載した深度計のデータと炉内線量率分布データとから計
算した潜水装置本体が現時点まで被曝した線量と、作業
を中止して現時点の深度から水面上まで移動する際に被
曝する線量を前記深度計のデータと炉内線量率分布デー
タとから計算して求めた見込み線量との和をとり、前記
潜水装置本体を構成する部品の耐放射線許容値と前記和
との差を、炉内で作業できる前記部品の余寿命線量とし
て予測する点にある。
The first feature of the present invention is to:
Submersible device body for inspection and repair work underwater in the reactor
Connected to the body of the diving equipment via a cable,
Control device for controlling the body of the dive device of
For remote control that is connected and remotely controls the body of the diving equipment
The controller is connected to the control device, and is connected to the diving equipment.
With a computing device that processes the signal sent from the main unit,
From the radiation dose received by the body of the diving equipment,
When estimating the remaining life of the main body, mount it on the diving equipment main body.
Based on the depth gauge data and the in-reactor dose rate distribution data
The calculated dose to the body of the diving equipment up to the present time and the work
Stop when moving from the current depth to the surface of the water.
The exposure dose is measured by the depth meter data and the dose rate distribution data in the reactor.
And the expected dose calculated from
The radiation resistance tolerance of the parts that make up the body of the dive and the sum
The difference between and is the remaining life dose of the parts that can be operated in the furnace
There is a point to predict.

【0009】本発明の第2の特徴は、前記第1の特徴に
加えて、さらに、潜水装置本体を構成する部品の余寿命
線量と、深度計のデータと炉内線量率分布データとから
当該点における線量率を求め、前記余寿命線量を前記線
量率で割って、余寿命時間を予測する点にある。
A second feature of the present invention is the above first feature.
In addition, the remaining life of the parts that make up the body of the diving equipment
From dose, depth meter data and in-reactor dose rate distribution data
Obtain the dose rate at that point and calculate the remaining life dose from the line
The point is to predict the remaining life time by dividing by the volume rate.

【0010】[0010]

【作用】すなわちこのように形成された原子炉内作業ロ
ボット装置であると、放射線線量計を用いることがない
ので、径の大きなケーブルの付加はなく、したがって潜
水装置は機動性良好にして炉内を自由に移動することが
できる。
In other words, in the work robot device in the reactor constructed as described above, since a radiation dosimeter is not used, a cable with a large diameter is not added, and therefore the diving device is made to have good maneuverability in the reactor. You can move around freely.

【0011】また計算装置に、深度計から得られる深度
情報と原子炉炉内の線量率分布を逐次計算機メモリに取
り込み、かつ潜水装置本体が回収されるまでに受ける見
込み放射線線量値を計算し、かつ前記見込み線量値を加
えて炉内作業中における潜水装置本体にかかわる部品の
余寿命線量を予測する計算手段を設けるようにしたこと
から、例えば作業者が炉内水中下において潜水装置を用
いて作業しているとき、潜水装置位置における場所にお
いて後どれ程作業できるかを時間的に正確に知る事がで
き、したがって炉内作業における正確な残り余寿命線量
と余寿命時間測定することができ安全なこの種の原子
炉内作業ロボット装置とすることができる。
Further, the depth information obtained from the depth gauge and the dose rate distribution in the reactor are sequentially loaded into the computer memory in the computer, and the expected radiation dose value received until the submersible body is recovered is calculated, Moreover, since the calculation means is provided to predict the remaining life dose of the parts related to the body of the diving equipment during the work in the reactor by adding the expected dose value, for example, the worker uses the diving equipment under the water in the reactor. When working, it is possible to know exactly in time how much work can be done at the place at the diving equipment position, and thus to be able to measure the exact remaining life dose and remaining life time in working in the reactor. It is possible to provide a safe working robot device in the reactor of this type.

【0012】[0012]

【実施例】以下図示した実施例に基づいて本発明を詳細
に説明する。図1にはその潜水装置(作業ロボット)の
本体部分の外観が示されている。この潜水装置本体31
には深度計1が搭載されており、潜水装置本体の深度
(m)が測定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 shows the appearance of the main body of the diving apparatus (work robot). This submersible body 31
Is equipped with a depth meter 1 for measuring the depth (m) of the body of the diving apparatus.

