JP3522415B2 - Steel tube column reinforcement structure - Google Patents

Steel tube column reinforcement structure

Info

Publication number
JP3522415B2
JP3522415B2 JP27439595A JP27439595A JP3522415B2 JP 3522415 B2 JP3522415 B2 JP 3522415B2 JP 27439595 A JP27439595 A JP 27439595A JP 27439595 A JP27439595 A JP 27439595A JP 3522415 B2 JP3522415 B2 JP 3522415B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe column
buckling
reinforcing
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27439595A
Other languages
Japanese (ja)
Other versions
JPH09111720A (en
Inventor
和廣 西川
悟司 山本
博道 安波
昌弘 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute, Nippon Steel Corp filed Critical Public Works Research Institute
Priority to JP27439595A priority Critical patent/JP3522415B2/en
Publication of JPH09111720A publication Critical patent/JPH09111720A/en
Application granted granted Critical
Publication of JP3522415B2 publication Critical patent/JP3522415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鋼管柱の補強構造に
係り、より詳しくは、円形鋼管を柱部材として使用する
橋脚、鉄塔、建築物等の構造物において、地震等の外力
が作用した際に、柱部材の大きな応力が発生する部位を
局部的に補強することにより、変形性能を飛躍的に向上
させる経済的、合理的な鋼管柱の補強構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforcing structure for a steel pipe column, and more particularly to a structure in which a circular steel pipe is used as a column member, such as a bridge pier, a steel tower, or a structure, when an external force such as an earthquake acts. In addition, the present invention relates to an economical and rational steel pipe column reinforcing structure that locally reinforces a portion of a column member where large stress is generated to dramatically improve the deformation performance.

【0002】[0002]

【従来の技術】一般的に、軸圧縮力を受けている鋼管柱
に、設計外力を上回る地震力などによる曲げモーメント
が作用した時、圧縮側の縁応力が材料の降伏点を越える
最弱の断面位置において管軸方向に半波の凸状の局部座
屈40が生じることがある(図10(a)参照)。この
ような局部座屈は、曲げモーメントが解除されても完全
に元の状態に復帰せずに変形が残る。この状態で次に曲
げモーメントが前記と逆の方向に作用した場合には、先
に座屈が生じた断面の反対側に同様の局部座屈が生じ
る。更に、曲げモーメントが正負交番で作用した時に
は、それぞれの凸状の座屈変形モードが円周方向に進展
し、やがて双方の座屈モードが融合して鋼管断面を周回
するいわゆる堤灯座屈50となる(図10(b)参
照)。この過程において鋼管柱の耐荷力は、局部座屈が
発生するまでは上昇を辿り、局部座屈の発生とほぼ同時
に最大値を示し、以降は座屈変形の成長に伴ない耐荷力
は低下していく。先の阪神大震災(1995.1.1
7)においても鋼管橋脚の柱基部の根巻きコンクリート
直上や、柱中間の板厚変化部、マンホール部等部材の最
弱の断面位置に凸状の局部座屈、あるいは、堤灯座屈が
生じた。
2. Description of the Related Art Generally, when a bending moment due to seismic force exceeding a design external force is applied to a steel pipe column that receives an axial compressive force, the edge stress on the compression side exceeds the yield point of the material. At the cross-section position, a local buckling 40 having a half-wave convex shape may occur in the tube axis direction (see FIG. 10A). Such local buckling does not completely return to the original state even if the bending moment is released, and deformation remains. When the bending moment next acts in the opposite direction to the above in this state, similar local buckling occurs on the opposite side of the cross section where the buckling occurred earlier. Furthermore, when the bending moment acts in a positive / negative alternating manner, each convex buckling deformation mode develops in the circumferential direction, and eventually both buckling modes fuse together to form a so-called lantern buckling 50 which goes around the steel pipe cross section. (See FIG. 10B). In this process, the load bearing capacity of the steel pipe column increases until local buckling occurs, and reaches a maximum value almost at the same time as the occurrence of local buckling, and thereafter the load bearing capacity decreases with the growth of buckling deformation. To go. The Great Hanshin Earthquake (1995.1.1)
Also in 7), convex local buckling or lantern buckling occurs at the weakest cross-section position of the member such as the plate thickness change part in the middle of the pillar, the manhole part, etc. just above the root-wrapping concrete at the base part of the steel pipe pier. It was

【0003】鋼管柱の耐震性能を向上させる補強構造を
考える上では、前述の局部座屈あるいは堤灯座屈の発生
をいかに抑制するかが重要事項となる。従来、局部座屈
の発生を防止する補強構造としては、鋼管の内部にコン
クリートを充填する構造(前者)が知られている。ま
た、鋼管の外面をコンクリートや鋼板で巻きたてる構造
(後者)及び特開平6−167073号公報に開示され
ているように、鋼管柱の外面と該鋼管柱の外径より大き
な内径を有する補強鋼の内面との間にモルタル又はコン
クリート等の硬化材を充填する補強構造(後者)も知ら
れている。
In considering a reinforcing structure for improving the seismic performance of a steel pipe column, how to suppress the occurrence of the above local buckling or bank light buckling is an important matter. Conventionally, a structure (the former) in which the inside of a steel pipe is filled with concrete is known as a reinforcing structure for preventing the occurrence of local buckling. Further, as disclosed in Japanese Patent Laid-Open No. 6-167073, a structure in which the outer surface of a steel pipe is wound with concrete or a steel plate (the latter), and a reinforcement having an inner surface larger than the outer surface of the steel pipe column. A reinforcing structure (the latter) in which a hardening material such as mortar or concrete is filled between the steel and the inner surface thereof is also known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者の
補強構造においては、鋼管柱の耐荷力を向上させるため
鋼管柱の強度を高めることはできるものの、逆に基礎に
対して大きな作用力となるため基礎やアンカーボルト等
の弱い部分に対して負担をかけ、弱い部分における破壊
を招来させる危険性がある。また、後者の補強構造にお
いては、いずれも耐荷力の上昇による問題、ならびに設
計外力を上回る地震力が作用した時に、補強部直近の無
補強部、或いは、予期しない部位に局部座屈が生起する
ため、補強効果が期待される程得られないという問題を
有する。
However, in the former reinforced structure, although the strength of the steel pipe column can be increased in order to improve the load bearing capacity of the steel pipe column, on the contrary, it becomes a large acting force on the foundation. There is a risk that the weak parts such as the foundation and anchor bolts will be overloaded, causing damage to the weak parts. In addition, in the latter reinforced structure, problems due to an increase in load bearing capacity, and when an earthquake force exceeding the design external force acts, local buckling occurs in the unreinforced part near the reinforced part or in an unexpected part. Therefore, there is a problem that the reinforcing effect cannot be obtained as expected.

【0005】本発明は、叙上の問題点に鑑みて創出され
たものであり、その目的とするところは、局部座屈が発
生する鋼管柱の部位に対して、鋼管柱の外径より大きい
内径を有する補強鋼管を、該鋼管柱の外周に対して所定
の間隔を設けて設置することにより、地震等の大きな外
力を受けたときに、鋼管柱本体の耐荷力を上昇させるこ
となく、変形性能のみを向上させて、基礎やアンカーボ
ルトの補強を必要最小限とすることができる経済的且つ
合理的な補強構造を提供することである。
The present invention has been made in view of the above problems, and its object is to make the diameter of the steel pipe column larger than the outer diameter of the steel pipe column with respect to the site where the local buckling occurs. By installing a reinforced steel pipe having an inner diameter at a predetermined distance from the outer circumference of the steel pipe column, it is possible to deform the steel pipe column body without increasing the load-bearing force when receiving a large external force such as an earthquake. An object is to provide an economical and rational reinforcing structure that can improve the performance only and minimize the reinforcement of the foundation and anchor bolts.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、鋼管柱の補強構造において、地震等の大
きな外力を受けた時に、局部座屈が発生する鋼管柱の部
位に対して、該鋼管柱の外径より大きい内径を有する補
強鋼管を、該鋼管柱の外周に対して硬化材を充填せずに
所定の間隔を設けて設置したことを特徴とするものであ
る。また、上記鋼管柱の補強構造において、該所定の間
隔に、腐食防止、異物混入防止のための、流動性材料ま
たは圧縮性材料を充填することを特徴とするものであ
る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention relates to a steel pipe column reinforcement structure where local buckling occurs when a large external force such as an earthquake is applied. A reinforcing steel pipe having an inner diameter larger than the outer diameter of the steel pipe column is installed at a predetermined interval without filling the outer periphery of the steel pipe column with a hardening material. Is. In the above-mentioned steel pipe column reinforcing structure,
In order to prevent corrosion and contamination by foreign materials,
Or is characterized by being filled with a compressible material.
It

【0007】次に、本発明の作用について説明する。
今、大地震が発生して、大きな外力が補強構造に加えら
れると、鋼管柱に座屈が発生する。該座屈はある程度変
形し、鋼管柱の座屈部の外面が、補強鋼管の内面に接触
するまでは補強鋼管には力の伝達は無く、鋼管柱が単独
の挙動を示す。そして、鋼管柱の座屈変形が進行し、座
屈部の外面が、補強鋼管に接触した後は、該補強鋼管が
座屈変形を拘束する。そして、鋼管柱と補強鋼管との間
隔は、鋼管柱単独の最大耐荷力を示す時の座屈変形量と
一致するよう所定量を有して設計されているので、上記
座屈が補強鋼管と接触した後は、鋼管柱の耐荷力ならび
に剛性を上昇させることなく、変形性能のみを向上さ
せ、エネルギー吸収量を大きくすることが可能となる。
Next, the operation of the present invention will be described.
Now, when a large earthquake occurs and a large external force is applied to the reinforcing structure, buckling occurs in the steel pipe column. The buckling is deformed to some extent, and no force is transmitted to the reinforced steel pipe until the outer surface of the buckling portion of the steel pipe column comes into contact with the inner surface of the reinforced steel pipe, and the steel pipe column behaves independently. Then, after the buckling deformation of the steel pipe column progresses and the outer surface of the buckling portion contacts the reinforcing steel pipe, the reinforcing steel pipe restrains the buckling deformation. And, the interval between the steel pipe column and the reinforced steel pipe is designed with a predetermined amount so as to match the amount of buckling deformation when the maximum load bearing capacity of the steel pipe column alone is indicated, so that the buckling is reinforced steel pipe. After the contact, it is possible to improve only the deformability and increase the energy absorption amount without increasing the load bearing capacity and the rigidity of the steel pipe column.

【0008】[0008]

【発明の実施の形態】図1は、本発明の鋼管柱の補強構
造の実施形態が適用される一般的な高架橋脚の概略構成
図であり、高架橋脚20は地面と接触する基礎21、該
基礎21に植設された橋脚22、橋脚22の上部に設置
された橋梁上部工23よりなる。基礎21はフーチング
24と、該フーチング24の下部に複数本植設された杭
25と、該フーチング24内に埋設されたベースプレー
ト26と、橋脚22を定着させるためのアンカーボルト
27より構成される。基礎21の根巻き部28直上の橋
脚基部30近傍や、橋脚22の板厚変化部31及びマン
ホール32等の弱点部は、大地震時には応力の局部集中
が起り、局部座屈が発生する可能性がある。本発明は、
大地震時において、局部座屈あるいは堤灯座屈の発生が
懸念される部分について補強を行ない、上記座屈をいか
に抑制するかを基本思想としている。そのために、本発
明は、鋼管柱の補強構造において、局部座屈が発生する
部位に対して鋼管柱の外径より大きい内径を有する補強
鋼管を、該鋼管柱の外周に対して硬化材を充填せずに
定の間隔を設けて設置することにより、地震等の大きな
外力を受けたときに、鋼管柱本体の耐荷力を上昇させる
ことなく、変形性能のみを向上させて補強を図ろうとし
ている。ここで「変形性能」とは、大きな変位が起って
も耐荷力が損なわれずエネルギー吸収量が増加する性能
のことをいう。図2は本発明の実施形態を示す鋼管柱の
補強構造の概要を説明するための図であり、図2(a)
は鋼管柱の補強構造の斜視図であり、図2(b)は図2
(a)のA−A線にて切断した断面図である。図におい
て、地震等の大きな外力を受けた時に、局部座屈が発生
する鋼管柱1の部位には、該鋼管柱1の外径より大きい
内径を有する補強鋼管2が、該鋼管柱1の外周に対して
所定の間隔3を保持して設置されている。上記間隔3は
鋼管柱1の外径、肉厚等により定まるものであるが、間
隔3が小さすぎて補強構造の耐荷力が最大となる以前に
補強鋼管2の内面が鋼管柱1の座屈変形部と接触してし
まい座屈変形を拘束すると、鋼管柱の耐荷力が上昇する
ことになる。従って、上述した局部座屈の発生を所定の
変形量まで許容するように上記間隔3はある程度大きく
して耐荷力ならびに剛性の上昇を抑制するようにしてい
る。そして、上記間隔3の大きさは、鋼管柱単独の最大
耐荷力を示すときの座屈変形量と一致させることによ
り、上記座屈が補強鋼管に接触した後は、鋼管柱1の耐
荷力ならびに剛性を上昇させることなく、変形性能のみ
を向上させることができるのである。
1 is a schematic configuration diagram of a general viaduct leg to which an embodiment of a reinforcing structure for a steel pipe column of the present invention is applied. The viaduct leg 20 is a foundation 21 that contacts the ground, It consists of bridge piers 22 planted in the foundation 21 and bridge superstructures 23 installed above the bridge piers 22. The foundation 21 is composed of a footing 24, a plurality of piles 25 planted under the footing 24, a base plate 26 embedded in the footing 24, and anchor bolts 27 for fixing the pier 22. In the vicinity of the pier base 30 directly above the root winding part 28 of the foundation 21 and in the weak points such as the thickness change part 31 and the manhole 32 of the pier 22, local concentration of stress may occur at the time of a large earthquake and local buckling may occur. There is. The present invention is
The basic idea is to reinforce the parts where local buckling or levee lantern buckling may occur in the event of a large earthquake, and how to suppress the buckling. Therefore, the present invention is a reinforcing structure for a steel pipe column, wherein a reinforcing steel pipe having an inner diameter larger than the outer diameter of the steel pipe column is filled in a region where local buckling occurs, and a hardening material is filled in the outer periphery of the steel pipe column. By installing them with a certain interval without doing so, when a large external force such as an earthquake is received, the deformability is improved and reinforcement is performed without increasing the load bearing capacity of the steel pipe column body. I am trying to Here, the “deformation performance” means the performance of increasing the energy absorption without impairing the load bearing capacity even if a large displacement occurs. FIG. 2 is a diagram for explaining the outline of the reinforcing structure of the steel pipe column showing the embodiment of the present invention, and FIG.
2 is a perspective view of a reinforcing structure for a steel pipe column, and FIG.
It is sectional drawing cut | disconnected by the AA line of (a). In the figure, a reinforcing steel pipe 2 having an inner diameter larger than the outer diameter of the steel pipe column 1 is provided at the outer periphery of the steel pipe column 1 at the site of the steel pipe column 1 where local buckling occurs when a large external force such as an earthquake is applied. Is installed with a predetermined interval 3 maintained. The space 3 is determined by the outer diameter, wall thickness, etc. of the steel pipe column 1, but before the space 3 is too small and the load bearing capacity of the reinforcing structure becomes maximum, the inner surface of the reinforced steel pipe 2 buckles the steel pipe column 1. If the buckling deformation is restrained by coming into contact with the deformed portion, the load bearing capacity of the steel pipe column will increase. Therefore, the interval 3 is increased to some extent so as to allow the occurrence of the above-described local buckling up to a predetermined deformation amount, and the increase in load bearing capacity and rigidity is suppressed. And the size of the said space | interval 3 is made to correspond with the amount of buckling deformation at the time of showing the maximum load-bearing force of a steel pipe column alone, and after the said buckling contacts a reinforced steel pipe, the load-bearing force of the steel pipe column 1 and Only the deformation performance can be improved without increasing the rigidity.

【0009】図3は、補強鋼管を鋼管柱に取付けるため
の第1実施例を示したものであり、図3(a)はその斜
視図、図3(b)はその一部欠截断面図である。図にお
いて、鋼管柱1の外周面には複数個の鋼材からなるL字
金具4が同一平面内に溶着されており、補強鋼管2は鋼
管柱1と所定間隔3を維持しつつ上記L字金具4に支持
されている。
3A and 3B show a first embodiment for attaching a reinforcing steel pipe to a steel pipe column. FIG. 3A is a perspective view thereof, and FIG. 3B is a partially cutaway sectional view thereof. Is. In the figure, an L-shaped metal fitting 4 made of a plurality of steel materials is welded to the outer peripheral surface of a steel pipe pillar 1 in the same plane, and the reinforcing steel pipe 2 is maintained at a predetermined distance 3 from the steel pipe pillar 1 while maintaining the L-shaped metal fitting. It is supported by 4.

【0010】図4は補強鋼管を鋼管柱に取付けるための
第2実施例を示したものであり、図4(a)はその斜視
図、図4(b)はその一部欠截断面図である。図におい
て、鋼管柱1の外周と補強鋼管2の内周との間の間隔3
には、両側から複数個のゴム製楔5が打ち込まれ挟持さ
れている。そして、補強鋼管2は、楔5自体の弾性力
と、鋼管柱1の外周面及び補強鋼管2の内周面と楔5と
の間の摩擦力とにより自重が支えられ、所定の間隔3を
維持しつつ鋼管柱1に取付けられている。鋼管柱1と補
強鋼管2との取付けに関し、2つの実施例について説明
したが、鋼管柱1に発生する局部座屈に支障がない限り
他の取付け手段を採用することができることは勿論のこ
とである。
4A and 4B show a second embodiment for attaching the reinforcing steel pipe to the steel pipe column. FIG. 4A is a perspective view thereof, and FIG. 4B is a partially cutaway sectional view thereof. is there. In the figure, a gap 3 between the outer circumference of the steel pipe column 1 and the inner circumference of the reinforcing steel pipe 2
A plurality of rubber wedges 5 are driven in from both sides and sandwiched. The weight of the reinforcing steel pipe 2 is supported by the elastic force of the wedge 5 itself and the frictional force between the outer peripheral surface of the steel pipe column 1 and the inner peripheral surface of the reinforcing steel pipe 2 and the wedge 5, and the predetermined interval 3 is maintained. It is attached to the steel pipe pillar 1 while maintaining it. Two examples of mounting the steel pipe column 1 and the reinforced steel pipe 2 have been described, but it goes without saying that other mounting means can be adopted as long as the local buckling occurring in the steel pipe column 1 is not hindered. is there.

【0011】本発明は、既設構造物の補強はもとより、
新設の構造物にも勿論適用することができる。そして、
本発明を既設構造物に適用する場合、補強構造は、2つ
以上に分割された円弧状の鋼板を現場にて溶接接合によ
り円形に形成することができる。新設の場合には、前述
の方法、あるいは製作工場において予め円形に成形した
補強鋼管を本体に取付けることにより補強構造とするこ
とができる。また、既設構造物あるいは新設構造物にお
いて、耐荷力に余裕がある場合には、鋼管柱と補強鋼管
との間隔3は上述したものより多少小さくしたものを適
用することができる。また、上記間隔3内には、腐食防
止、異物混入防止のために流動性材料や圧縮性材料を充
填することもできる。そして、補強鋼管の板厚、軸方向
長さ、などは、鋼管柱本体の板厚、強度及び座屈の発生
しやすい場所の軸方向長さなどを考慮して決定する。
The present invention not only reinforces existing structures,
Of course, it can be applied to a new structure. And
When the present invention is applied to an existing structure, the reinforcing structure can be formed into a circular shape by welding and joining two or more divided arc-shaped steel plates on site. In the case of a new installation, a reinforcing structure can be obtained by the method described above or by attaching a reinforcing steel pipe formed into a circular shape in advance in a manufacturing factory to the main body. Further, in the existing structure or the new structure, if the load bearing capacity is sufficient, the gap 3 between the steel pipe column and the reinforced steel pipe may be made slightly smaller than that described above. In addition, a fluid material or a compressible material may be filled in the space 3 in order to prevent corrosion and foreign matter. Then, the plate thickness, axial length, etc. of the reinforced steel pipe are determined in consideration of the plate thickness of the steel pipe column main body, the strength, and the axial length of a place where buckling easily occurs.

【0012】次に、本実施形態の作用について説明す
る。今、大地震が発生して、大きな外力が補強構造に加
えられると、鋼管柱1に座屈が発生する。該座屈はある
程度変形し、鋼管柱の座屈部の外面が、変形の補強鋼管
2の内面に接触するまでは補強鋼管2には力の伝達は無
く、鋼管柱1は単独の挙動を示す。そして、鋼管柱1の
座屈変形が進行し、補強鋼管2に接触した後は、該補強
鋼管2が座屈変形を拘束する。そして、鋼管柱1と補強
鋼管2との間隔3は、鋼管柱1単独の最大耐荷力を示す
時の座屈変形量と一致するよう所定量有して設計されて
いるので、上記座屈が補強鋼管に接触した後は、鋼管柱
1の耐荷力ならびに剛性を上昇させることなく、変形性
能のみを向上させ、エネルギー吸収量を大きくすること
が可能となる。
Next, the operation of this embodiment will be described. Now, when a large earthquake occurs and a large external force is applied to the reinforcing structure, buckling occurs in the steel pipe column 1. The buckling is deformed to some extent, and no force is transmitted to the reinforcing steel pipe 2 until the outer surface of the buckling portion of the steel pipe column contacts the inner surface of the deformed reinforcing steel pipe 2, and the steel pipe column 1 exhibits independent behavior. . After the buckling deformation of the steel pipe column 1 progresses and comes into contact with the reinforcing steel pipe 2, the reinforcing steel pipe 2 restrains the buckling deformation. The gap 3 between the steel pipe column 1 and the reinforced steel pipe 2 is designed to have a predetermined amount so as to match the amount of buckling deformation when the maximum load bearing capacity of the steel pipe column 1 alone is exhibited. After coming into contact with the reinforced steel pipe, it is possible to improve only the deformability and increase the energy absorption amount without increasing the load bearing capacity and rigidity of the steel pipe column 1.

【0013】次に、地震力を想定した高架橋の橋脚への
加力実験結果を挙げる。供試体は高架橋の橋脚を想定
し、1/3程度に縮小した円形鋼管の片持ち柱とする。
図5に示される供試体は補強を施こさない鋼管柱本体の
みの供試体 No.1であり、補強効果を確認するための基
準となるものである。図6に示される供試体は補強鋼管
を設置した供試体 No.2であり、大きさ、形状、材質と
も供試体1と同一である。また、補強鋼管の高さは60
0mm、板厚はt9、供試体 No.2と補強鋼管との間隔は
10mmとした。載荷条件としては、一定の鉛直軸力を負
荷した状態を保持しつつ、柱頂部に地震荷重に相当する
水平力を繰返して漸増しつつ作用させる。供試体に対す
る載荷の方向は図5に示されている。実験結果として、
柱頂部における水平荷重と水平変位量の載荷履歴曲線を
図7(供試体 No.1)、及び、図8(供試体 No.2)に
示す。また、水平荷重と水平変位関係の包絡線を供試体
No.1、及び供試体 No.2ごとに、図9に示す。
Next, the results of an experiment of applying a force to a bridge pier of an elevated bridge assuming seismic force will be described. Assuming a bridge pier, the specimen will be a cantilevered column of circular steel pipe that is reduced to about 1/3.
The test piece shown in Fig. 5 is the test piece No. 1 only for the main body of the steel tube column which is not reinforced, and is the standard for confirming the reinforcing effect. The test piece shown in FIG. 6 is the test piece No. 2 in which a reinforcing steel pipe is installed, and the size, shape, and material are the same as the test piece 1. The height of the reinforced steel pipe is 60
The thickness was 0 mm, the plate thickness was t9, and the distance between the specimen No. 2 and the reinforcing steel pipe was 10 mm. As a loading condition, while maintaining a state in which a constant vertical axial force is applied, a horizontal force corresponding to an earthquake load is repeatedly applied to the top of the column while gradually increasing. The loading direction for the specimen is shown in FIG. As a result of the experiment,
The loading history curves of horizontal load and horizontal displacement at the top of the column are shown in Fig. 7 (Specimen No. 1) and Fig. 8 (Specimen No. 2). In addition, the envelope for horizontal load and horizontal displacement is
Fig. 9 shows the results for No. 1 and specimen No. 2.

【0014】実験結果から、図8と図7を比較すると、
補強を施こした供試体 No.2(図8参照)は、補強を施
こさない供試体 No.1(図7参照)と同様に最大耐荷力
までは略同一の軌跡を描いているが、最大耐荷力以降は
供試体2は供試体 No.1に比べて1ループ毎の劣化が小
さく水平変位も伸びている。このことから、供試体 No.
2は供試体 No.1に比べて最大耐荷力以降は変形性能が
格段に向上してエネルギー吸収量が増加しており、所期
の目的を達成することが判った。このことは、図9に示
される包絡線の状態からも言えることである。
From the experimental results, comparing FIG. 8 and FIG.
Reinforced specimen No. 2 (see Fig. 8) draws almost the same trajectory up to the maximum load-bearing capacity as specimen No. 1 without reinforcement (see Fig. 7). After the maximum load bearing capacity, Specimen 2 is less deteriorated per loop than Specimen No. 1 and horizontal displacement is extended. From this, the specimen No.
It was found that the specimen No. 2 had a significantly improved deformation performance and increased energy absorption after the maximum load bearing capacity compared to the specimen No. 1, and achieved the intended purpose. This can be said from the state of the envelope shown in FIG.

【0015】[0015]

【発明の効果】以上述べたように、本発明は、地震等の
大きな外力を受けた時に、局部座屈が発生する鋼管柱の
部位に対して、該鋼管柱の外径より大きい内径を有する
補強鋼管を該鋼管柱の外周に対して所定の間隔を設けて
設置したので、大地震が発生して鋼管柱に大きな外力が
加えられると、鋼管柱に座屈が発生し、該座屈が補強鋼
管の内面に接触するまでは補強鋼管に力の伝達はない
が、座屈が補強鋼管に接触した後は、該補強鋼管が座屈
の変形を拘束する。そして、上記間隔は鋼管柱単独の最
大耐荷力を示す時の座屈変形量と一致するよう所定量を
有しているので、上記座屈が補強鋼管に接触した後は、
鋼管柱の耐荷力ならびに剛性を上昇させることなく変形
性能のみを向上させ、エネルギー吸収量を大きくするこ
とが可能であり、従って、基礎やアンカーボルト等の補
強を最小限に止めることができるため、経済的且つ合理
的である。
As described above, the present invention has an inner diameter larger than the outer diameter of the steel pipe column with respect to the portion of the steel pipe column where local buckling occurs when a large external force such as an earthquake is applied. Since the reinforced steel pipe was installed at a predetermined distance from the outer circumference of the steel pipe column, when a large earthquake occurs and a large external force is applied to the steel pipe column, the steel pipe column will buckle and the buckling will occur. The force is not transmitted to the reinforcing steel pipe until it contacts the inner surface of the reinforcing steel pipe, but after the buckling contacts the reinforcing steel pipe, the reinforcing steel pipe restrains the deformation of the buckling. Then, since the interval has a predetermined amount so as to match the buckling deformation amount when the maximum load bearing capacity of the steel pipe column alone is shown, after the buckling contacts the reinforced steel pipe,
It is possible to improve only the deformation performance and increase the amount of energy absorption without increasing the load bearing capacity and rigidity of the steel pipe column, and therefore the reinforcement of the foundation, anchor bolts, etc. can be minimized. It is economical and rational.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鋼管柱の補強構造の実施形態が適用さ
れる一般的な高架橋脚の概略構成図である。
FIG. 1 is a schematic configuration diagram of a general viaduct leg to which an embodiment of a reinforcing structure for a steel pipe column of the present invention is applied.

【図2】本発明の実施形態を示す鋼管柱の補強構造の概
要を説明するための図であり、図2(a)は鋼管柱の補
強構造の斜視図であり、図2(b)は図2(a)のA−
A線にて切断した断面図である。
FIG. 2 is a diagram for explaining an outline of a reinforcing structure for a steel pipe column showing an embodiment of the present invention, FIG. 2 (a) is a perspective view of the reinforcing structure for a steel pipe column, and FIG. A- in FIG.
It is sectional drawing cut | disconnected by the A line.

【図3】補強鋼管を鋼管柱に取付けるための第1実施例
を示したものであり、図3(a)はその斜視図、図3
(b)はその一部欠截断面図である。
FIG. 3 shows a first embodiment for attaching a reinforced steel pipe to a steel pipe column, FIG. 3 (a) is a perspective view thereof, and FIG.
(B) is a partially cutaway sectional view thereof.

【図4】補強鋼管を鋼管柱に取付けるための第2実施例
を示したものであり、図4(a)はその斜視図、図4
(b)はその一部欠截断面図である。
FIG. 4 shows a second embodiment for attaching a reinforced steel pipe to a steel pipe column, FIG. 4 (a) is a perspective view thereof, and FIG.
(B) is a partially cutaway sectional view thereof.

【図5】補強を施こさない供試体 No.1を示す正面図で
ある。
FIG. 5 is a front view showing sample No. 1 which is not reinforced.

【図6】補強を施こした供試体 No.2を示す図であり、
図6(a)はその正面図、図6(b)は図6(a)のB
−B線にて切断した断面図である。
[Fig. 6] Fig. 6 is a diagram showing Reinforced Specimen No. 2,
6 (a) is a front view thereof, and FIG. 6 (b) is B of FIG. 6 (a).
It is sectional drawing cut | disconnected by the -B line.

【図7】供試体 No.1の柱頂部における水平荷重と水平
変位関係の載荷履歴曲線を示す図である。
FIG. 7 is a diagram showing a loading history curve regarding a horizontal load and a horizontal displacement in a column top portion of the specimen No. 1;

【図8】供試体 No.2の柱頂部における水平荷重と水平
変位関係の載荷履歴曲線を示す図である。
FIG. 8 is a diagram showing a loading history curve regarding a horizontal load and a horizontal displacement at a column top portion of the specimen No. 2;

【図9】供試体 No.1と供試体 No.2の水平荷重と水平
変位関係の包絡線を示す図である。
FIG. 9 is a view showing envelopes of the horizontal load and the horizontal displacement relationship of the sample No. 1 and the sample No. 2.

【図10】鋼管柱に生じる局部座屈の例を示した斜視図
であり、図10(a)は半波の凸状の局部座屈を示す斜
視図であり、図10(b)は堤灯座屈を示す斜視図であ
る。
FIG. 10 is a perspective view showing an example of local buckling occurring in a steel pipe column, FIG. 10 (a) is a perspective view showing half-wave convex local buckling, and FIG. 10 (b) is a bank. It is a perspective view which shows a light buckling.

【符号の説明】[Explanation of symbols]

1…鋼管柱 2…補強鋼管 3…間隔 4…L字金具 5…ゴム製楔 1 ... Steel tube column 2 ... Reinforced steel pipe 3 ... interval 4 ... L-shaped metal fittings 5 ... rubber wedge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安波 博道 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 寺田 昌弘 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開 平6−167073(JP,A) (58)調査した分野(Int.Cl.7,DB名) E01D 21/00 E01D 19/02 E04G 23/02 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiromichi Anba 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Masahiro Terada 20-1 Shintomi, Futtsu City, Chiba Japan (56) References Japanese Patent Laid-Open No. 6-167073 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) E01D 21/00 E01D 19/02 E04G 23/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼管柱の補強構造において、地震等の大
きな外力を受けた時に局部座屈が発生する鋼管柱の部位
に対して、該鋼管柱の外径より大きい内径を有する補強
鋼管を、該鋼管柱の外周に対して硬化材を充填せずに
定の間隔を設けて設置してなる鋼管柱の補強構造。
1. In a reinforcing structure for a steel pipe column, a reinforcing steel pipe having an inner diameter larger than the outer diameter of the steel pipe column is provided for a portion of the steel pipe column where local buckling occurs when a large external force such as an earthquake is applied. A reinforcing structure for a steel pipe column, which is installed at a predetermined interval without filling the outer periphery of the steel pipe column with a hardening material .
【請求項2】 前記所定の間隔内に、腐食防止、異物混
入防止のための流動性材料又は圧縮性材料を充填してな
る請求項1に記載の鋼管柱の補強構造。
2. Corrosion prevention and contamination of foreign matter within the predetermined interval.
Do not fill with a fluid or compressible material to prevent entry.
The steel pipe column reinforcing structure according to claim 1.
JP27439595A 1995-10-23 1995-10-23 Steel tube column reinforcement structure Expired - Lifetime JP3522415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27439595A JP3522415B2 (en) 1995-10-23 1995-10-23 Steel tube column reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27439595A JP3522415B2 (en) 1995-10-23 1995-10-23 Steel tube column reinforcement structure

Publications (2)

Publication Number Publication Date
JPH09111720A JPH09111720A (en) 1997-04-28
JP3522415B2 true JP3522415B2 (en) 2004-04-26

Family

ID=17541075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27439595A Expired - Lifetime JP3522415B2 (en) 1995-10-23 1995-10-23 Steel tube column reinforcement structure

Country Status (1)

Country Link
JP (1) JP3522415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136929A (en) * 2010-12-06 2012-07-19 Nippon Steel Corp Structure for reinforcing square steel pipe column

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133312B (en) * 2005-12-15 2013-07-17 杰富意钢铁株式会社 Steel pipe partial buckling performance evaluation method, steel pipe design method, steel pipe manufacturing method and steel pipe
JP5483666B2 (en) * 2008-03-17 2014-05-07 株式会社竹中工務店 building
CN104863045B (en) * 2015-05-29 2017-01-11 重庆大学 Steel tube confinement reinforced concrete bridge pier system
CN107939061A (en) * 2016-10-12 2018-04-20 湖北建科结构加固有限责任公司 Frame column isolates method for strengthening
CN110939052B (en) * 2019-12-11 2021-08-31 成都轨道建设管理有限公司 Subway cover beam construction method
JP7346770B1 (en) * 2022-08-05 2023-09-19 Jfeシビル株式会社 artificial ground structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136929A (en) * 2010-12-06 2012-07-19 Nippon Steel Corp Structure for reinforcing square steel pipe column

Also Published As

Publication number Publication date
JPH09111720A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP3401466B2 (en) Root-wrap type seismic retrofit structure for column base of column member and root-wrap type seismic retrofit method
US6554542B2 (en) Stress transmission device, and structure and method of constructing the same
US10934734B1 (en) Damped reinforced joint for beam-column connection
JP3522415B2 (en) Steel tube column reinforcement structure
US8196368B2 (en) Ductile seismic shear key
CN112081305A (en) Self-resetting square concrete filled steel tube column base node with friction type anchoring device
JP2006083641A (en) Foundation structure of steel tower
JPH09316892A (en) Pile foundation reinforcing structure
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
JP3455644B2 (en) Pile foundation structure
CN212478276U (en) Self-resetting square concrete filled steel tube column base node with friction type anchoring device
JP2000096834A (en) Reinforcing structure of concrete member
JPS59114322A (en) High-strength concrete pile
JP3620708B2 (en) Fixed part of exposed column base
JP3534503B2 (en) Steel pier reinforcement method
JPH11200395A (en) Earthquake-resistant reinforcing structure of structure
JP3002740B2 (en) Seismic reinforcement structure of columnar structure
KR102699691B1 (en) Metal pipe for composite column, composite column structure and method for producting metal pipe for composite column
JP4278886B2 (en) Nut fixing device and reinforcing structure
JP7508495B2 (en) Damage Control Struts
JP3536543B2 (en) Seismic isolation method for foundations of existing buildings
JP3082654B2 (en) Bridge pier structure
JPH06167073A (en) Structure for reinforcing steel pipe member filled with concrete
JP2740236B2 (en) Reinforcement method of pile foundation structure
JPH0827806A (en) Joint section between steel frame column and pile

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term