JP3522798B2 - Method for producing sugar-modified protein - Google Patents

Method for producing sugar-modified protein

Info

Publication number
JP3522798B2
JP3522798B2 JP22781593A JP22781593A JP3522798B2 JP 3522798 B2 JP3522798 B2 JP 3522798B2 JP 22781593 A JP22781593 A JP 22781593A JP 22781593 A JP22781593 A JP 22781593A JP 3522798 B2 JP3522798 B2 JP 3522798B2
Authority
JP
Japan
Prior art keywords
protein
sugar
modified
present
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22781593A
Other languages
Japanese (ja)
Other versions
JPH0761999A (en
Inventor
勝清 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP22781593A priority Critical patent/JP3522798B2/en
Publication of JPH0761999A publication Critical patent/JPH0761999A/en
Application granted granted Critical
Publication of JP3522798B2 publication Critical patent/JP3522798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人工的に合成される糖
修飾蛋白質に関し、特に糖修飾生理活性蛋白質に関する
ものである。
TECHNICAL FIELD The present invention relates to an artificially synthesized sugar-modified protein, and more particularly to a sugar-modified bioactive protein.

【0002】[0002]

【従来の技術】近年、生体由来の生理活性を有する蛋白
質あるいは糖蛋白質を医薬あるいは診断薬として利用す
る試みがなされている。しかし、有効かつ特異的に利用
するために、生体内での安定性を高めたり、代謝におけ
るシグナル作用、細胞内局所でのシグナル作用、レセプ
タ−や標的細胞に対する認識としてのシグナル作用を強
めたり発現させたりすることが必須となってきている。
その方法として、化学的に蛋白質を修飾することによ
り、該蛋白質の血中安定性を高めること、シグナル作用
を高め、標的細胞あるいは標的臓器への取り込みを促進
させること、蛋白質の生理活性を増大させこと、さら
には新たな生理活性を付与することなどが期待されてい
る。
2. Description of the Related Art In recent years, attempts have been made to utilize a biologically active protein or glycoprotein having biological activity as a drug or a diagnostic agent. However, in order to use it effectively and specifically, it enhances the stability in vivo, enhances the signal action in metabolism, the signal action in the intracellular region, and the signal action as recognition for receptors and target cells. It has become essential to do it.
As the method, by chemically modifying the protein, the blood stability of the protein is enhanced, the signal action is enhanced, the uptake into target cells or target organs is promoted, and the physiological activity of the protein is increased. that it further has such to impart new physiological activity is expected.

【0003】標的臓器としての肝臓への集積性に関連し
て、肝臓とガラクト−スとの親和性が報告されている
(Kawasaki.T & Ashwell.G., J.Biol.Chem., 251,129
6,1976及びLee.Y.C.et al., J.Biol.Chem.,258,199,198
3)。この知見に基づいて肝癌、肝硬変、肝炎などの肝
疾患に有効な生理活性を有する蛋白質に、末端にガラク
ト−スを有する糖を結合させることにより、効率的に肝
臓への蛋白質の取り込みを増大させ、治療効果を高める
ことができる。
The affinity of galactose with the liver has been reported in relation to its accumulation in the liver as a target organ (Kawasaki.T & Ashwell.G., J. Biol. Chem., 251,129.
6,1976 and Lee.Y C et al., J. Biol. Chem., 258, 199, 198.
3). Based on this finding, a protein having a physiological activity effective for liver diseases such as liver cancer, cirrhosis, and hepatitis is linked to a sugar having a galactose at the end, thereby efficiently increasing the uptake of the protein into the liver. , Can enhance the therapeutic effect.

【0004】例えば、β−D−ガラクトピラノシルポリ
エチレングリコールで修飾された生理活性蛋白質などが
知られている(特開昭63−152393)。また、末
端にガラクトース・ガラクトースの結合を有する糖鎖を
多量に含む糖蛋白質を遺伝子操作で製造する技術も知ら
れている(特開平1−102099)。しかし、従来の
技術は複雑な製造工程、生理活性蛋白質を変性させる可
能性のある反応条件等が必要であったり、特殊な真核細
胞を用いて糖蛋白質として発現させる必要があり、十分
満足な結果は得られていないし、実用化もされていな
い。
For example, a bioactive protein modified with β-D-galactopyranosyl polyethylene glycol is known (JP-A-63-152393). There is also known a technique for producing a glycoprotein containing a large amount of sugar chains having a galactose-galactose bond at its end by genetic engineering (JP-A-1-102099). However, the conventional techniques require a complicated production process, reaction conditions that may denature a physiologically active protein, and require expression in a glycoprotein using a special eukaryotic cell, which is sufficiently satisfactory. Results have not been obtained, nor has it been put to practical use.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、簡便
で汎用性のある化学的な方法によって糖修飾蛋白質を提
供することであり、特に生理活性蛋白質を糖修飾するこ
とにより、肝臓集積性および生理活性を高めた糖修飾蛋
白質を提供することである。
An object of the present invention is to provide a sugar-modified protein by a simple and versatile chemical method, and in particular, by biomodifying a bioactive protein with a sugar, liver accumulation properties are improved. And to provide a sugar-modified protein having enhanced physiological activity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、以上の課
題を解決するために鋭意検討した結果、以下の手段によ
って蛋白質にガラクトースが導入された糖修飾蛋白質を
得ることができ、かつ糖修飾による生理活性蛋白質の活
性の減少を防ぐことができ、得られた糖修飾蛋白質の肝
臓集積性が極めて高いことを見出し、本発明を完成し
た。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors were able to obtain a sugar-modified protein in which galactose was introduced into the protein by the following means, and The present invention has been completed by finding that it is possible to prevent a decrease in the activity of a physiologically active protein due to modification, and that the obtained glycosylated protein has an extremely high liver accumulation property.

【0007】すなわち、本発明はラクトースラクトンと
蛋白質とを水性溶媒中、0〜45℃で反応させ、ラクト
ースラクトンが開環して生じるガラクトース誘導体に存
在するカルボキシル基と、蛋白質分子中に存在するリジ
ン残基のε−アミノ基または蛋白質N末端のアミノ基間
でのアミド結合反応させることを特徴とする糖修飾蛋白
質の製造法である。また、本発明は下式(a)で示され
ラクトースラクトンと下式(b)で示される蛋白質
(インターフェロン−αを除く)とを上記製造法により
アミド結合反応させて得られる式(c)で示されること
を特徴とする糖修飾蛋白質である。
Accordingly, the present invention provides a lactose lactone and protein in an aqueous solvent, is reacted at 0 to 45 ° C., lacto
Exists in galactose derivatives formed by ring-opening of lactones
Existing carboxyl groups and ligation present in protein molecules
Between the ε-amino groups of amino acid residues or the N-terminal amino groups of proteins
The method for producing a sugar-modified protein is characterized in that the amide bond reaction is carried out. Further, the present invention is represented by the following formula (a):
Protein represented by lactose lactone with the following formula (b) and (excluding interferon-.alpha.) by the above process that
A sugar-modified protein represented by the formula (c) obtained by amide bond reaction .

【化2】 (式中、mは、蛋白質の第1級アミノ基の数、nはアミ
ド結合数、Rは、蛋白質骨格、またm≧nである。)
下本発明を詳細に説明する。
[Chemical 2] (In the formula, m is the number of primary amino groups of the protein, and n is an amino group.
The number of bonds, R, is a protein skeleton, and m ≧ n. ) The present invention will be described in detail below.

【0008】ラクトースラクトンは公知物質であり、以
下の方法によって製造することができる。ラクトースを
低級アルコール(例、メタノール)中、ヨウ素等の酸化
剤で酸化し、還元末端のグルコピラノースを開環してラ
クタネート(lactanate)とし、次いで強酸性陽イオン
交換樹脂(例、ダウエックス(Dowex) 50(H+))等を
用いて酸性条件とすることによって脱水閉環し、ラクト
ースラクトンを得ることができる(Polymer Journal,17,
(4),567-575(1985))。
Lactose lactone is a known substance and can be produced by the following method. Lactose is oxidized with an oxidizing agent such as iodine in a lower alcohol (eg, methanol) to open the reducing terminal glucopyranose to a lactanate, and then a strong acid cation exchange resin (eg, Dowex). ) 50 (H + )) and the like under acidic conditions for dehydration ring closure to obtain lactose lactone (Polymer Journal, 17,
(4), 567-575 (1985)).