【0013】潜水装置本体の下方部にはカメラ2が設け
られ、このカメラはライト3と一体型となっており中央
のカメラ2を4つのライトが取り込み、浮力体4から
伸びる2本のアーム5によって支えられたカメラ駆動機
構6によって支持されている。このカメラ2とライト3
は、カメラ駆動機構6によって目的の視界を得るために
可動自在に形成されている。
A camera 2 is provided in the lower part of the body of the diving apparatus, and this camera is integrated with a light 3 so that four lights 3 take in the central camera 2 and two arms extend from a buoyant body 4. It is supported by a camera drive mechanism 6 supported by 5. This camera 2 and light 3
Are formed so as to be movable by the camera drive mechanism 6 in order to obtain a desired field of view.

【0014】潜水装置本体31を上昇あるいは下降させ
るためのプロペラ7は、潜水装置本体の上部中央に設け
られ、プロペラの回転方向を正負制御することにより潜
水装置本体を上昇・下降させることができる。前後進・
旋回用プロペラ8は潜水装置本体後部に2箇所並列に設
けられ、プロペラを2個同時に正回転方向に回転させれ
ば前進し、2個同時に負回転方向に回転させれば後進す
る。どちらか一方のプロペラを正負回転することで、潜
水装置本体の水平軸廻りに左右旋回することが可能であ
る。集積線量計9は潜水装置本体に数カ所設けられ、作
業終了時に放射線評価用として用いられる。
The propeller 7 for raising or lowering the body of the diving device 31 is provided in the center of the upper part of the body of the diving device, and the body of the diving device can be raised or lowered by controlling the positive / negative direction of rotation of the propeller. Forward and backward
Two swiveling propellers 8 are provided in parallel at the rear part of the body of the diving device, and move forward if two propellers are simultaneously rotated in the positive rotation direction, and backward if they are simultaneously rotated in the negative rotation direction. By rotating either propeller positively or negatively, it is possible to turn left and right around the horizontal axis of the submersible body. The integrated dosimeter 9 is provided at several places in the body of the diving apparatus and is used for radiation evaluation at the end of the work.

【0015】図2には潜水装置本体にかかわる各機器の
配置が示されている。潜水装置本体31はケーブル10
を介して制御器32と連結されており、このケーブル1
0を介して制御器32から潜水装置本体31に電源が供
給される。深度計1から得られる深度情報、またカメラ
2からの画像情報もこのケーブル10を介して制御器3
2に送られる。
FIG. 2 shows the arrangement of each device related to the body of the diving apparatus. The dive device body 31 is the cable 10
This cable 1 is connected to the controller 32 via
Power is supplied from the controller 32 to the main body 31 of the diving apparatus via 0. The depth information obtained from the depth meter 1 and the image information from the camera 2 are also transmitted via the cable 10 to the controller 3
Sent to 2.

【0016】制御器32は遠隔操作用コントローラ33
と計算機34にそれぞれ連結され、遠隔操作用コントロ
ーラ33では潜水装置本体31の各種遠隔操作(本体前
後進、昇降、旋回等)を行う。一方、計算機34におい
ては潜水装置本体31の深度計1から得られた深度情報
と既存の炉内線量分布を内部メモリに取り込み処理する
ことによって後述する炉内における潜水装置本体31の
残り寿命線量値と残り寿命時間を算出しTVモニタ35
へ表示する。
The controller 32 is a remote control controller 33.
The remote control controller 33 performs various remote operations (forward / backward movement, up / down movement, turning, etc.) of the submersible device main body 31. On the other hand, in the computer 34, the depth information obtained from the depth gauge 1 of the dive device body 31 and the existing in-reactor dose distribution are loaded into the internal memory and processed to process the remaining life dose value of the dive device body 31 in the reactor, which will be described later. And the remaining life time are calculated and the TV monitor 35
Display to.

【0017】また、このように従来では余寿命算出に必
要とした線量計を必要としないため、ケーブル10の径
を太くする必要もなく機動性を低下させることもないた
め、動きが自在となる。TVモニタ35はカメラ2で得
られた画像を出力することができる。
Further, since the dosimeter conventionally required for the calculation of the remaining life is not required, it is not necessary to increase the diameter of the cable 10 and the maneuverability is not deteriorated. . The TV monitor 35 can output the image obtained by the camera 2.

【0018】図3は深度計1の信号伝達ルートを示した
もので、深度計1より得られた信号は、制御器32内部
に設けられたA/D変換器40によってデジタル化さ
れ、計算機34内のインプットボード41へ進む。42
は周知のマイクロコンピュータで、基本的にはCPU4
3、RAM44、ROM45より構成されている。RO
M45にはCPU43を制御するプログラムが書き込ま
れており、CPU43はこのプログラムに従って、イン
プットボード41より必要とされる深度計データを取り
込んだり、あるいはRAM44との間でデータの授受を
行ったりしながら演算処理し、必要に応じてアウトプッ
トボード46へ与えられる。アウトプットボード46か
らはマイクロコンピュータで逐次演算された深度情報、
余寿命線量情報、余寿命時間情報の結果としてTVモニ
タ35へ出力表示される。
FIG. 3 shows a signal transmission route of the depth meter 1. The signal obtained from the depth meter 1 is digitized by the A / D converter 40 provided inside the controller 32, and the computer 34 is provided. Proceed to the input board 41 inside. 42
Is a well-known microcomputer, basically CPU4
3, RAM 44, ROM 45. RO
A program for controlling the CPU 43 is written in the M45, and the CPU 43 calculates according to the program while fetching the required depth gauge data from the input board 41 or exchanging data with the RAM 44. It is processed and provided to the output board 46 as needed. Depth information sequentially calculated by the microcomputer from the output board 46,
It is output and displayed on the TV monitor 35 as a result of the remaining life dose information and the remaining life time information.

【0019】図4は原子炉で本装置を用いて作業をする
イメージ図を描いたものである。作業者は燃料交換機5
1で作業し、あらかじめ遠隔操作用コントローラ33、
制御器32、計算機34、TVモニタ35をここに用意
しておく。潜水装置本体31はケーブル10を伝って作
業者から吊り降ろされ水中を潜水する。潜水範囲は限定
されないが、炉底にアクセスする場合は、途中上部格子
板52、炉心支持板53を通過し、予定として数本抜か
れたCRガイドチューブ54の間を通って炉底まで進入
することとなる。
FIG. 4 is a diagram showing an image of working with this apparatus in a nuclear reactor. The worker is a refueling machine 5
1 to operate the remote control controller 33,
The controller 32, the computer 34, and the TV monitor 35 are prepared here. The submersible device main body 31 is suspended from an operator through the cable 10 and dives underwater. Although the range of diving is not limited, when accessing the furnace bottom, pass through the upper lattice plate 52 and the core support plate 53 on the way and pass through between the CR guide tubes 54, which are planned to be removed, to reach the furnace bottom. Becomes

【0020】(寿命線量値と寿命時間の算出条件) 計算機34にて各寿命演算を行う前に、下記のデータが
既存であるものとする。炉内の線量率分布(高さ方向
をパラメータにとったデータ:水平面方向には依存しな
い)は一般的に原子力等の分野で使用されている放射線
線量計にて測定されている物とする。また、そのデータ
は任意的に等間隔で区分けされた線量率データとして深
度毎に規則正しく表1のように計算機34内の各メモリ
番地に記憶されているものとする。
(Calculation Conditions for Remaining Lifetime Dose Value and Remaining Lifetime) It is assumed that the following data already exists before each life calculation is performed by the computer 34. The dose rate distribution in the reactor (data with the height direction as a parameter: does not depend on the horizontal direction) is assumed to be measured by a radiation dosimeter generally used in fields such as nuclear power. Further, the data is assumed to be stored in each memory address in the computer 34 as regularly Table 1 for each depth as the dose rate data divided in any manner equidistant.

【0021】余寿命を算出したい各部品の耐放射線許
容値はγ線照射試験等で既にそろっているものとする。
It is assumed that the radiation resistance allowable value of each part for which the remaining life is to be calculated has already been set by a γ-ray irradiation test or the like.

【0022】潜水装置本体31が既に放射線環境下で
使用された実績をもつ場合は、その履歴データ(集積線
量)をもっているものとする。
When the main body 31 of the diving apparatus has already been used in a radiation environment, it has history data (accumulated dose).

【0023】潜水装置本体31の移動速度は前後進、
昇降を問わず作業者にとって操作し易い最適スピードと
して、前試験によって調べられているものとする。
The moving speed of the submersible body 31 is forward and backward,
As easy optimum speed to operate for the operator regardless of the lift, and those being examined by the things before the test.

【0024】(余寿命線量値と余寿命時間の演算方法)
図5は計算機34で計算されるフローチャートを示した
ものである。まず、初期設定として表1に示されている
ように既に測定されている各プラントに対応するデータ
マップの読みだしを行い計算機34のメモリに格納す
る。
(Calculation method of remaining life dose value and remaining life time)
FIG. 5 shows a flowchart calculated by the computer 34. First, as shown in Table 1 as an initial setting, a data map corresponding to each plant that has already been measured is read out and stored in the memory of the computer 34.

【0025】[0025]

【表1】 [Table 1]

【0026】また、照射試験で得られたカメラ2等の耐
放射線許容値A(Sv)や、別途作業中に受けたカメラ
2等の残り寿命の少ない機器の被ばく線量B(Sv)、
潜水装置本体の最適安定スピード(m/h)を入力す
る。
Further, the radiation tolerance value A (Sv) of the camera 2 and the like obtained in the irradiation test, the exposure dose B (Sv) of the equipment having a short remaining life such as the camera 2 and the like received during the work,
Enter the optimum stable speed (m / h) for the dive unit.

【0027】次に、作業者が潜水装置本体31を炉内水
面下へ吊り下ろすと同時に搭載された深度計1が作動し
潜水装置本体31における深度D(m)を計算機34へ
送ってくる。ここでデータ伝送のサンプリング周期はΔ
t(h)によって周期的に計算機34へ送られてくるも
のとし、このΔtが極限的に短い方が精度が向上するこ
とを記しておく。計算機34から送られてきたDは表1
のデータマップより深度Dに対応するΔM3(Sv/
h)をソート(以下ΔはM3の微小要素を示す)しサン
プリング周期Δtとの積をとり以後積算されていく。積
算された値はその地点までに潜水装置本体31が受けた
被ばく線量E(Sv)を示すことになる。
Next, at the same time when the operator suspends the body of the diving device 31 below the water surface in the reactor, the depth gauge 1 installed therein is activated to send the depth D (m) in the body of the diving device 31 to the computer 34. Here, the sampling period for data transmission is Δ
It is assumed that the data is periodically sent to the computer 34 by t (h), and it is noted that the accuracy is improved if this Δt is extremely short. D sent from the computer 34 is shown in Table 1.
ΔM3 (Sv /
h) is sorted (hereinafter, Δ indicates a minute element of M3), and the product of the sampling period Δt is calculated, and thereafter, integrated. The integrated value indicates the exposure dose E (Sv) received by the submersible device body 31 up to that point.

【0028】続いて見込み線量値F(Sv)の算出方法
であるが、潜水装置本体31が潜水を開始しある地点ま
で到達したと仮定すると、当然分布の異なる(しかしな
がらこの分布は炉内の高さ方向のみに変化し平面方向ほ
ぼ変化しないことが知られている)炉内水中下を引き返
す必要がある。この時に戻りの過程にて被ばくを受ける
線量も見込んだ余寿命を算出する必要がある。この過程
を考慮しなければ潜水装置本体31が炉内の複雑な狭隘
部を点検中に余寿命の見積を誤ったことにより故障し回
収できなくなる危険性がでてくる。
Next, regarding the method of calculating the expected dose value F (Sv), assuming that the dive device main body 31 has started diving and has reached a certain point, the distribution is naturally different (however, this distribution is higher in the furnace). It is known that it changes only in the vertical direction and does not almost change in the plane direction). At this time, it is necessary to calculate the remaining life expecting the dose received during the returning process. If this process is not taken into consideration, there is a risk that the submersible device main body 31 may malfunction due to incorrect estimation of the remaining life during inspection of the complicated narrow portion in the furnace, and may not be recovered.

【0029】従って、変数F(Sv)で与えた式は潜水
装置本体31が回収されるまでの引き返し時までに発生
する被ばく線量の見積を取った値であり、潜水装置本体
31の現在位置から水面までの線量分布を距離で積分し
潜水装置本体最適スピードで割った値にほぼ等しい。す
なわち、余寿命線量G(Sv)の値は既被ばく線量B
(Sv)とその地点までに潜水装置本体31が受けた被
ばく線量E(Sv)と潜水装置本体31が引き返す時に
発生する被ばく線量F(Sv)の和をとり耐放射線線量
許容値A(Sv)からの差を取ったものとして見積もら
れる。
Therefore, the formula given by the variable F (Sv) is a value obtained by taking an estimate of the exposure dose that is generated by the time of turning back until the body of the diving device 31 is collected, and is calculated from the current position of the body of the diving device 31. It is almost equal to the value obtained by integrating the dose distribution up to the water surface by the distance and dividing by the optimal speed of the body of the diving system. That is, the value of the remaining life dose G (Sv) is the already exposed dose B.
(Sv) and the exposure dose E (Sv) received by the diving equipment body 31 up to that point and the exposure dose F (Sv) generated when the diving equipment body 31 returns, and the radiation resistant dose allowable value A (Sv) It is estimated as the difference from.

【0030】一方、余寿命時間H(h)は余寿命線量G
(Sv)を潜水装置本体31の現在位置における線量率
ΔM3(Sv/h)で割ったもので表され、引き返し時
に発生する被ばくを考慮した残り時間として見積もられ
る。この時G(Sv)の値が負を示せば”警告”等の表
示をTVモニタ35へ表示し、使用部品の限界と回収の
指示を作業者へ知らせる。
On the other hand, the remaining life time H (h) is the remaining life dose G
It is represented by a value obtained by dividing (Sv) by the dose rate ΔM3 (Sv / h) at the current position of the submersible device main body 31, and is estimated as the remaining time in consideration of the exposure that occurs at the time of turning back. At this time, if the value of G (Sv) shows a negative value, a display such as "warning" is displayed on the TV monitor 35, and the operator is informed of the limit of the used parts and the instruction of recovery.

【0031】また、上記2つの値、余寿命線量G(S
v)と余寿命時間H(h)はTVモニタ35へ表示さ
れ、作業者に対して数値で警告を行うことで残り時間を
容易に知ることができる。以上を計算処理した後は再び
深度計1より潜水装置本体31の深度D(m)の読みだ
しを行いΔt(h)間隔で繰り返し処理される。終了は
この過程のなかで割り込み命令として入った場合実行さ
れ、本システムで計算された集積値と集積線量計9の誤
差を確認し、新たな既被ばく線量値として次回の参考に
する。
Further, the above two values, the remaining life dose G (S
v) and the remaining life time H (h) are displayed on the TV monitor 35, and the remaining time can be easily known by giving a numerical warning to the operator. After the above calculation processing, the depth meter 1 reads the depth D (m) of the submersible device body 31 again, and the processing is repeated at Δt (h) intervals. The termination is executed when an interrupt command is entered in this process, and the error between the integrated value calculated by this system and the integrated dosimeter 9 is confirmed and used as a reference for the next exposure dose value.

【0032】以上詳述してきたように、対象部品の既知
許容線量値と算出された余寿命線量を比較することで、
耐放射線性の観点から対象部品の使用限界を把握でき、
部品の適切な交換時期を明確に把握できる為、装置の信
頼性を大幅に向上することができる効果がある。
As described in detail above, by comparing the known allowable dose value of the target part with the calculated remaining life dose,
You can grasp the usage limit of the target component from the viewpoint of radiation resistance,
Since it is possible to clearly grasp the proper replacement time of parts, there is an effect that the reliability of the device can be significantly improved.

【0033】また、作業者が炉内水中下において潜水装
置を用いて作業している時、潜水装置位置における場所
においてあとどれ程作業できるかを時間で正確に知るこ
とができる為、安全な作業が行える効果がある。
Further, when the worker is working under the water in the furnace by using the diving device, it is possible to accurately know in time how much work can be done at the place at the diving device position, so that safe work can be performed. There is an effect that can be.

【0034】さらに、原子炉内作業における正確な余寿
命線量と余寿命時間を自由に移動しながら同時予測でき
るため、事故につながらない安全な作業ができる効果が
ある。
Furthermore, since it is possible to simultaneously predict while freely moving the accurate remaining Kotobuki <br/> life dose and remaining life time in the reactor working, there is an effect that it is safe work that does not result in an accident.

【0035】[0035]

【発明の効果】以上説明してきたように本発明によれ
ば、潜水装置が炉内を自由に移動することができ、かつ
炉内作業における正確な余寿命線量と余寿命時間測定す
ることができ、安全な原子炉内作業ロボット装置また原
子炉内作業ロボット装置の放射線劣化診断方法を得るこ
とができる。
As described above, according to the present invention, the diving device can freely move in the furnace and can accurately measure the remaining life dose and the remaining life time during the work in the furnace. It is possible to obtain a safe in-reactor work robot apparatus and a radiation deterioration diagnosis method for a in-reactor work robot apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放射線劣化診断機能付潜水装置の潜水
装置本体の外観を示す斜視図である。
FIG. 1 is a perspective view showing an outer appearance of a diving apparatus body of a diving apparatus with a radiation deterioration diagnosing function of the present invention.

【図2】本発明の放射線劣化診断機能付潜水装置の各機
器の関係を示すブロック図である。
FIG. 2 is a block diagram showing a relationship among respective devices of the diving apparatus with a radiation deterioration diagnosis function of the present invention.

【図3】本発明の放射線劣化診断機能付潜水装置の信号
伝達ルートを示すブロック図である。
FIG. 3 is a block diagram showing a signal transmission route of the diving apparatus with a radiation deterioration diagnosis function of the present invention.

【図4】本発明の放射線劣化診断機能付潜水装置を用い
た作業状態を示す原子炉要部の縦断側面図である。
FIG. 4 is a vertical cross-sectional side view of essential parts of a nuclear reactor showing a working state using the diving apparatus with a radiation deterioration diagnosis function of the present invention.

【図5】本発明の放射線劣化診断機能付潜水装置の計算
フローチャートである。
FIG. 5 is a calculation flowchart of a diving apparatus with a radiation deterioration diagnosis function of the present invention.

【符号の説明】[Explanation of symbols]

1…深度計、2…カメラ、3…ライト、4…浮力体、5
…アーム、6…カメラ駆動機構、7…昇降用プロペラ、
8…前後進・旋回用プロペラ、9…集積線量計、10…
ケーブル、31…潜水装置本体、32…制御器、33…
遠隔操作用コントローラ、34…計算機、35…TVモ
ニタ、40…A/D変換器、41…インプットボード、
42…マイクロコンピュータ、43…CPU、44…R
AM、45…ROM、46…アウトプットボード、51
…燃料交換機、52…上部格子板、53…炉心支持板、
54…CRガイドチューブ、55…CRDハウジング、
56…炉底。
1 ... Depth meter, 2 ... Camera, 3 ... Light, 4 ... Buoyant body, 5
... arm, 6 ... camera drive mechanism, 7 ... lifting propeller,
8 ... Forward / backward / turning propeller, 9 ... Integrated dosimeter, 10 ...
Cable, 31 ... Diving device body, 32 ... Controller, 33 ...
Remote operation controller, 34 ... Calculator, 35 ... TV monitor, 40 ... A / D converter, 41 ... Input board,
42 ... Microcomputer, 43 ... CPU, 44 ... R
AM, 45 ... ROM, 46 ... Output board, 51
... Refueling machine, 52 ... Upper lattice plate, 53 ... Core support plate,
54 ... CR guide tube, 55 ... CRD housing,
56 ... Furnace bottom.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G21C 17/003 G21C 17/00 E (56)参考文献 特開 平4−357488(JP,A) 特開 平2−38995(JP,A) 特開 昭62−30914(JP,A) 特開 昭59−92397(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21C 17/08 GDL G01T 1/00 G01T 1/17 G21C 17/003 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI G21C 17/003 G21C 17/00 E (56) References JP-A-4-357488 (JP, A) JP-A-2-38995 ( JP, A) JP 62-30914 (JP, A) JP 59-92397 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G21C 17/08 GDL G01T 1 / 00 G01T 1/17 G21C 17/003

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子炉炉内の水中で点検補修作業を行う潜
水装置本体と、 前記潜水装置本体とケーブルを介して結合され、この潜
水装置本体を制御する制御装置と、 前記制御装置に連結され、前記潜水装置本体を遠隔操作
する遠隔操作用コントローラと、 前記制御装置に連結され、前記潜水装置本体から送られ
た信号を処理する計算装置とを備え、 前記潜水装置本体が受ける放射線線量からこの潜水装置
本体の余寿命を予測する原子炉内作業ロボット装置の放
射線劣化診断方法であって、 前記潜水装置本体に搭載した深度計のデータと炉内線量
率分布データとに基づき、潜水装置本体が現時点まで被
曝した線量と、 作業を中止して現時点の深度から水面上まで移動する際
に被曝する線量を前記深度計のデータと炉内線量率分布
データとから計算して求めた見込み線量との和をとり、 前記潜水装置本体を構成する部品の耐放射線許容値と前
記和との差を、炉内で作業できる前記部品の余寿命線量
として予測することを特徴とする原子炉内作業ロボット
装置の放射線劣化診断方法。
1. A submersible body for performing inspection and repair work in water in a nuclear reactor, a controller for connecting the main body of the diving apparatus through a cable for controlling the main body of the submersible device, and a controller connected to the controller. And a remote control controller for remotely controlling the body of the dive device, and a calculator connected to the controller for processing a signal sent from the body of the dive device. A method for diagnosing radiation deterioration of a work robot device in a nuclear reactor for predicting the remaining life of the main body of the submersible device, wherein the main body of the submersible device is based on the data of the depth gauge mounted on the main body of the submersible device and the dose rate distribution data in the reactor. From the depth gauge data and the in-reactor dose rate distribution data Taking the sum of the expected dose obtained by calculation, the difference between the radiation tolerance and the sum of the components that make up the body of the diving device, and predict the difference as the remaining life dose of the component that can work in the furnace. A method for diagnosing radiation deterioration of a work robot device in a reactor.
【請求項2】請求項1において、 潜水装置本体を構成する部品の余寿命線量と、 深度計のデータと炉内線量率分布データとから当該点に
おける線量率を求め、前記余寿命線量を前記線量率で割
って、余寿命時間を予測することを特徴とする原子炉内
作業ロボット装置の放射線劣化診断方法。
2. The residual life dose according to claim 1, wherein the dose rate at the relevant point is obtained from the remaining life dose of the parts constituting the body of the diving system, the depth meter data and the in-reactor dose rate distribution data. A method for diagnosing radiation deterioration of a work robot system in a nuclear reactor, characterized by predicting a remaining life time by dividing by a dose rate.
【請求項3】原子炉炉内の水中で点検補修作業を行う潜
水装置本体と、 前記潜水装置本体とケーブルを介して結合され、この潜
水装置本体を制御する制御装置と、 前記制御装置に連結され、前記潜水装置本体を遠隔操作
する遠隔操作用コントローラと、 前記制御装置に連結され、前記潜水装置本体から送られ
た信号を処理する計算装置とを備え、 前記潜水装置本体が受ける放射線線量からこの潜水装置
本体の余寿命を予測する原子炉内作業ロボット装置であ
って、 前記潜水装置本体に深度計を搭載し、 前記深度計のデータと炉内線量率分布データとから計算
した潜水装置本体が現時点まで被曝した線量と、 作業を中止して現時点の深度から水面上まで移動する際
に被曝する線量を前記深度計のデータと炉内線量率分布
データとから計算して求めた見込み線量との和をとり、 前記潜水装置本体を構成する部品の耐放射線許容値と前
記和との差を、炉内で作業できる前記部品の余寿命線量
として予測する計算手段を、前記計算装置に備えたこと
を特徴とする原子炉内作業ロボット装置。
3. A main body of a diving device for inspecting and repairing underwater in a nuclear reactor, a control device which is connected to the main body of the diving device via a cable, and controls the main body of the diving device, and is connected to the control device. And a remote control controller for remotely controlling the body of the dive device, and a calculator connected to the controller for processing a signal sent from the body of the dive device. An in-reactor work robot apparatus for predicting the remaining life of a body of a dive device, wherein a depth meter is mounted on the body of the dive device, and the body of the dive device is calculated from data of the depth meter and dose rate distribution data in the reactor. The radiation dose that was exposed to the current point and the dose that was received when the work was stopped and moved from the current depth to the water surface were calculated from the depth gauge data and the in-reactor dose rate distribution data. Taking the sum of the expected dose obtained by, the difference between the radiation resistance tolerance and the sum of the components constituting the body of the diving device, a calculation means for predicting the remaining life dose of the components that can work in the furnace, An in-reactor work robot apparatus characterized by being provided in the computer.
【請求項4】請求項3において、 潜水装置本体を構成する部品の余寿命線量と、 深度計のデータと炉内線量率分布データとから当該点に
おける線量率を求め、前記余寿命線量を前記線量率で割
って、余寿命時間を予測する計算手段を、前記計算装置
に備えたことを特徴とする原子炉内作業ロボット装置。
4. The residual life dose according to claim 3, wherein a dose rate at the relevant point is obtained from the remaining life dose of the parts forming the body of the diving system, the depth meter data and the in-reactor dose rate distribution data. An in-reactor work robot apparatus, characterized in that the calculating apparatus is provided with a calculating means for predicting a remaining life time by dividing by a dose rate.
JP03794195A 1995-02-27 1995-02-27 In-reactor working robot device and its radiation deterioration diagnosis method Expired - Lifetime JP3522876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03794195A JP3522876B2 (en) 1995-02-27 1995-02-27 In-reactor working robot device and its radiation deterioration diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03794195A JP3522876B2 (en) 1995-02-27 1995-02-27 In-reactor working robot device and its radiation deterioration diagnosis method

Publications (2)

Publication Number Publication Date
JPH08233980A JPH08233980A (en) 1996-09-13
JP3522876B2 true JP3522876B2 (en) 2004-04-26

Family

ID=12511587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03794195A Expired - Lifetime JP3522876B2 (en) 1995-02-27 1995-02-27 In-reactor working robot device and its radiation deterioration diagnosis method

Country Status (1)

Country Link
JP (1) JP3522876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144346B2 (en) 2019-03-20 2022-09-29 日立Geニュークリア・エナジー株式会社 Telemetry system and telemetry method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993936B2 (en) * 2018-06-22 2022-02-04 日立Geニュークリア・エナジー株式会社 Monitoring device for remote work equipment and its monitoring method
CN109353475B (en) * 2018-10-29 2019-12-10 厦门大学 Underwater glider recovery method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992397A (en) * 1982-11-19 1984-05-28 株式会社日立製作所 Movable inspection device
JPS6230914A (en) * 1985-08-02 1987-02-09 Mitsubishi Electric Corp Mobile inspection apparatus
JPH0238995A (en) * 1988-07-29 1990-02-08 Toshiba Corp In-furnace visual inspection device
JP3173020B2 (en) * 1991-02-28 2001-06-04 株式会社日立製作所 Radiation work support method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144346B2 (en) 2019-03-20 2022-09-29 日立Geニュークリア・エナジー株式会社 Telemetry system and telemetry method

Also Published As

Publication number Publication date
JPH08233980A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
KR900008662B1 (en) Method and device for checking a fuel assembly of a nuclear reactor
SE429071B (en) FUEL ROD REPLACEMENT TOOL FOR REMOVING AND / OR INSERTING A FUEL ROD FROM A RESPECT IN ONE IN SPECIAL UNDERWATER FUEL ELEMENT ASSOCIATION
JPS6229740B2 (en)
CN111751394B (en) Lithology identification method and system based on image and XRF mineral inversion
JP4383237B2 (en) Self-position detection device, in-furnace inspection method and in-furnace inspection device using the same
JP3522876B2 (en) In-reactor working robot device and its radiation deterioration diagnosis method
CN104555765A (en) System and method for monitoring perpendicularity of tower crane
USH1262H (en) Rod examination gauge
KR100576796B1 (en) Underwater Robot System for Reactor Internals Inspection and Foreign Objects Removal
KR20190063740A (en) Automatic calibration system of wave gauge and calibration method of wave gauge using the same
CN202593822U (en) Over-draft automatic detection system of navigation ships
WO2019117497A1 (en) Water surface robot for spent fuel inspection and inspection method
CN214828496U (en) Automatic hoisting and positioning device of hydrostatic test system
US4903281A (en) System for fuel rod removal from a reactor module
JPH09211178A (en) Method for positioning an underwater traveling robot
JPH07306291A (en) Measuring equipment
CN217227881U (en) Floating type nuclear power plant primary circuit pool video inspection robot
CN215893634U (en) Device for rapidly detecting verticality of steel column
CN1180246C (en) Metal surface coating test system
US20140355729A1 (en) Nuclear plant manipulator system
CN211731771U (en) Nuclear power plant water taking tunnel inner wall inspection device
CN115156518B (en) Automatic molten steel slag removing device, method, fault processing device, loss degree obtaining method and device
CN219370629U (en) Reactor control rod guide cylinder inspection device
JP2002039735A (en) Core measuring instrument
CN114895348A (en) Monitoring system for nuclear critical safety of precipitation reactor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

EXPY Cancellation because of completion of term