JP3522512B2 - Biosensor-based water quality meter - Google Patents

Biosensor-based water quality meter

Info

Publication number
JP3522512B2
JP3522512B2 JP31698797A JP31698797A JP3522512B2 JP 3522512 B2 JP3522512 B2 JP 3522512B2 JP 31698797 A JP31698797 A JP 31698797A JP 31698797 A JP31698797 A JP 31698797A JP 3522512 B2 JP3522512 B2 JP 3522512B2
Authority
JP
Japan
Prior art keywords
water
biosensor
buffer solution
water quality
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31698797A
Other languages
Japanese (ja)
Other versions
JPH11153573A (en
Inventor
和之 田口
良春 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP31698797A priority Critical patent/JP3522512B2/en
Publication of JPH11153573A publication Critical patent/JPH11153573A/en
Application granted granted Critical
Publication of JP3522512B2 publication Critical patent/JP3522512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、上下水道の各処理
プロセスの水や河川水、湖沼水などの環境水を対象とし
て、水中の化学成分をモニタリングすること目的とした
バイオセンサ応用水質計測器に関する。 【0002】 【従来の技術】バイオセンサは、検水中の測定対象物質
を認識する分子識別素子として、酵素や抗体などの生体
機能高分子や、微生物や細胞など生体そのものを利用
し、これらの生体材料を多孔性高分子膜に包括または共
有結合させることにより固定化した膜と、電気化学的検
出器などのトランスデューサとを組み合わせて、試料中
の化学成分の測定を行うセンサである。 【0003】バイオセンサは、検水を上記生体材料の固
定化膜に接触させ、これによって生じる化学反応により
生成または消費される物質の濃度変化を検出器の電気的
出力(電圧、電流など)変化に変換して測定するもの
で、既知濃度の被測定物質の標準液によって得られた検
量線を用い、検水に対するセンサ出力から、検水中の目
的物質の濃度を算出する。測定にあたっては固定化した
生体材料が安定に機能するように温度とpH条件を一定
にすることが必要である。そのため、バイオセンサ応用
計測器は温度を一定に保つために検水を一定温度に加温
する熱交換器と、センサ温度を一定にする恒温槽とが備
えられ、pH条件を一定とするために緩衝溶液が用いら
れている。 【0004】最近、本発明者らは、特公平7−8507
2号に示す内容の水中の毒物(有害物)検出用バイオセ
ンサを開発し、実用化している。これは、生体材料とし
て、有毒物質に極めて弱い、言い換えるとセンサとして
は高感度の特性を持つ、微生物の硝化菌を用い、この硝
化菌を固定化した膜と、溶存酸素電極とを組み合わせて
センサを構成し、水中の有毒物を検出している。 【0005】図1はバイオセンサを応用した水中毒物検
出装置の構成を示すフロー図、図2はバイオセンサ(微
生物センサ)の構成を示す模式図である。図2に示すよ
うにフローセル18内にステンレス製の金網26を入
れ、硝化菌の一種であるニトロソモナス・ユーロピア
(Nitrosomonas europaea AT
CC25978)を固定化した固定化微生物膜25を入
れ、その上に溶存酸素電極19を取付けナットで固定、
微生物膜25と密着させて、有害物質検出用微生物セン
サ1を構成する。これを図1に示すように30°Cに設
定された恒温槽2に取り付ける。 【0006】図1において、はじめゼロ点校正のため緩
衝溶液A1 6aと純水4とを流し、微生物センサ1の安
定化した電流値を記憶する。次に、有害物質のない状態
のセンサ出力として、バルブ7dを閉め、バルブ7eを
開にして、アンモニア性窒素を含む緩衝溶液B1 6bと
純水4とを流し、センサ出力安定化後の電流値を記憶す
る。次にバルブ7bを閉め、バルブ7aを開にして検水
3の測定を開始する。本装置は1日1回程度、前記のよ
うにセンサの自動校正を行いながら連続的に検水のモニ
タリングを行う。 【0007】硝化菌を用いたバイオセンサはpH8〜9
で安定に機能するために、このバイオセンサでは、pH
8付近に緩衝能をもつリン酸緩衝溶液が、当初は用いら
れていた。しかし、検水が河川水や地下水などの環境水
や浄水、下水などの場合、水中の硬度成分(カルシウム
イオン)の濃度が20mg/L以上であるとカルシウム
イオンと緩衝溶液中のリン酸イオンが反応し水に溶けな
いリン酸カルシウムが生成する。その沈殿物が流路の閉
塞や固定化膜に付着するため、応答性や測定感度の低下
の原因となる。そのため、その後は、リン酸緩衝溶液
に、検水中のカルシウムイオンと錯体を形成するキレー
ト剤(EDTA−4Na)を添加して、リン酸カルシウ
ムの沈殿生成を防いでいた。 【0008】しかし、検水中のカルシウム濃度によって
EDTA−4Naの添加量を変える必要があり、試薬調
製時の操作が煩雑になること、カルシウム濃度に対しE
DTA−4Naを過剰に添加すると硝化菌に悪影響を及
ぼし寿命が短くなるという問題があった。また、排水水
質基準の改正により窒素およびリンの環境中への排水規
制が強化されるため、バイオセンサの緩衝溶液を、窒素
およびリン成分を含む試薬を削減した緩衝溶液組成とす
る必要がある。 【0009】そこで、本発明者らは、リン酸緩衝溶液に
代わる緩衝液としてキレート態鉄とマグネシウムイオン
の両方を含む四ホウ酸ナトリウム水溶液(pH9)を開
発し、特願平9─104126号として出願している。 【0010】 【発明が解決しようとする課題】水質計測器用の緩衝溶
液には、上記のように、キレート態鉄とマグネシウムイ
オンの両方を含む10mM−四ホウ酸ナトリウム水溶液
(pH9)が用いられている。実験において冷蔵保存し
ておいた微生物膜を新たにフローセルに装着し、純水を
測定する場合には、センサ出力は一定の値を示す。 【0011】しかし、河川水や地下水などの環境水や浄
水、下水などを測定する場合には、炭酸イオンなどの水
中の溶存イオンの影響により、検水中に毒物が含まれて
いなくてもセンサ出力が低下する現象が起こることがわ
かった。これは、例えば、24時間以内で急速に測定を
立上げたい時などに、冷蔵保存しておいた微生物膜を微
生物センサに装着直後に、バイオセンサ応用計測器が検
水に異常がなくてもこの出力低下を水質の異常と判断
し、アラームを発する可能性があるなどの問題があっ
た。 【0012】本発明はこの課題を解決するためになされ
たものであり、安定かつ環境にやさしいバイオセンサ応
用水質計を提供することにある。 【0013】 【課題を解決するための手段】上記の問題を解決するた
めに、本発明では、従来のキレート態鉄とマグネシウム
イオンを含む四ホウ酸ナトリウム水溶液に、炭酸水素ナ
トリウムを添加した、ホウ酸緩衝溶液を使用することと
する。この緩衝溶液を使用することにより、炭酸イオン
を予め含んでいるために、河川水などに含まれている炭
酸イオンなどの溶存イオンに影響されず、バイオセンサ
立上げ時のセンサ出力の低下がなくなり安定に長期のモ
ニタリングが可能となった。 【0014】 【発明の実施の形態】以下に実施例に基づいて説明す
る。表1は、実施例に用いた従来の緩衝溶液B1 と本発
明の緩衝溶液B2 の組成を示す。 【0015】 【表1】この2種類の緩衝溶液B1 とB2 とを用い、バイオセン
サ立上げ時のセンサ出力の安定性を比較した。図3は、
検水としてミネラルウォーターと純水をこの順で通流し
た時のセンサ出力の経過を2種類の緩衝溶液B1 とB2
とで比較したものである。ここでのセンサ出力は、校正
時のゼロ点の電流値を0%、アンモニア性窒素を含む緩
衝溶液を流したときの電流値を100%とし、各測定時
のセンサ出力の相対値として示している。また、ミネラ
ルウォーターは、含まれている成分が河川水に似ていて
毒物が含まれていないことから、実際に河川水の測定に
使用する条件を再現でき、センサ出力が安定に得られる
かどうかを検討するのに適しているために使用した。 【0016】この結果、バイオセンサ立上げ後、ミネラ
ルウォーターを測定した時に、従来の緩衝液B1 では、
センサ出力が低下するのに対して、炭酸水素ナトリウム
を添加した本発明の緩衝液B2 では、センサは出力の低
下が見られず安定に使用できることがわかる。図4は、
図3と同様の測定を、実際にある河川で測定を行った結
果である。 【0017】この測定でも、上記の結果と同じで、本発
明の緩衝液B2 では、バイオセンサ立上げ後、河川水を
測定しても、センサは出力が一定で、低下が見られず、
安定に使用できることがわかる。以上の結果より、従来
のキレート態鉄とマグネシウムイオンの両方を添加した
四ホウ酸ナトリウム水溶液に、炭酸水素ナトリウムを添
加したホウ酸緩衝溶液が、バイオセンサ応用水質計に適
していることが判明した。 【0018】この炭酸水素ナトリウムを添加した本発明
の緩衝溶液が、バイオセンサ立上げ後、河川水を測定し
ても、センサは出力の低下が見られないのは、次のよう
な理由によるものと推定される。硝化菌を含む化学合成
独立栄養細菌が炭酸固定をする場合には、二酸化炭素
(炭酸イオン)を唯一の炭素源としている。また、硝化
菌が窒素固定をする場合には、アンモニアイオンをエネ
ルギー源としている。硝化菌は、炭酸イオンを利用する
炭酸固定の場合には、酸素を必要としないが、アンモニ
アイオンを利用する窒素固定の場合には、酸素を必要と
する。これは硝化菌の呼吸である。 【0019】硝化菌を保持した微生物膜をバイオセンサ
に装着し、校正を行っているときには、緩衝溶液に炭酸
イオンが含まれていないために、硝化菌は炭素の欠乏状
態が続いている。ここに、炭酸イオンを含む検水が流入
すると、一気に硝化菌による炭酸の固定が始まり、その
量は窒素の固定、すなわち呼吸量よりも多くなる。この
ため、センサは見かけ上酸素を消費しなくなることによ
りセンサ出力が低下するものと考えられる。 【0020】この理由から、緩衝溶液中に炭酸イオンの
供給源となる炭酸水素ナトリウムを添加すると、校正中
にも炭酸の固定が行われ、呼吸とのバランスが保たれ
る、検水流入時のセンサ出力の低下を防ぐことができる
ものと考えられる。 【0021】 【発明の効果】本発明の緩衝液を使用することにより、
バイオセンサを安定に立ち上げることができ、バイオセ
ンサ応用計測器の測定確度の向上と誤作動とを防ぐこと
ができる。その結果、水質を安定して連続監視でき、よ
り実用性の高いバイオセンサ応用水質計を提供できる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention monitors the chemical components of water in environmental treatment water, river water, lake water, and the like in water treatment and sewage treatment processes. The present invention relates to a biosensor applied water quality measuring instrument. 2. Description of the Related Art A biosensor utilizes a biomolecule such as an enzyme or an antibody, or a living body such as a microorganism or a cell as a molecular identification element for recognizing a substance to be measured in a test water. This sensor measures a chemical component in a sample by combining a film in which a material is immobilized by entrapping or covalently bonding a porous polymer film with a transducer such as an electrochemical detector. [0003] In a biosensor, a sample is brought into contact with an immobilized membrane of the above-mentioned biomaterial, and a change in the concentration of a substance produced or consumed by a chemical reaction caused by the change is detected as a change in the electrical output (voltage, current, etc.) of the detector. The concentration of the target substance in the test water is calculated from the sensor output for the test water using a calibration curve obtained from a standard solution of the substance to be measured having a known concentration. In the measurement, it is necessary to keep the temperature and pH conditions constant so that the immobilized biomaterial functions stably. Therefore, the biosensor-based measuring instrument is equipped with a heat exchanger that heats the test water to a constant temperature in order to keep the temperature constant, and a thermostat that keeps the sensor temperature constant. A buffer solution is used. [0004] Recently, the present inventors have disclosed Japanese Patent Publication No. 7-8507.
The biosensor for detecting toxic substances (harmful substances) in water described in No. 2 has been developed and put into practical use. This is a sensor that uses a microbial nitrifying bacterium that is extremely sensitive to toxic substances as a biomaterial, in other words, has high sensitivity as a sensor, and combines a membrane on which the nitrifying bacterium is immobilized and a dissolved oxygen electrode. And detects toxic substances in water. FIG. 1 is a flowchart showing a configuration of a water toxic substance detection apparatus to which a biosensor is applied, and FIG. 2 is a schematic diagram showing a configuration of a biosensor (microbial sensor). As shown in FIG. 2, a stainless steel wire mesh 26 is put in the flow cell 18 and Nitrosomonas europaea AT, a kind of nitrifying bacteria, is used.
CC25997), immobilized microbial membrane 25 immobilized thereon, and a dissolved oxygen electrode 19 mounted thereon and fixed with a nut.
The microorganism sensor 1 for detecting harmful substances is formed in close contact with the microorganism film 25. This is attached to a thermostat 2 set at 30 ° C. as shown in FIG. [0006] In FIG. 1, flow of a buffer solution A 1 6a and pure water 4 for the early zero-point calibration, and stores the current value stabilizes microbial sensor 1. Then, as the sensor output of the absence of toxic substances, closed valve 7d, and a valve 7e is opened, buffer B 1 6b and flow of pure water 4, the sensor output stabilizing after current including ammonium nitrogen Store the value. Next, the valve 7b is closed, the valve 7a is opened, and the measurement of the test water 3 is started. This device continuously monitors the water sample about once a day while performing the automatic calibration of the sensor as described above. A biosensor using nitrifying bacteria has a pH of 8 to 9.
In order to function stably at
A phosphate buffer solution with a buffer capacity around 8 was initially used. However, when the sample is environmental water such as river water or groundwater, purified water, sewage, etc., if the concentration of the hardness component (calcium ion) in the water is 20 mg / L or more, calcium ion and phosphate ion in the buffer solution will be Reacts to form calcium phosphate that is insoluble in water. The sediment adheres to the channel and the immobilized membrane, which causes a decrease in responsiveness and measurement sensitivity. Therefore, after that, a chelating agent (EDTA-4Na) that forms a complex with calcium ions in the test sample was added to the phosphate buffer solution to prevent calcium phosphate precipitation. However, it is necessary to change the amount of EDTA-4Na to be added depending on the calcium concentration in the test water, which complicates the operation at the time of preparing the reagent.
When DTA-4Na is added in excess, there is a problem that the nitrifying bacteria are adversely affected and the life is shortened. In addition, since the regulation of the drainage of nitrogen and phosphorus into the environment is strengthened by the revision of the drainage water quality standards, the buffer solution of the biosensor needs to have a buffer solution composition in which reagents containing nitrogen and phosphorus components are reduced. Therefore, the present inventors have developed a sodium tetraborate aqueous solution (pH 9) containing both chelated iron and magnesium ions as a buffer solution instead of the phosphate buffer solution, and disclosed in Japanese Patent Application No. 9-104126. Filed. [0010] As described above, a 10 mM aqueous sodium tetraborate solution (pH 9) containing both chelated iron and magnesium ions is used as a buffer solution for a water quality measuring instrument. I have. When a microbial membrane that has been refrigerated and stored in the experiment is newly attached to the flow cell and pure water is measured, the sensor output shows a constant value. However, when measuring environmental water such as river water or groundwater, purified water, sewage, etc., the sensor output is not affected by the dissolved ions such as carbonate ions even if the test sample contains no toxic substances. Was found to occur. This is because, for example, when it is desired to quickly start measurement within 24 hours, immediately after attaching the refrigerated microbial membrane to the microbial sensor, even if the biosensor applied measuring instrument has no abnormality in the water sample, There has been such a problem that the decrease in output is judged to be an abnormality in water quality and an alarm may be issued. The present invention has been made to solve this problem, and an object of the present invention is to provide a biosensor-based water quality meter that is stable and environmentally friendly. [0013] In order to solve the above-mentioned problems, the present invention provides a borane obtained by adding sodium bicarbonate to a conventional sodium tetraborate aqueous solution containing chelated iron and magnesium ions. An acid buffer solution will be used. By using this buffer solution, since it contains carbonate ions in advance, it is not affected by dissolved ions such as carbonate ions contained in river water, etc., and the sensor output does not decrease when starting the biosensor. Stable long-term monitoring has become possible. The present invention will be described below with reference to embodiments. Table 1 shows the composition of a buffer solution B 2 of a conventional buffer solution B 1 and the present invention used in Example. [Table 1] Using these two types of buffer solutions B 1 and B 2 , the stability of the sensor output when the biosensor was started was compared. FIG.
Course of the sensor output when the mineral water and pure water was passed in this order two different buffer as the test water solution B 1 and B 2
It is compared with. The sensor output here is expressed as a relative value of the sensor output at each measurement, with the current value at the zero point at the time of calibration being 0% and the current value at the time of flowing a buffer solution containing ammonia nitrogen being 100%. I have. In addition, since mineral water contains similar components to river water and contains no toxic substances, it is possible to reproduce the conditions actually used for river water measurement and whether sensor outputs can be obtained stably. Used to be appropriate to consider. As a result, when the mineral water was measured after the biosensor was set up, the conventional buffer B 1
Whereas the sensor output decreases, the buffer B 2 of the present invention with the addition of sodium hydrogen carbonate, the sensor is seen to be usable stably showed no decrease in output. FIG.
This is the result of performing the same measurement as in FIG. 3 on an actual river. [0017] In this measurement, the same as the result of the above, the buffer B 2 of the present invention, after the biosensor startup, be measured river water, the sensor output is constant, not observed decrease,
It turns out that it can be used stably. From the above results, it was found that a borate buffer solution obtained by adding sodium bicarbonate to a conventional sodium tetraborate solution containing both chelated iron and magnesium ions is suitable for a biosensor-based water quality meter. . The reason why the buffer solution of the present invention to which sodium bicarbonate is added does not show a decrease in the output of the sensor even when the river water is measured after the start of the biosensor is as follows. It is estimated to be. When chemolithoautotrophic bacteria including nitrifying bacteria fix carbon dioxide, carbon dioxide (carbonate ion) is the only carbon source. When nitrifying bacteria fix nitrogen, ammonia ions are used as an energy source. Nitrifying bacteria do not require oxygen in the case of carbonate fixation using carbonate ions, but need oxygen in the case of nitrogen fixation using ammonia ions. This is the respiration of nitrifying bacteria. When the microbial membrane holding the nitrifying bacteria is mounted on the biosensor and calibration is performed, the nitrifying bacteria remain carbon deficient because the buffer solution does not contain carbonate ions. Here, when a sample containing carbonate ions flows in, the fixation of carbonic acid by nitrifying bacteria starts at once, and the amount of fixation becomes larger than the fixation of nitrogen, that is, the respiration rate. For this reason, it is considered that the sensor does not consume oxygen apparently, and the sensor output decreases. For this reason, if sodium bicarbonate, which is a source of carbonate ions, is added to the buffer solution, the carbonic acid is fixed even during calibration, and the balance with respiration is maintained. It is considered that a decrease in the sensor output can be prevented. By using the buffer of the present invention,
The biosensor can be started up stably, and the measurement accuracy of the biosensor applied measuring instrument can be improved and malfunction can be prevented. As a result, the water quality can be stably and continuously monitored, and a more practical biosensor applied water quality meter can be provided.

【図面の簡単な説明】 【図1】バイオセンサ応用水質計の構成を示すフロー図 【図2】バイオセンサ(微生物センサ)の構成を示す模
式図 【図3】ミネラルウォーターを測定したときの炭酸水素
ナトリウムの効果の比較図 【図4】河川水を測定したときの炭酸水素ナトリウムの
効果の比較図 【符号の説明】 1 : バイオセンサ 2 : 恒温槽 3 : 検水 4 : 純水 5 : 酸洗浄水 6a: 緩衝液A 6b: 緩衝液B 7a〜7g: 電磁弁 8a〜8b: 送液ポンプ 9 : 熱交換器 10 : エアポンプ 11 : 圧力センサ 12 : ローラークランプ 13 : 二方切換三方弁 14 : 表示部 15 : 制御部 16 : 記録計 17 : 測定部 18 : フローセル 19 : 溶存酸素電極 20 : 試料流路 21 : 正極 22 : 負極 23 : 電極液 24 : 隔膜 25 : 固定化微生物膜 26 : ステンレス製金網 27a〜27c:Oリング 28a〜28b:リード線 29 : ワッシャー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing the configuration of a biosensor-based water quality meter. FIG. 2 is a schematic diagram showing the configuration of a biosensor (microbial sensor). FIG. 3 is a diagram showing carbonic acid when measuring mineral water. Comparison diagram of effect of sodium hydrogen [Figure 4] Comparison diagram of effect of sodium hydrogen carbonate when measuring river water [Explanation of reference numerals] 1: Biosensor 2: Temperature chamber 3: Test water 4: Pure water 5: Acid Washing water 6a: Buffer solution A 6b: Buffer solution B 7a to 7g: Solenoid valves 8a to 8b: Solution pump 9: Heat exchanger 10: Air pump 11: Pressure sensor 12: Roller clamp 13: Two-way switching three-way valve 14: Display unit 15: Control unit 16: Recorder 17: Measurement unit 18: Flow cell 19: Dissolved oxygen electrode 20: Sample channel 21: Positive electrode 22: Negative electrode 23: Electrode solution 24: Diaphragm 25: Immobilization Microbial membrane 26: stainless steel wire mesh 27a-27c: O-ring 28a-28b: lead wire 29: washer

フロントページの続き (56)参考文献 特開 昭58−56700(JP,A) 特開 平1−242956(JP,A) 特開 平6−222041(JP,A) 特開 昭64−63850(JP,A) 特開 昭63−115048(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 G01N 27/327 G01N 33/18 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-58-56700 (JP, A) JP-A-1-242956 (JP, A) JP-A-6-222041 (JP, A) JP-A-64-63850 (JP) , A) JP-A-63-115048 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/416 G01N 27/327 G01N 33/18 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】 【請求項1】河川水や地下水などの水道原水や下、排水
処理プロセスの流入水中の化学物質を計測するバイオセ
ンサを利用した水質計において、使用する緩衝溶液が、
炭酸水素ナトリウム、キレート態鉄とマグネシウムイオ
ンを添加した四ホウ酸ナトリウム水溶液であることを特
徴とするバイオセンサ応用水質計。
(57) [Claims] [Claim 1] A buffer solution used in a water quality meter using a biosensor for measuring chemical substances in raw water of tap water such as river water and groundwater, and in the inflow water of a wastewater treatment process. But,
A biosensor-based water quality meter, which is an aqueous solution of sodium tetraborate to which sodium bicarbonate, chelated iron and magnesium ions are added.
JP31698797A 1997-11-18 1997-11-18 Biosensor-based water quality meter Expired - Lifetime JP3522512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31698797A JP3522512B2 (en) 1997-11-18 1997-11-18 Biosensor-based water quality meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31698797A JP3522512B2 (en) 1997-11-18 1997-11-18 Biosensor-based water quality meter

Publications (2)

Publication Number Publication Date
JPH11153573A JPH11153573A (en) 1999-06-08
JP3522512B2 true JP3522512B2 (en) 2004-04-26

Family

ID=18083163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31698797A Expired - Lifetime JP3522512B2 (en) 1997-11-18 1997-11-18 Biosensor-based water quality meter

Country Status (1)

Country Link
JP (1) JP3522512B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866304B2 (en) * 2007-06-19 2012-02-01 メタウォーター株式会社 Water quality measuring instrument applied to nitrifying bacteria biosensor

Also Published As

Publication number Publication date
JPH11153573A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
Marty et al. Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values
US4350763A (en) Method for determining biochemical oxygen demand
JP4355560B2 (en) How to monitor hazardous substances
JP3522512B2 (en) Biosensor-based water quality meter
JP3664888B2 (en) BOD biosensor measuring device
JPH0989839A (en) Water quality meter applied with biosensor
ATE159346T1 (en) DETECTION OF IRON(II) ION IN FLOWING WATER
JP2001228110A (en) Biosensor-applied water quality meter
JP2004132915A (en) Microbial electrode, oxygen electrode for microbial electrode, and measuring instrument using it
Okada et al. Ammonium ion sensor based on immobilized nitrifying bacteria and a cation-exchange membrane
JP3678093B2 (en) Methods for detecting harmful substances in environmental water
JP2000088791A (en) Biosensor-applied water quality monitor
JP4672473B2 (en) Method and apparatus for measuring scale inhibitor concentration
JP4875367B2 (en) Stock solution of nitrifying bacteria immobilization membrane
JPH10300711A (en) Water quality meter applying biosensor and buffer solution therefor
JPH1137969A (en) Abnormal water quality detector
JP4406792B2 (en) Biosensor calibration method
JPH1038842A (en) Buffer solution for water quality gauge
JP4161111B2 (en) How to monitor hazardous substances in environmental water
Ikeda et al. Development of long-term stable ammonium ion sensor in conjunction with a microbial membrane
JP4461289B2 (en) Detection method of harmful substances in environmental water using biosensor
JP3077461B2 (en) How to monitor hazardous substances in water
Hikuma et al. [10] Microbial sensors for estimation of biochemical oxygen demand and determination of glutamate
JPH0545352A (en) Bod measuring apparatus
JP5165425B2 (en) Biosensor control temperature setting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term