【0009】ラクトースラクトンと反応させる蛋白質
は、特に制限なくラクトースラクトンと結合反応する官
能基を少なくとも1個有していればよい。また、反応に
用いる蛋白質の構造は、アミノ酸の他、糖鎖、その他の
修飾基を有した蛋白質誘導体でもよい。本発明において
は、反応に使用する蛋白質は、特に生理活性を有する蛋
白質が有用である。
The protein to be reacted with lactose lactone is not particularly limited as long as it has at least one functional group capable of binding with lactose lactone. The structure of the protein used in the reaction may be a protein derivative having a sugar chain or other modifying group in addition to the amino acid. In the present invention, as the protein used in the reaction, a protein having physiological activity is particularly useful.

【0010】該官能基としては、ラクトースラクトンが
開環して生じるガラクトース誘導体に存在するカルボキ
シル基と反応するものであれば特に制限はないが、一般
的には第1級アミノ基等が例示できる。本発明の反応に
よってラクトースラクトンと該官能基が反応し、蛋白質
分子中および/または蛋白質分子末端にガラクトース残
基を有する糖修飾蛋白質を極めて効率よく製造すること
ができる。
The functional group is not particularly limited as long as it reacts with the carboxyl group present in the galactose derivative formed by ring-opening of lactose lactone, but a primary amino group or the like can be generally exemplified. . By the reaction of the present invention, lactose lactone reacts with the functional group, whereby a sugar-modified protein having a galactose residue in the protein molecule and / or at the terminal of the protein molecule can be extremely efficiently produced.

【0011】蛋白質の糖修飾率、即ち、ガラクトース残
基結合率は、蛋白質に対するラクトースラクトンの使用
量、反応時間等の反応条件によって変動するが、本発明
の糖修飾蛋白質は、蛋白質分子中に少なくとも一個以上
該糖が修飾されていればよく、使用目的に応じて種々選
定できる。例えば、糖修飾蛋白質を生理活性物質として
使用する場合は、一般的には、蛋白質分子中の第1級ア
ミノ基の70%以下、好ましくは10〜50%が該糖に
より修飾されることが望ましい。
The sugar modification rate of a protein, that is, the galactose residue binding rate varies depending on the reaction conditions such as the amount of lactose lactone used with respect to the protein and the reaction time, but the sugar modified protein of the present invention is at least contained in the protein molecule. It suffices that one or more sugars be modified, and various selections can be made according to the purpose of use. For example, when a sugar-modified protein is used as a physiologically active substance, it is generally desirable that 70% or less, preferably 10 to 50%, of the primary amino group in the protein molecule is modified with the sugar. .

【0012】第1級アミノ基としては、リジン残基のε
−アミノ基または蛋白質N末端のアミノ基が挙げられ
る。例えば、ラクトースラクトンとこの第1級アミノ基
を有した蛋白質とが、アミド結合反応のみにより糖修飾
蛋白質を生成した場合の反応式は以下の通りである。
The primary amino group is ε of a lysine residue.
An amino group or an amino group at the N-terminal of the protein. For example, the reaction formula when lactose lactone and a protein having a primary amino group produce a sugar-modified protein only by an amide bond reaction is as follows.

【0013】[0013]

【化1】 [Chemical 1]

【0014】式中、(a)はラクトースラクトンの構造
を、(b)は蛋白質の一般式を、(c)は生成した糖修
飾蛋白質の一般式を示す。また、mは、蛋白質の第1級
アミノ基の数、nはアミド結合数、Rは、蛋白質骨格、
またm≧nである。100n/mは、糖修飾率を示す。
本発明の糖修飾蛋白質の合成は、ラクトースラクトンと
蛋白質の反応を水性溶媒中、0〜45℃で行うことが好
ましい。反応溶媒としては、水または緩衝液(例、ほう
酸塩緩衝液、りん酸塩緩衝液、りん酸緩衝生理食塩水
等)の水性溶媒が使用される。反応温度は蛋白質が変性
または失活しない温度であればよいが、通常約0〜45
℃の範囲、特に室温付近が好ましい。反応のpHは約3
〜10の広い範囲でありうるが、中性付近が望ましい。
反応時間は約0.5〜100時間程度、好ましくは20
〜50時間であればよい。反応に際して、ラクトースラ
クトンおよび蛋白質それぞれの使用量は、所望の糖修飾
率により適宜選定されるが、蛋白質が生理活性物質の場
合は、生成する糖修飾蛋白質の生理活性を指標として予
備実験によって決定することができる。通常、生理活性
蛋白質中の第1級アミノ基に対して約0.5〜50倍モ
ルである。
In the formula, (a) shows a structure of lactose lactone, (b) shows a general formula of a protein, and (c) shows a general formula of a produced sugar-modified protein. Further, m is the number of primary amino groups of the protein, n is the number of amide bonds, R is the protein skeleton,
Further, m ≧ n. 100n / m shows a sugar modification rate.
In the synthesis of the sugar-modified protein of the present invention, it is preferable to carry out the reaction between lactose lactone and the protein in an aqueous solvent at 0 to 45 ° C. As the reaction solvent, an aqueous solvent such as water or a buffer solution (eg, borate buffer solution, phosphate buffer solution, phosphate buffered saline) is used. The reaction temperature may be a temperature at which the protein is not denatured or inactivated, but is usually about 0 to 45.
It is preferably in the range of ° C, especially around room temperature. PH of reaction is about 3
A wide range of 10 to 10 can be used, but a neutral range is preferable.
The reaction time is about 0.5 to 100 hours, preferably 20.
It may be up to 50 hours. In the reaction, the amounts of lactose lactone and protein to be used are appropriately selected depending on the desired sugar modification rate, but when the protein is a physiologically active substance, it is determined by preliminary experiments using the physiological activity of the resulting sugar modified protein as an index. be able to. Usually, it is about 0.5 to 50 times by mole with respect to the primary amino group in the physiologically active protein.

【0015】上記反応後、反応液を透析、塩析、限外濾
過、イオン交換クロマトグラフィー、ゲル濾過、HPL
C、電気泳動等通常の蛋白質の精製法で精製し、目的の
糖修飾蛋白質の精製物を得ることができる。本発明の糖
修飾蛋白質には、蛋白質にガラクトース残基が導入され
ているためガラクト−スに親和性を持つ肝実質細胞の特
性を利用して選択的にまた効率的に生理活性蛋白質を肝
組織に到達させることが可能であり、肝癌、肝硬変、肝
炎等の肝疾患の治療または予防に特に有効性を発揮す
る。さらに、本発明の糖修飾蛋白質は生体内での半減期
も延長されており、持続性を有している。
After the above reaction, the reaction solution is dialyzed, salted out, ultrafiltered, ion-exchange chromatography, gel filtered, HPL.
The desired sugar-modified protein can be obtained by purification by a conventional protein purification method such as C or electrophoresis. In the glycosylated protein of the present invention, since a galactose residue is introduced into the protein, the properties of hepatic parenchymal cells having an affinity for galactose are utilized to selectively and efficiently provide a physiologically active protein to liver tissue. It is particularly effective in treating or preventing liver diseases such as liver cancer, cirrhosis and hepatitis. Furthermore, the sugar-modified protein of the present invention has an extended half-life in vivo and is durable.

【0016】本発明の糖修飾蛋白質を、通常自体公知の
担体、希釈剤等を用いて適宜の医薬品組成物(例、注射
剤、錠剤、カプセル剤)として非経口的または経口的に
ヒトを含む哺乳動物に投与することができる。例えば、
本発明による糖修飾蛋白質の蛋白質としてスーパーオキ
シドジスムターゼ(以下「SOD」と略す)を使用した
糖修飾SODを抗炎症剤として用いるには、例えば注射
剤、錠剤等の形態で、SODの量として約0.1〜5m
g/kg/1日の投与量で患者に投与することができ
る。
The glycosylated protein of the present invention is used as a suitable pharmaceutical composition (eg, injection, tablet, capsule) using a carrier, a diluent and the like known per se in a parenterally or orally human form. It can be administered to mammals. For example,
To use a sugar-modified SOD using superoxide dismutase (hereinafter abbreviated as “SOD”) as a protein of the sugar-modified protein according to the present invention as an anti-inflammatory agent, for example, in the form of an injection, a tablet or the like, the amount of SOD is about 0.1-5m
It can be administered to the patient at a dose of g / kg / day.

【0017】その他、本発明の糖修飾蛋白質に使用でき
る蛋白質としては、ヒトを含む各種動物由来(細胞培養
によるものを含む)のもの、微生物由来のもの、植物由
来のもの、遺伝子工学産物、合成品のいずれでもよい。
例えば、サイトカイン{例、インターフェロン−β、イ
ンターフェロン−γ、インターロイキン2等}、ホルモ
ン{例、成長ホルモン、インスリン}、酵素{例、アス
パラギナーゼ、各種プロテアーゼ、各種ペプチダーゼ
等}、免疫グロブリン、プロテアーゼインヒビター、各
種チトクローム等が挙げられる。とりわけ好ましい生理
活性蛋白質としては、ヒトを含む各種動物由来、微生物
由来、植物由来または遺伝子組換え技術で生産されたS
OD(ヒトCu、Zn型−SOD、Mn型−SOD、F
e型−SOD等)等が挙げられる。
Other proteins that can be used as the glycosylated protein of the present invention include those derived from various animals including humans (including those derived from cell culture), those derived from microorganisms, those derived from plants, genetically engineered products, and synthetic products. Any of the items may be used.
For example, cytokine {eg, interferon-β, interferon-γ, interleukin 2 etc.}, hormone {eg, growth hormone, insulin}, enzyme {eg, asparaginase, various proteases, various peptidases etc.}, immunoglobulin, protease inhibitor, Examples include various cytochromes. Particularly preferred bioactive proteins include S derived from various animals including humans, derived from microorganisms, derived from plants, or produced by gene recombination technology.
OD (human Cu, Zn type-SOD, Mn type-SOD, F
e-type-SOD etc.) and the like.

【0018】[0018]

【実施例】以下、本発明の具体的実施例を説明するが、
本発明は、これに限定されるものではない。なお、実施
例において、ガラクト−ス糖鎖はヒドラジン分解法(続
生化学実験講座,第4巻,142頁)により分析した。
また、糖修飾率はTNBS(2,4,6-トリニトロベンゼン
スルホン酸)法(A.F.S.A.HABEEB.,Anal.Biochem.,14,3
28(1966))により測定した。
EXAMPLES Hereinafter, specific examples of the present invention will be described.
The present invention is not limited to this. In the examples, galactose sugar chains were analyzed by the hydrazine decomposition method (Zokusei Kagaku Kenkyu Koza, Vol. 4, p. 142).
The sugar modification rate is TNBS (2,4,6-trinitrobenzenesulfonic acid) method (AFSAHABEEB., Anal.Biochem., 14,3).
28 (1966)).

【0019】参考例:ラクト−スラクトンの製造 (1)ラクタネートの製造 ラクトース26gを水450mlに溶解し、メタノール
35mlを加え、さらにヨウ素37.45gを含むメタ
ノール600mlを40℃で加え、次いで4%水酸化カ
リウム溶液(35.2g/875ml)を加えて40℃
で60分反応させた。ヨウ素の色が消失したら氷冷し、
メタノール1000mlを加え、沈澱を濾取し、冷メタ
ノールとエーテルで洗浄し、水150mlに溶解してメ
タノールを添加し、沈澱を濾取してラクトースのグルコ
ースが開環し、その1位がカルボキシル基のカリウム塩
である化合物(ラクタネート)18gを得た。 (2)ラクトースラクトンの製造 (1)で製造したラクタネート10gを水200mlに
溶解し、ダウエックス(Dowex) 50(H+)カラムに通過
させて、遊離型とし、これを濃縮し、メタノールを加え
て濃縮した。メタノールを溜去し、生成した沈澱にエタ
ノールを加え、沈澱を濾取してラクトースラクトンを得
た。
Reference Example: Production of Lactose-lactone (1) Production of lactanate 26 g of lactose was dissolved in 450 ml of water, 35 ml of methanol was added, 600 ml of methanol containing 37.45 g of iodine was added at 40 ° C., and then 4% water was added. Potassium oxide solution (35.2 g / 875 ml) was added and the temperature was 40 ° C.
And reacted for 60 minutes. When the color of iodine disappears, cool with ice,
1000 ml of methanol was added, the precipitate was collected by filtration, washed with cold methanol and ether, dissolved in 150 ml of water and added with methanol, and the precipitate was collected by filtration to open the glucose of lactose, and the 1-position thereof had a carboxyl group. 18 g of a compound (lactanate) which is a potassium salt of. (2) Preparation of lactose lactone 10 g of the lactanate prepared in (1) was dissolved in 200 ml of water and passed through a Dowex 50 (H + ) column to give a free form, which was concentrated and methanol was added. Concentrated. Methanol was distilled off, ethanol was added to the formed precipitate, and the precipitate was collected by filtration to obtain lactose lactone.

【0020】実施例1:SODのラクト−スラクトンに
よる修飾 (製造)牛の赤血球由来のSOD(分子量32000;アミ
ノ基22個;3000 units/mg 蛋白質)5mg(0.156μmol;
第1級アミノ基として3.44μmol)を水1mlに溶解し、ラ
クト−スラクトンを6mg(16.76μmol)、15mg(41.9μmol)
および30mg(83.8μmol)ずつ加えて室温で48時間反応し
た。反応液を水に対して透析し、凍結乾燥した。
Example 1: Modification of SOD with lacto-lactone (production) SOD derived from bovine erythrocytes (molecular weight 32000; 22 amino groups; 3000 units / mg protein) 5 mg (0.156 μmol;
Dissolve 3.44 μmol) as a primary amino group in 1 ml of water, and add 6 mg (16.76 μmol) and 15 mg (41.9 μmol) lactose lactone.
And 30 mg (83.8 μmol) each were added, and the mixture was reacted at room temperature for 48 hours. The reaction solution was dialyzed against water and freeze-dried.

【0021】それぞれ上記ラクト−スラクトンの使用量
の順番に生成した糖修飾SODの各ロットをLL-SOD-1、
2および3とした。収量、糖修飾率(糖で修飾された第1
級アミノ基の個数はそれぞれ4個、8個及び12個)、
活性、イオン交換樹脂を用いた高速液体クロマトグラフ
ィー(HPLC)(DEAE 5PW)による溶出時間を表1
に、アセチルセルロ−ス電気泳動{溶媒:0.1M ピリジ
ン/ギ酸(pH3.0)、泳動:30分(0.5mA/cm)、クーマ
シ−ブル−染色}を図1に示した。
Each lot of sugar-modified SOD produced in the order of the amount of lacto-slactone used was LL-SOD-1,
2 and 3. Yield, sugar modification rate (first modified with sugar
The number of primary amino groups is 4, 8 and 12 respectively),
Table 1 shows the elution time by high performance liquid chromatography (HPLC) (DEAE 5PW) using active and ion exchange resins.
In addition, acetyl cellulose electrophoresis {solvent: 0.1 M pyridine / formic acid (pH 3.0), migration: 30 minutes (0.5 mA / cm), Coomassie-blue staining} is shown in FIG.

【0022】[0022]

【表1】 [Table 1]

【0023】(体内動態)ロットLL-SOD-3及びSODを
[2,3-3H]スクシンイミジルプロピオネート(succinim
idyl propionate )で標識し、2500kBq/mgの3H-LL-SOD-
3及び2500kBq/mgの3H-SODを調製した。雄性C3H/HeN 6
週齢マウス尾静脈から10μg 蛋白質相当を投与し、投与
後経時的に動物を屠殺し、血液及び各臓器の放射活性を
測定して体内動態を調べた。その結果を表2に示した。
(Pharmacokinetics) Lot LL-SOD-3 and SOD were treated with [2,3- 3 H] succinimidyl propionate (succinim).
idyl propionate) and 2500 kBq / mg of 3 H-LL-SOD-
3 and 2500 kBq / mg of 3 H-SOD was prepared. Male C 3 H / HeN 6
10 μg of protein equivalent was administered from the tail vein of week-old mice, the animals were sacrificed over time after the administration, and radioactivity of blood and each organ was measured to examine the pharmacokinetics. The results are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明の糖修飾蛋白質は、未修飾の蛋白
質に比べて肝臓への集積性が極めて高く、生体内での半
減期が延長されている。このため、肝癌、肝硬変、肝炎
等の肝疾患の治療または予防に該蛋白質を使用すると、
未修飾の蛋白質を使用した場合に比べて極めて高い治療
効果または予防効果をあげることができる。
EFFECTS OF THE INVENTION The sugar-modified protein of the present invention has a very high accumulation property in the liver and an extended half-life in vivo as compared with the unmodified protein. Therefore, when the protein is used for treating or preventing liver diseases such as liver cancer, cirrhosis, and hepatitis,
An extremely high therapeutic effect or preventive effect can be achieved as compared with the case where an unmodified protein is used.

【0026】本発明の糖修飾蛋白質の製造法は、蛋白質
が過酷な反応条件に晒されないために、化学的修飾によ
る生理活性の低下を防ぐことができ、高い生理活性を有
する糖修飾蛋白質を得ることができる極めて優れた方法
である。また、本発明は、種々の機能を有する蛋白質を
種々の糖修飾率の糖修飾蛋白質とすることができるの
で、目的に応じて種々の機能性蛋白質を製造できる。
In the method for producing a sugar-modified protein of the present invention, since the protein is not exposed to harsh reaction conditions, it is possible to prevent a decrease in physiological activity due to chemical modification and obtain a sugar-modified protein having high physiological activity. This is an extremely excellent method. Further, in the present invention, since proteins having various functions can be sugar-modified proteins having various sugar-modification rates, various functional proteins can be produced according to the purpose.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による糖修飾SODと未処理のSODの
アセチルセルロ−ス電気泳動による泳動図を示すもので
ある。
FIG. 1 shows electrophoretic diagrams of a sugar-modified SOD according to the present invention and an untreated SOD by acetylcellulose electrophoresis.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C07K 1/00 - 19/00 PubMed JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C07K 1/00-19/00 PubMed JISC file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ラクトースラクトンと蛋白質とを水性溶
媒中、0〜45℃で反応させ、ラクトースラクトンが開
環して生じるガラクトース誘導体に存在するカルボキシ
ル基と、蛋白質分子中に存在するリジン残基のε−アミ
ノ基または蛋白質N末端のアミノ基間でのアミド結合反
応させることを特徴とする糖修飾蛋白質の製造法。
1. Lactose lactone is allowed to react with protein in an aqueous solvent at 0 to 45 ° C. to release the lactose lactone.
Carboxy present in cyclic galactose derivatives
Group and the ε-amido of the lysine residue present in the protein molecule.
Amide bond between the amino group or the amino group at the N-terminal of the protein
A method for producing a sugar-modified protein, which is characterized in that
【請求項2】 下式(a)で示されるラクトースラクト
ンと下式(b)で示される蛋白質(インターフェロン−
αを除く)とを請求項1記載の製造法によりアミド結合
反応させて得られる式(c)で示されることを特徴とす
る糖修飾蛋白質。 【化1】 (式中、mは、蛋白質の第1級アミノ基の数、nはアミ
ド結合数、Rは、蛋白質骨格、またm≧nである。)
2. A lactose lactone represented by the following formula (a) and a protein represented by the following formula (b) (interferon-
and (except α) by the production method according to claim 1.
A sugar-modified protein represented by the formula (c) obtained by the reaction . [Chemical 1] (In the formula, m is the number of primary amino groups of the protein, and n is an amino group.
The number of bonds, R, is a protein skeleton, and m ≧ n. )
JP22781593A 1993-08-23 1993-08-23 Method for producing sugar-modified protein Expired - Fee Related JP3522798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22781593A JP3522798B2 (en) 1993-08-23 1993-08-23 Method for producing sugar-modified protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22781593A JP3522798B2 (en) 1993-08-23 1993-08-23 Method for producing sugar-modified protein

Publications (2)

Publication Number Publication Date
JPH0761999A JPH0761999A (en) 1995-03-07
JP3522798B2 true JP3522798B2 (en) 2004-04-26

Family

ID=16866817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22781593A Expired - Fee Related JP3522798B2 (en) 1993-08-23 1993-08-23 Method for producing sugar-modified protein

Country Status (1)

Country Link
JP (1) JP3522798B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869874B2 (en) * 1995-11-15 2007-01-17 大日本住友製薬株式会社 Acute liver failure treatment
AU1688099A (en) 1998-12-24 2000-07-31 Kyowa Hakko Kogyo Co. Ltd. Pharmaceutical preparation
CN1492877A (en) * 2001-02-20 2004-04-28 �����﹤����ʽ���� Modifier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152393A (en) * 1986-07-03 1988-06-24 Takeda Chem Ind Ltd Glycosyl derivative
JPH01102099A (en) * 1987-10-14 1989-04-19 Toray Ind Inc Glycoprotein having physiological activity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Drug Delivery System,1993年 8月17日,vol.8, no.5,p.382

Also Published As

Publication number Publication date
JPH0761999A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
JPH0770195A (en) Sugar-modified interferon
KR950014915B1 (en) Asialoglycoprotein-conjugated compounds
JP2537602B2 (en) Stability proteins and methods for stabilizing proteins
JP5912152B2 (en) N-terminal polysialylation
US7160924B2 (en) Protein conjugates with a water-soluble biocompatible, biodegradable polymer
EP1704864B9 (en) Injectable pharmaceutical preparation consisting of a cytostatic agent and a maleinimide linked by a spacer.
JP2514950B2 (en) Chemically modified protein, its production method and intermediate
US5359030A (en) Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
US4894226A (en) Solubilization of proteins for pharmaceutical compositions using polyproline conjugation
EP1198254B1 (en) Carrier-drug conjugate
HUT75533A (en) Improved interferon polymer conjugates
MX2011000847A (en) Conjugated proteins with prolonged in vivo efficacy.
JPS6230A (en) Remedy for malignant tumorous anemia
SU1012786A3 (en) Method for preparing proteinaceous complex stimulating secretion of insulin
JPH0443080B2 (en)
JP2007528347A (en) PEG-bioactive polypeptide homodimeric conjugate having extended in vivo half-life and method for producing the same
US20030103934A1 (en) Drugs having long-term retention in target tissue
JP3522798B2 (en) Method for producing sugar-modified protein
JP2001081103A (en) Hyaluronic acid-bound medicinal agent
JP3209338B2 (en) Polyethylene glycol-modified arginine deiminase and method for producing the same
JPH01102099A (en) Glycoprotein having physiological activity
Yamamoto et al. Rat bovine serum albumin (BSA) nephritis. VI. The influence of chemically altered antigen.
JPH01500829A (en) Succinylated interleukin-2 for pharmaceutical compositions
JPH09124512A (en) Water-soluble medicine-pullulan combination preparation for targeting liver
JPH10338645A (en) Agent for improving functional disorder accompanied by cerebrovascular disease

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees