JP3520542B2 - Mold for forming optical element, method for manufacturing the same, and method for manufacturing optical element - Google Patents

Mold for forming optical element, method for manufacturing the same, and method for manufacturing optical element

Info

Publication number
JP3520542B2
JP3520542B2 JP34047993A JP34047993A JP3520542B2 JP 3520542 B2 JP3520542 B2 JP 3520542B2 JP 34047993 A JP34047993 A JP 34047993A JP 34047993 A JP34047993 A JP 34047993A JP 3520542 B2 JP3520542 B2 JP 3520542B2
Authority
JP
Japan
Prior art keywords
mold
carbon
optical element
surface layer
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34047993A
Other languages
Japanese (ja)
Other versions
JPH07157319A (en
Inventor
勝 真貝
智明 菅原
克之 大窪
洋 上野
明人 湊
弘之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34047993A priority Critical patent/JP3520542B2/en
Publication of JPH07157319A publication Critical patent/JPH07157319A/en
Application granted granted Critical
Publication of JP3520542B2 publication Critical patent/JP3520542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/24Carbon, e.g. diamond, graphite, amorphous carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/38Mixed or graded material layers or zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学素子成形用型、その
製造方法及び光学素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding die, a method for manufacturing the same, and a method for manufacturing an optical element.

【0002】[0002]

【従来の技術】一般に、光学素子の製造は成形用型を用
いて行われている。この場合、光学素子成形用型の母材
のみでは成形温度が高温であるために、型材と被成形物
との間で反応が起こり、被成形物の光学的に必要な表面
粗さが得られなかったり、また型材に被成形物が融着し
型材そのものの表面粗さを確保するのが困難であった。
そこで従来は、型材表面に型材と被成形物との反応を阻
害ししかも被成形物と反応しない表面層を形成する方法
が採用されている。
2. Description of the Related Art Generally, optical elements are manufactured using a molding die. In this case, since the molding temperature is high only with the base material of the mold for molding an optical element, a reaction occurs between the mold material and the object to be molded, and the optically required surface roughness of the object to be molded is obtained. Otherwise, it was difficult to secure the surface roughness of the mold itself because the object to be molded was fused to the mold material.
Therefore, conventionally, there has been adopted a method of forming a surface layer on the surface of the molding material, which inhibits the reaction between the molding material and the molding object and does not react with the molding object.

【0003】しかし、スパッタやCVDにより前記の表
面層を形成した場合、型母材と表面層との間に不連続な
界面ができ、表面層の密着力が弱く表面層が剥離するな
どの不具合が生じ、型の耐久性の点で問題であった。
However, when the above-mentioned surface layer is formed by sputtering or CVD, a discontinuous interface is formed between the die base material and the surface layer, the adhesion of the surface layer is weak, and the surface layer peels off. Occurred, which was a problem in terms of mold durability.

【0004】また、Na、K、Pbその他の修飾イオン
入りガラスの加圧加熱成形では、修飾イオン成分と超硬
型との反応(タングステンとガラス材質との反応による
ガラス材の融着及びタングステンの酸化)により型劣化
が進み、生産コストの上で、型の再加工コストが増加す
るなどの問題があり、型寿命を伸ばすことが必須の技術
的課題であった。
Further, in the pressure heating molding of glass containing Na, K, Pb and other modifying ions, the reaction between the modifying ion component and the superhard mold (the fusion of the glass material by the reaction between tungsten and the glass material and the formation of tungsten). There is a problem that the mold deterioration progresses due to oxidation and the rework cost of the mold increases in terms of production cost, and extending the life of the mold is an essential technical issue.

【0005】[0005]

【発明が解決しようとする課題】本発明は、型材は被成
形物との反応を阻害ししかも芯母材との密着性の優れた
表面層を有する光学素子成形用型を得ること、及び該型
による成形方法において、光学素子ガラス材の融着及び
超硬型の酸化を防ぎ、型劣化寿命を延ばすことを目的と
する。
DISCLOSURE OF THE INVENTION The present invention provides a mold for molding an optical element, wherein the mold material has a surface layer which inhibits the reaction with the object to be molded and has excellent adhesion to the core base material, and In a molding method using a mold, it is an object of the present invention to prevent fusion of an optical element glass material and oxidation of a superhard mold to prolong the mold deterioration life.

【0006】[0006]

【課題を解決するための手段及び作用】上記目的を達成
するため、本発明によれば、下記の光学素子成形用型、
その製造方法及び光学素子の製造方法が提供される。 (1)光学素子の加圧加熱成形型であって、タングステ
ンカーバイト(WC)主成分の超硬素材を用いた型にお
いて、タングステンカーバイト(WC)の化学量論組成
比より炭素(C)が多い炭素リッチな表面層を有し、さ
らにその表面層の炭素(C)の濃度が表面より内部にな
るに従って化学量論組成に近くなるように傾斜濃度勾配
をもっていることを特徴とする光学素子成形用型。 (2)上記光学素子成形用型を製造する方法であって、
前記の炭素リッチな表面層を、超硬素材を用いた型と石
英ガラスとを接触加熱することにより形成することを特
徴とする光学素子成形用型の製造方法。 (3)上記光学素子成形用型を製造する方法であって、
前記の炭素リッチな表面層を、超硬素材を用いた型と修
飾イオンを除いた二酸化ケイ素ガラス粉末とを接触加熱
することにより形成することを特徴とする光学素子成形
用型の製造方法。 (4)上記光学素子成形用型を製造する方法であって、
前記の炭素リッチな表面層を、酸化剤とともに不活性ガ
スを導入した雰囲気中で超硬素材の型を加熱した後、さ
らに二酸化炭素ガスと水蒸気を含む雰囲気中で加熱処理
することにより形成することを特徴とする光学素子成形
用型の製造方法。 (5)上記光学素子成形用型を製造する方法であって、
前記の炭素リッチな表面層を、超硬素材の型表面をHe
以外の希ガス元素によりスパッタエッチングすることに
より形成することを特徴とする光学素子成形用型の製造
方法。 (6)上記光学素子成形用型を製造する方法であって、
前記の炭素リッチな表面層を、超硬素材の型表面にレー
ザー光を照射することにより形成することを特徴とする
光学素子成形用型の製造方法。 (7)上記光学素子成形用型を製造する方法であって、
前記の炭素リッチな表面層を、超硬素材の型表面に二酸
化炭素ガスの雰囲気中でレーザー光を照射することによ
り形成することを特徴とする光学素子成形用型の製造方
法。 (8)修飾イオン入りガラスを硝酸処理で表面の修飾イ
オンを除去したプリフォームを用い、上記光学素子成形
用型により加熱加圧成形することを特徴とする光学素子
の製造方法。 (9)修飾イオン入りガラスを硝酸処理により表面の修
飾イオンを除去したプリフォームを用い、上記光学素子
成形用型により、還元雰囲気中で加熱加圧成形すること
を特徴とする光学素子の製造方法。
In order to achieve the above object, according to the present invention, the following optical element molding die,
A method of manufacturing the same and a method of manufacturing an optical element are provided. (1) A pressure heat-molding mold for an optical element, which is a mold using a tungsten carbide (WC) -based cemented carbide material, and has a carbon (C) ratio from the stoichiometric composition ratio of the tungsten carbide (WC). An optical element having a carbon-rich surface layer containing a large amount of carbon and having a gradient concentration gradient such that the concentration of carbon (C) in the surface layer becomes closer to the stoichiometric composition as the concentration of carbon (C) becomes closer to the inside of the surface. Mold for molding. (2) A method for manufacturing the above optical element molding die,
A method for manufacturing an optical element molding die, characterized in that the carbon-rich surface layer is formed by contact heating a die made of a superhard material and quartz glass. (3) A method for producing the above-mentioned optical element molding die,
A method for producing a mold for molding an optical element, characterized in that the carbon-rich surface layer is formed by contact heating a mold using a superhard material and a silicon dioxide glass powder from which modifying ions have been removed. (4) A method for manufacturing the above optical element molding die,
The carbon-rich surface layer is formed by heating the mold of the cemented carbide material in an atmosphere in which an inert gas is introduced together with an oxidant, and then performing heat treatment in an atmosphere containing carbon dioxide gas and water vapor. A method for manufacturing an optical element molding die, comprising: (5) A method of manufacturing the optical element molding die, comprising:
The carbon-rich surface layer described above is used as a He
A method for manufacturing an optical element molding die, which is characterized in that the optical element molding die is formed by sputter etching with a rare gas element other than. (6) A method for manufacturing the above optical element molding die,
A method for producing an optical element molding die, characterized in that the carbon-rich surface layer is formed by irradiating the surface of a die made of a superhard material with laser light. (7) A method for producing the above-mentioned optical element molding die,
A method for producing an optical element molding die, characterized in that the carbon-rich surface layer is formed by irradiating a laser beam on a die surface of a superhard material in an atmosphere of carbon dioxide gas. (8) A method for producing an optical element, which comprises using a preform obtained by removing surface modifying ions from a glass containing a modified ion by a nitric acid treatment and heating and pressing the glass with the optical element molding die. (9) A method for producing an optical element, characterized in that a glass containing a modified ion is subjected to nitric acid treatment to remove a modifying ion on the surface, and is heated and pressed in a reducing atmosphere by the optical element molding die. .

【0007】即ち、(1)の光学素子成形用型において
は、WC(タングステンカーバイト)の化学量論組成比
より炭素(C)が多い表面層が形成されていることによ
り、WCのタングステンとガラス素材との反応が少なく
なり、Wの酸化を防ぎ、型の寿命が長くなる。また、こ
の光学素子の熱プレス成形用型においては、炭素(C)
の濃度が表面より内部になるに従って化学量論組成に近
くなるように傾斜濃度勾配をもっていることで、母材と
表面層の境界がないので、表面層の密着力が強く剥離す
ることがないため型の寿命を長くできる。
That is, in the optical element molding die of (1), since the surface layer containing more carbon (C) than the stoichiometric composition ratio of WC (tungsten carbide) is formed, the WC tungsten is The reaction with the glass material is reduced, the oxidation of W is prevented, and the life of the mold is extended. In the hot press molding die for this optical element, carbon (C) is used.
Since there is no boundary between the base material and the surface layer because the concentration gradient is so that it becomes closer to the stoichiometric composition as the concentration becomes closer to the inside of the surface, the adhesion of the surface layer does not peel strongly. The life of the mold can be extended.

【0008】(2)の光学素子成形用型の製造方法で
は、石英ガラスとの接触加熱によりWCの酸化が起きる
とともに、WO3生成物を石英ガラスが取り除いてくれ
るので、Cが遊離し炭素リッチな表面層を形成すること
ができる。
In the method for manufacturing a mold for molding an optical element of (2), WC is oxidized by contact heating with quartz glass, and the WO 3 product is removed by the quartz glass, so that C is liberated and carbon rich. It is possible to form a smooth surface layer.

【0009】(3)の光学素子成形用型の製造方法で
は、型形状に無関係に(2)の方法と同じ効果が得ら
れ、また安価なガラスの粉末も使えるので低コストで型
の処理ができる。
In the method (3) for manufacturing a mold for molding an optical element, the same effect as that of the method (2) can be obtained irrespective of the shape of the mold, and since inexpensive glass powder can be used, the mold can be processed at low cost. it can.

【0010】(4)の光学素子成形用型の製造方法で
は、型材のタングステンを酸化後、二酸化炭素ガスとと
もに水蒸気を導入した雰囲気中で超硬素材の型を加熱す
ることにより、炭素成分が残存した状態でWO3が昇華
し、炭素リッチな表面層を形成できる。以下、それぞれ
導入ガスの効果を中心に説明する。二酸化炭素のガス圧
をあげることで、次の(I)式において、(b)から
(c)への反応を阻止できる。また、WO3は850℃
で容易に昇華し始めるが、特に水蒸気が存在すればさら
に強く昇華する。850℃では炭素の酸化物CO2の方
が標準生成エネルギーの上からはWO3より安定である
にもかかわず、水蒸気を系内に導入することでWO3
みを選択的に型表面から除去することができる。このよ
うにして、炭素リッチな表面をもった光学素子成形用型
が得られる。
In the method of manufacturing a mold for optical element molding of (4), the carbon component remains by oxidizing the tungsten of the mold material and then heating the mold of the superhard material in the atmosphere in which steam is introduced together with carbon dioxide gas. In this state, WO 3 sublimes and a carbon-rich surface layer can be formed. The effects of the introduced gas will be mainly described below. By increasing the gas pressure of carbon dioxide, the reaction from (b) to (c) can be prevented in the following formula (I). Also, WO 3 is 850 ° C.
Sublimate easily, but it sublimates more strongly, especially in the presence of water vapor. At 850 ° C., carbon oxide CO 2 is more stable than WO 3 in terms of standard energy of formation, but by introducing water vapor into the system, only WO 3 is selectively removed from the mold surface. can do. In this way, an optical element molding die having a carbon-rich surface can be obtained.

【化1】 [Chemical 1]

【0011】(5)の光学素子成形用型の製造方法で
は、超硬素材の型表面をHe以外の希ガス元素によりス
パッタエッチングしたときのWCのWとCのスパッタリ
ングレートの差を利用し超硬型に炭素リッチな表面層を
得ることができる。アルコンガス以外では、クリプトン
(Kr)、キセノン(Xe)でも同じような結果が得ら
れるが、ヘリウム(He)ではスパッタレートの差が逆
転し、炭素リッチな表面層を得ることができない。
In the method for manufacturing a mold for optical element molding of (5), the difference between the sputtering rates of W and C of WC when the mold surface of a superhard material is sputter-etched with a rare gas element other than He is used. A hard carbon rich surface layer can be obtained. Similar results are obtained with krypton (Kr) and xenon (Xe) other than Alcon gas, but the difference in sputter rate is reversed with helium (He), and a carbon-rich surface layer cannot be obtained.

【0012】(6)の光学素子成形用型の製造方法で
は、超硬素材の型表面をレーザー光で照射するため、加
熱することなく選択的にW成分を除き、容易に炭素リッ
チな表面層を得ことができる。
In the method for producing a mold for optical element molding of (6), since the mold surface of the superhard material is irradiated with laser light, the W component is selectively removed without heating, and the carbon-rich surface layer is easily formed. Can be obtained.

【0013】(7)の光学素子成形用型の製造方法で
は、(6)の方法において二酸化炭素ガスを導入するこ
とで形成した炭素膜の酸化を防ぎ、効率良く炭素リッチ
な表面層を得ことができる。さらに、型表面温度が50
0℃〜700℃の場合は、WOと炭素の酸化物CO
の標準生成エネルギーが近い値になるので、WOとC
がともに同じ程度に安定となるが、WOに炭酸ガ
スレーザーを照射するときに、炭酸ガス雰囲気とする
と、前記(I)式の(b)から(c)への反応を阻止で
きる。そこで、WOのみを選択的に型表面から除去す
ることができ、その結果とし炭素リッチな表面層が得ら
れる。
In the method for producing a mold for molding an optical element of (7), the carbon film formed by introducing carbon dioxide gas in the method of (6) is prevented from being oxidized and an efficient carbon-rich surface layer is obtained. You can Furthermore, the mold surface temperature is 50
In the case of 0 ° C to 700 ° C, WO 3 and carbon oxide CO 2
Since the standard production energy of is close to that of WO 3 and C
Although both O 2 are stable to the same degree, the reaction from (b) to (c) in the formula (I) can be prevented by setting a carbon dioxide gas atmosphere when irradiating WO 3 with a carbon dioxide gas laser. Therefore, only WO 3 can be selectively removed from the mold surface, resulting in a carbon-rich surface layer.

【0014】(8)の光学素子の成形方法では、鉛など
の修飾イオン入りガラスを硝酸処理で表面の鉛を除去し
たプリフォームを用いることで、表面より内部になるに
従って化学量論組成に近くなるように炭素(C)の濃度
が傾斜濃度勾配をもっている(Wが残存した)部分のW
の修飾イオン成分との反応を抑えることができ、成形品
の表面粗さを維持できるとともに、その後の加圧成形サ
イクルによっても型の状態を維持できる。ガラス素材の
なかにはNa、K、Pb、Ca、Zn、Li、Mgなど
の修飾イオンと言われる成分が含まれているので、粉砕
後、このガラス粉末を硝酸で処理することが必要であ
る。
In the optical element molding method of (8), by using a preform obtained by removing lead from the surface of glass containing a modified ion such as lead by nitric acid treatment, the stoichiometric composition becomes closer to the inside from the surface. W of the portion where the concentration of carbon (C) has a gradient concentration gradient (W remains) so that
The reaction with the modified ionic component can be suppressed, the surface roughness of the molded product can be maintained, and the mold state can be maintained by the subsequent pressure molding cycle. Since the glass material contains components called modifying ions such as Na, K, Pb, Ca, Zn, Li and Mg, it is necessary to treat the glass powder with nitric acid after crushing.

【0015】(9)の光学素子の成形方法では、(8)
の方法の効果に合わせ成形雰囲気を還元性にすることで
型の酸化を防ぐことができる。
In the optical element molding method of (9), (8)
It is possible to prevent the mold from being oxidized by making the molding atmosphere reducing in accordance with the effect of the above method.

【0016】[0016]

【実施例】以下、本発明を実施例について説明するが、
本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to these.

【0017】実施例1 コバルトなどのバインダを含まないタングステンカーバ
イト(WC)主成分の超硬素材をダイヤモンド砥石を用
い、得ようとする光学素子の形状に近似した光学素子成
形用型に加工した。つぎに、この型を型と同形状に研磨
した石英ガラスと接触させ窒素ガスなどの不活性ガス雰
囲気中で570℃100分の熱処理を行った。この型の
XPS(X線光電子分光法;X-ray Photoelectron Spec
trography)で分析したところ表1のようになった。
Example 1 A tungsten carbide (WC) cemented carbide material containing no binder such as cobalt was processed into a mold for forming an optical element having a shape similar to that of the optical element to be obtained by using a diamond grindstone. . Next, this mold was brought into contact with quartz glass polished into the same shape as the mold, and heat treatment was performed at 570 ° C. for 100 minutes in an inert gas atmosphere such as nitrogen gas. This type of XPS (X-ray Photoelectron Spec)
The results are shown in Table 1 when analyzed by trography).

【0018】[0018]

【表1】 [Table 1]

【0019】表1より、処理前に比べ処理後にWの量が
減り、Cの量が増加しているのがわかる。この型の深さ
方向の炭素の分布を図1に模式図で示す。
From Table 1, it can be seen that the amount of W is reduced and the amount of C is increased after the treatment as compared with before treatment. The carbon distribution in the depth direction of this mold is schematically shown in FIG.

【0020】この型を用いて光学素子を次のようにして
成形した。PbO 50.3%、SiO2 41.2
%、K2O 6.5%の鉛入りガラスのプリフォームを
硝酸20%(2.6M)の水溶液中で15分間超音波洗
浄処理を行い、鉛などの修飾イオン主成分を除去した。
次に、純水の流水洗浄を20分行った。次に、処理後の
プリフォームを洗浄ビンから取り出し付着している水分
を窒素ガスで吹きとばした。この硝酸処理により表面の
鉛を除去したプリフォームを、温度530℃、圧力11
0Kg/cm2の条件で、この型を用い成形したとこ
ろ、5000ショット成形サイクルを繰し返してもガラ
ス主成分の融着、型表面層の亀裂・剥離などの型劣化が
なく、成形品も40nmRmax以下と良好な表面粗さ
を得た。また、元素分析による成形品表面のタングステ
ン残存量は、0.1〜0.2atom%と極めて少ない
検出値であった。
An optical element was molded using this mold as follows. PbO 50.3%, SiO 2 41.2
%, K 2 O 6.5% lead-containing glass preforms were subjected to ultrasonic cleaning treatment for 15 minutes in an aqueous solution of 20% nitric acid (2.6M) to remove lead and other modified ionic main components.
Next, pure water was washed with running water for 20 minutes. Next, the treated preform was taken out of the cleaning bottle and the attached water was blown off with nitrogen gas. The preform from which lead on the surface was removed by this nitric acid treatment was heated at a temperature of 530 ° C. and a pressure of 11
Molding with this mold under the condition of 0 Kg / cm 2 showed no mold deterioration such as fusion of glass main component, cracking and peeling of mold surface layer, etc. even after repeated 5000 shot molding cycles. Good surface roughness of 40 nm Rmax or less was obtained. In addition, the residual amount of tungsten on the surface of the molded product by elemental analysis was 0.1 to 0.2 atom%, which was a very small detection value.

【0021】比較例1 コバルトなどのダインモンドを含まないタングステンカ
ーバイト(WC)主成分の超硬素材をダイヤモンド砥石
を用い、得ようとする光学素子の形状に近似した光学素
子成形用型に加工した。この型を実施例1の熱処理を行
なわず、その他は実施例1と同じ条件で光学素子を形成
したが、500ショット成形サイクルを繰り返しただけ
で型の劣化が起き、成形品の表面粗さも80nmRam
xと悪かった。また、元素分析による成形品表面のタン
グステン残存量は、1〜2atom%と実施例1に比
し、1桁多い検出値であった。
COMPARATIVE EXAMPLE 1 A tungsten carbide (WC) cemented carbide material containing no Dynemond such as cobalt was processed into a mold for optical element molding similar to the shape of the optical element to be obtained by using a diamond grindstone. . An optical element was formed under the same conditions as in Example 1 except that this mold was not subjected to the heat treatment of Example 1, but the mold was deteriorated only by repeating the 500 shot molding cycle, and the surface roughness of the molded product was 80 nm Ram.
x was bad. Further, the amount of remaining tungsten on the surface of the molded product by elemental analysis was 1 to 2 atom%, which was a detection value one digit higher than that in Example 1.

【0022】実施例2 実施例1において、光学素子の成形雰囲気をそれぞれ1
〜5%の水素ガス、一酸化炭素ガスを含む還元雰囲気と
し、実施例1と同条件で成形したところ、8000サイ
クル成形を繰り返してもガラス主成分の融着、型表面の
亀裂・剥離などの劣化がなく、成形品も40nmRma
x以下と良好な表面粗さを得た。
Example 2 In Example 1, the molding atmosphere of the optical element was set to 1
When a reducing atmosphere containing hydrogen gas and carbon monoxide of up to 5% was used and molding was performed under the same conditions as in Example 1, fusion of the glass main component, cracking / peeling of the mold surface, etc., even after repeated 8000 cycles of molding. No deterioration and molded product is 40 nm Rma
The surface roughness was as good as x or less.

【0023】実施例3 2酸化ケイ素ガラス素材をボールミルなどを用い5μm
以下に粉砕した。粉砕後、このガラス粉末を硝酸20%
(2.6M)の水溶液中で15分間超音波洗浄処理を行
い、修飾イオン成分を除去し、純水の流水洗浄を20分
間行い、200℃乾燥炉で乾燥した。このようにして作
ったガラス粉末を、WC主成分の超硬素材でできた光学
素子の形状に近似した光学素子成形用型表面に全面に接
触するように乗せ、窒素ガス雰囲気中で570℃100
分間の熱処理を行った。ここで得られた光学素子成形用
型は、光学素子の成形に対し実施例1で得られた成形型
と同じ優れた特性のものであった。
Example 3 A silicon dioxide glass material of 5 μm was formed by using a ball mill or the like.
It was ground into: After crushing, add 20% nitric acid to this glass powder.
Ultrasonic cleaning treatment was carried out for 15 minutes in an aqueous solution of (2.6M) to remove the modified ionic components, and pure water was washed for 20 minutes, followed by drying in a 200 ° C drying oven. The glass powder thus prepared is placed on the surface of an optical element molding die having a shape close to that of an optical element made of a superhard material containing WC as a whole so as to come into contact with the entire surface, and the temperature is set to 570 ° C. 100 in a nitrogen gas atmosphere.
Heat treatment was performed for 1 minute. The optical element molding die obtained here had the same excellent properties as the molding die obtained in Example 1 for molding an optical element.

【0024】実施例4 酸化剤として酸素ガスを微量(0.1%以下)含む不活
性ガス(窒素、アルゴンなど)を導入した雰囲気中で、
WC主成分の超硬素材の型を500℃で加熱処理し、タ
ングステンを酸化させた。次に、系内に二酸化炭素と水
蒸気を導入し、850℃で型を加熱処理し、炭素リッチ
な表面層を有する光学素子成形用型を得た。ここで得ら
れた光学素子成形用型は、光学素子の成形に対し実施例
1で得られた成形型と同じ優れた特性のものであった。
Example 4 In an atmosphere in which an inert gas (nitrogen, argon, etc.) containing a trace amount (0.1% or less) of oxygen gas was introduced as an oxidant,
A mold of a superhard material containing WC as a main component was heat-treated at 500 ° C. to oxidize tungsten. Next, carbon dioxide and water vapor were introduced into the system, and the mold was heat-treated at 850 ° C. to obtain an optical element molding mold having a carbon-rich surface layer. The optical element molding die obtained here had the same excellent properties as the molding die obtained in Example 1 for molding an optical element.

【0025】実施例5 WC主成分の超硬素材の光学素子成形用型をスパッタ装
置にセットし、アルゴン(Ar)ガスを5×10-3To
rrのガス圧で導入した。イオンのエネルギーを100
keVとして、型の表面をスパッタしたところ、WCの
タングステンと炭素のスパッタレートの違いから、タン
グステンが選択的にエッチングされ、W/Cスパッタ収
率比7.14の炭素リッチな表面層を得ることができ
た。
Example 5 An optical element molding die made of a superhard material containing WC as a main component was set in a sputtering apparatus, and argon (Ar) gas was supplied at 5 × 10 −3 To.
It was introduced at a gas pressure of rr. Ion energy is 100
When the surface of the mold is sputtered with keV, tungsten is selectively etched due to the difference in the sputtering rate of tungsten and carbon of WC, and a carbon-rich surface layer with a W / C sputtering yield ratio of 7.14 is obtained. I was able to.

【0026】アルゴン(Ar)ガスをクリプトン(K
r)、キセノン(Xe)に代えて同様にしてWCを炭素
リッチな表面層を得た。以下に、スパッタ収率の差を示
す。なお、ヘリウム(He)ではスパッタレートの差が
逆転し、炭素リッチな表面層を得ることができなかった
結果を併記する。
Argon (Ar) gas is supplied to krypton (K
r) and xenon (Xe) were replaced with WC to obtain a carbon-rich surface layer in the same manner. The difference in the sputtering yield is shown below. It should be noted that the results of not being able to obtain a carbon-rich surface layer due to the difference in the sputtering rate reversed with helium (He) are also shown.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例6 酸化剤として、酸素ガスを微量(0.1%以下)含む不
活性ガス(窒素、アルゴンなど)導入した雰囲気中でW
C主成分の超硬素材の型を500℃で加熱処理し、タン
グステンを酸化させた。次に、この型の表面を500℃
以下に保ち、炭酸ガスレーザー(波長9〜11μm)で
照射してWO3(11〜17μmに赤外吸収帯をもつ)
を選択的に蒸発させて、炭素リッチな表面層を得た。
Example 6 W was used as an oxidizing agent in an atmosphere into which an inert gas (nitrogen, argon, etc.) containing a small amount (0.1% or less) of oxygen gas was introduced.
A mold of a superhard material containing C as a main component was heat-treated at 500 ° C. to oxidize tungsten. Next, the surface of this mold is heated to 500 ° C.
WO 3 (having an infrared absorption band at 11 to 17 μm) by irradiating with a carbon dioxide laser (wavelength 9 to 11 μm)
Was selectively evaporated to obtain a carbon-rich surface layer.

【0029】[0029]

【発明の効果】本発明によれば、タングステンカーバイ
ト(WC)主成分の超硬素材を用いた型において、タン
グステンカーバイト(WC)の化学量論組成比より炭素
(C)が多い炭素リッチな表面層を有し、さらにその表
面層の炭素(C)の濃度が表面より内部になるに従って
化学量論組成に近くなるように傾斜濃度勾配をもってい
るので、型材と被成形物との反応を阻害し、しかも芯母
材との密着性の優れた表面層を有する光学素子成形用型
の提供が可能となる。
EFFECTS OF THE INVENTION According to the present invention, in a mold using a tungsten carbide (WC) -based cemented carbide material, carbon rich with more carbon (C) than the stoichiometric composition ratio of tungsten carbide (WC). Since it has a smooth surface layer and further has a gradient concentration gradient so that the concentration of carbon (C) in the surface layer becomes closer to the stoichiometric composition as it goes inward from the surface, the reaction between the mold material and the object to be molded is prevented. It is possible to provide an optical element molding die having a surface layer that inhibits and has excellent adhesion to the core base material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明よる光学素子成形用型の一つの例におけ
る型の深さ方向の炭素の分布を模式的に示す図である。
FIG. 1 is a diagram schematically showing carbon distribution in a depth direction of a mold in one example of a mold for molding an optical element according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 洋 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (72)発明者 湊 明人 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (72)発明者 遠藤 弘之 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (56)参考文献 特開 平3−257031(JP,A) 特開 平4−198031(JP,A) 特開 平4−285031(JP,A) 特開 平2−145445(JP,A) 特開 平6−72728(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 11/00 C03B 40/02 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Ueno 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (72) Akito Minato 1-3-6 Nakamagome, Ota-ku, Tokyo In stock company Ricoh (72) Inventor Hiroyuki Endo 1-3-6 Nakamagome, Ota-ku, Tokyo Inside company Ricoh (56) Reference JP-A-3-257031 (JP, A) JP-A-4 -198031 (JP, A) JP-A-4-285031 (JP, A) JP-A-2-145445 (JP, A) JP-A-6-72728 (JP, A) (58) Fields investigated (Int.Cl) . 7 , DB name) C03B 11/00 C03B 40/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光学素子の加圧加熱成形用型であって、
タングステンカーバイト(WC)主成分の超硬素材を用
いた型において、タングステンカーバイト(WC)の化
学量論組成比より炭素(C)が多い炭素リッチな表面層
を有し、さらにその表面層の炭素(C)の濃度が表面よ
り内部になるに従って化学量論組成に近くなるように傾
斜濃度勾配をもっていることを特徴とする光学素子成形
用型を製造する方法であって、前記の炭素リッチな表面
層を、超硬素材を用いた型と石英ガラスとを接触加熱す
ることにより形成することを特徴とする光学素子成形用
型の製造方法。
1. A mold for pressurizing and heating an optical element, comprising:
A mold using a tungsten carbide (WC) -based cemented carbide material has a carbon-rich surface layer containing more carbon (C) than the stoichiometric composition of tungsten carbide (WC), and the surface layer Is a carbon-rich (C) concentration closer to the inside than the surface, and has a graded concentration gradient such that the concentration becomes closer to the stoichiometric composition. Method for producing an optical element molding die, characterized in that the transparent surface layer is formed by contact heating a die using a superhard material and quartz glass.
【請求項2】 光学素子の加圧加熱成形用型であって、
タングステンカーバイト(WC)主成分の超硬素材を用
いた型において、タングステンカーバイト(WC)の化
学量論組成比より炭素(C)が多い炭素リッチな表面層
を有し、さらにその表面層の炭素(C)の濃度が表面よ
り内部になるに従って化学量論組成に近くなるように傾
斜濃度勾配をもっていることを特徴とする光学素子成形
用型を製造する方法であって、前記の炭素リッチな表面
層を、超硬素材を用いた型と修飾イオンを除いた二酸化
ケイ素ガラス粉末とを接触加熱することにより形成する
ことを特徴とする光学素子成形用型の製造方法。
2. A mold for pressurizing and heating an optical element, comprising:
A mold using a tungsten carbide (WC) -based cemented carbide material has a carbon-rich surface layer containing more carbon (C) than the stoichiometric composition of tungsten carbide (WC), and the surface layer Is a carbon-rich (C) concentration closer to the inside than the surface, and has a graded concentration gradient such that the concentration becomes closer to the stoichiometric composition. A method for producing a mold for molding an optical element, characterized in that the transparent surface layer is formed by contact heating a mold using a superhard material and a silicon dioxide glass powder from which modifying ions have been removed.
【請求項3】 光学素子の加圧加熱成形用型であって、
タングステンカーバイト(WC)主成分の超硬素材を用
いた型において、タングステンカーバイト(WC)の化
学量論組成比より炭素(C)が多い炭素リッチな表面層
を有し、さらにその表面層の炭素(C)の濃度が表面よ
り内部になるに従って化学量論組成に近くなるように傾
斜濃度勾配をもっていることを特徴とする光学素子成形
用型を製造する方法であって、前記の炭素リッチな表面
層を、酸化剤とともに不活性ガスを導入した雰囲気中で
超硬素材の型を加熱した後、さらに二酸化炭素ガスと水
蒸気を含む雰囲気中で加熱処理することにより形成する
ことを特徴とする光学素子成形用型の製造方法。
3. A mold for pressurizing and heating an optical element, comprising:
A mold using a tungsten carbide (WC) -based cemented carbide material has a carbon-rich surface layer containing more carbon (C) than the stoichiometric composition of tungsten carbide (WC), and the surface layer Is a carbon-rich (C) concentration closer to the inside than the surface, and has a graded concentration gradient such that the concentration becomes closer to the stoichiometric composition. Characterized in that the surface layer is formed by heating the mold of the cemented carbide material in an atmosphere in which an inert gas is introduced together with an oxidizing agent, and then performing heat treatment in an atmosphere containing carbon dioxide gas and water vapor. Manufacturing method of optical element molding die.
【請求項4】 光学素子の加圧加熱成形用型であって、
タングステンカーバイト(WC)主成分の超硬素材を用
いた型において、タングステンカーバイト(WC)の化
学量論組成比より炭素(C)が多い炭素リッチな表面層
を有し、さらにその表面層の炭素(C)の濃度が表面よ
り内部になるに従って化学量論組成に近くなるように傾
斜濃度勾配をもっていることを特徴とする光学素子成形
用型を製造する方法であって、前記の炭素リッチな表面
層を、超硬素材の型表面をHe以外の希ガス元素により
スパッタエッチングすることにより形成することを特徴
とする光学素子成形用型の製造方法。
4. A mold for pressurizing and heating an optical element, comprising:
A mold using a tungsten carbide (WC) -based cemented carbide material has a carbon-rich surface layer containing more carbon (C) than the stoichiometric composition of tungsten carbide (WC), and the surface layer Is a carbon-rich (C) concentration closer to the inside than the surface, and has a graded concentration gradient such that the concentration becomes closer to the stoichiometric composition. A method for manufacturing an optical element molding die, characterized in that the transparent surface layer is formed by sputter etching the die surface of a superhard material with a rare gas element other than He.
【請求項5】 光学素子の加圧加熱成形用型であって、
タングステンカーバイト(WC)主成分の超硬素材を用
いた型において、タングステンカーバイト(WC)の化
学量論組成比より炭素(C)が多い炭素リッチな表面層
を有し、さらにその表面層の炭素(C)の濃度が表面よ
り内部になるに従って化学量論組成に近くなるように傾
斜濃度勾配をもっていることを特徴とする光学素子成形
用型を製造する方法であって、前記の炭素リッチな表面
層を、超硬素材の型表面にレーザー光を照射することに
より形成することを特徴とする光学素子成形用型の製造
方法。
5. A mold for pressurizing and heating an optical element, comprising:
A mold using a tungsten carbide (WC) -based cemented carbide material has a carbon-rich surface layer containing more carbon (C) than the stoichiometric composition of tungsten carbide (WC), and the surface layer Is a carbon-rich (C) concentration closer to the inside than the surface, and has a graded concentration gradient such that the concentration becomes closer to the stoichiometric composition. A method for producing a mold for molding an optical element, characterized in that a transparent surface layer is formed by irradiating the surface of a mold made of a superhard material with laser light.
【請求項6】 光学素子の加圧加熱成形用型であって、
タングステンカーバイト(WC)主成分の超硬素材を用
いた型において、タングステンカーバイト(WC)の化
学量論組成比より炭素(C)が多い炭素リッチな表面層
を有し、さらにその表面層の炭素(C)の濃度が表面よ
り内部になるに従って化学量論組成に近くなるように傾
斜濃度勾配をもっていることを特徴とする光学素子成形
用型を製造する方法であって、前記の炭素リッチな表面
層を、超硬素材の型表面に二酸化炭素ガスの雰囲気中で
レーザー光を照射することにより形成することを特徴と
する光学素子成形用型の製造方法。
6. A mold for pressurizing and heating an optical element, comprising:
A mold using a tungsten carbide (WC) -based cemented carbide material has a carbon-rich surface layer containing more carbon (C) than the stoichiometric composition of tungsten carbide (WC), and the surface layer Is a carbon-rich (C) concentration closer to the inside than the surface, and has a graded concentration gradient such that the concentration becomes closer to the stoichiometric composition. A method for producing an optical element molding die, characterized in that a transparent surface layer is formed by irradiating a die surface of a super hard material with laser light in an atmosphere of carbon dioxide gas.
JP34047993A 1993-12-08 1993-12-08 Mold for forming optical element, method for manufacturing the same, and method for manufacturing optical element Expired - Fee Related JP3520542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34047993A JP3520542B2 (en) 1993-12-08 1993-12-08 Mold for forming optical element, method for manufacturing the same, and method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34047993A JP3520542B2 (en) 1993-12-08 1993-12-08 Mold for forming optical element, method for manufacturing the same, and method for manufacturing optical element

Publications (2)

Publication Number Publication Date
JPH07157319A JPH07157319A (en) 1995-06-20
JP3520542B2 true JP3520542B2 (en) 2004-04-19

Family

ID=18337361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34047993A Expired - Fee Related JP3520542B2 (en) 1993-12-08 1993-12-08 Mold for forming optical element, method for manufacturing the same, and method for manufacturing optical element

Country Status (1)

Country Link
JP (1) JP3520542B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353706B2 (en) * 2007-11-09 2013-11-27 コニカミノルタ株式会社 Lower mold manufacturing method

Also Published As

Publication number Publication date
JPH07157319A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
JP2607898B2 (en) Alkali-free sheet glass and method for producing the same
JP3520542B2 (en) Mold for forming optical element, method for manufacturing the same, and method for manufacturing optical element
US3113008A (en) Method of increasing annealing point of high silica glass
US3149946A (en) Method of improving the infrared transmittance of high silica glass
EP0146115B1 (en) Process for producing aluminum material for use in vacuum
US5098515A (en) Method for the preparation of a silicon carbide-silicon nitride composite membrane for x-ray lithography
JPH0238330A (en) Regeneration of glass-forming tool
JPH0288427A (en) Production of uranium dioxide
JPH0139966B2 (en)
JP3217211B2 (en) Method for producing transparent conductive film
JP4209875B2 (en) Glass preform for press molding
JPS59190211A (en) Manufacture of thin silicon oxide film substrate having minute hollows and protrusions
JP2005191352A (en) Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank
JP6193633B2 (en) Imprint mold, imprint mold manufacturing method, patterned media manufacturing substrate manufacturing method, and patterned media manufacturing method
KR102067290B1 (en) Manufacturing method of mask blank, manufacturing method of transfer mask, and manufacturing method of semiconductor device
JPH0680443A (en) Production of glass optical element
JPH06183777A (en) Optical element forming glass stock, glass optical element formed article and production thereof
US20050253313A1 (en) Heat treating silicon carbide articles
JPS6313339B2 (en)
JPH05182259A (en) Stamper for optical disk and its manufacture
WO2009104585A1 (en) Mold regenerating method
JPH09227150A (en) Protection film for glass-forming mold and its production
JP2002255568A (en) Method for manufacturing die for forming optical element
JPH06239626A (en) Method for treating glass material for forming
JPH07157318A (en) Production of mold for forming optics

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees