JP2005191352A - Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank - Google Patents

Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank Download PDF

Info

Publication number
JP2005191352A
JP2005191352A JP2003432125A JP2003432125A JP2005191352A JP 2005191352 A JP2005191352 A JP 2005191352A JP 2003432125 A JP2003432125 A JP 2003432125A JP 2003432125 A JP2003432125 A JP 2003432125A JP 2005191352 A JP2005191352 A JP 2005191352A
Authority
JP
Japan
Prior art keywords
substrate
multilayer reflective
reflective film
film
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003432125A
Other languages
Japanese (ja)
Inventor
Takayuki Yamada
剛之 山田
Osamu Sugihara
理 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2003432125A priority Critical patent/JP2005191352A/en
Publication of JP2005191352A publication Critical patent/JP2005191352A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reproducing a substrate with a multilayer reflection film by which the reproducing cost of the substrate can be reduced because a large-scale apparatus is not required, the damage of the substrate due to the peeling and removal of the multilayer reflection film can be reduced and also the process load of re-polishing is low. <P>SOLUTION: The substrate with the multilayer reflection film constituted of forming the multilayer reflection film on which Mo and Si are alternately laminated on the substrate is brought into contact with a peeling solution consisting of an aqueous solution containing at least one fluorine compound selected from among hydrofluoric acid, hydrosilicofluoric acid and ammonium hydrogendifluoride, and an oxidant consisting of hydrogen peroxide; or an aqueous solution containing at least one fluoride compound selected from among potassium fluoride, sodium fluoride and iodine fluoride, and at least one oxidant selected from among sulphuric acid, nitric acid and hydrogen peroxide, to peel off and remove the multilayer reflection film from the substrate. As a method for contact with the peeling solution, the substrate 4 with the multilayer reflection film which is inserted into a holder 3 is dipped into the peeling solution 2 in a processing tank 1. The surface of the substrate from which the multilayer reflection film is peeled off is accurately repolished. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、極端紫外(Extreme UltraViolet、以下EUVと称する)光を用いた露光技術であるEUVリソグラフィーシステムにおいて使用する多層反射膜ミラーや、露光用反射型マスクブランクスの製造に用いる多層反射膜付き基板における多層反射膜を基板から剥離除去し、基板を再生する多層反射膜付き基板の再生方法に関する。   The present invention relates to a multilayer reflective film mirror used in an EUV lithography system, which is an exposure technology using extreme ultraviolet (Extreme UltraViolet, hereinafter referred to as EUV) light, and a substrate with a multilayer reflective film used in the production of a reflective mask blank for exposure. It is related with the reproduction | regenerating method of the board | substrate with a multilayer reflective film which peels and removes the multilayer reflective film in a board | substrate, and reproduces | regenerates a board | substrate.

近年、半導体産業において、半導体デバイスの微細化に伴い、EUV光を用いた露光技術であるEUVリソグラフィーが有望視されている。なお、ここで、EUV光とは、軟X線領域又は真空紫外線領域の波長帯の光を指し、具体的には波長が0.2〜100nm程度の光のことである。このEUVリソグラフィーにおいて用いられる露光用マスクとしては、例えば下記特許文献1に記載されたような露光用反射型マスクが提案されている。
すなわち、基板上に、光学定数の異なる2種類の層を交互に積層した多層膜構造を有する反射膜と、パターンを形成する軟X線又は真空紫外線を吸収する吸収体とが形成された反射型マスクである。このような反射型マスクを搭載した露光機(パターン転写装置)において、反射型マスクに入射した露光光は、吸収体パターンのある部分では吸収され、吸収体パターンのない部分では反射膜により反射された光像が反射光学系を通して半導体基板(例えばレジスト付きシリコンウエハ)上に転写される。
In recent years, in the semiconductor industry, with the miniaturization of semiconductor devices, EUV lithography which is an exposure technique using EUV light is promising. Here, EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 0.2 to 100 nm. As an exposure mask used in this EUV lithography, for example, an exposure reflective mask as described in Patent Document 1 has been proposed.
That is, a reflective type in which a reflective film having a multilayer film structure in which two types of layers having different optical constants are alternately laminated on a substrate and an absorber that absorbs soft X-rays or vacuum ultraviolet rays that form a pattern are formed. It is a mask. In an exposure machine (pattern transfer device) equipped with such a reflective mask, the exposure light incident on the reflective mask is absorbed at a portion where the absorber pattern is present, and is reflected by the reflective film at a portion where the absorber pattern is absent. The transferred optical image is transferred onto a semiconductor substrate (for example, a silicon wafer with a resist) through a reflection optical system.

上記反射膜、すなわち多層膜構造の反射膜(多層反射膜)としては、相対的に屈折率の高い物質と相対的に屈折率の低い物質が、数nmオーダーで交互に積層された多層膜が通常使用される。例えば、13〜14nmのEUV光に対する反射率の高いものとして、SiとMoの薄膜を交互に積層した多層膜が知られている。
ところで、このような反射型マスクにおいては、その反射面、特にパターン近傍に凹凸が存在すると、反射光にはその凹凸に起因した位相の変化が起こり、この位相の変化は転写されるパターンの位置精度やコントラストを悪化させる原因となる。EUV光のような短波長の光を露光光として用いる場合は、このような凹凸に対して位相の変化が非常に敏感になるため、転写像への影響が大きくなり、小さな凹凸に由来する位相の変化が無視できない。例えば、13nm程度のEUV光を露光光として用いる場合、2nm程度の微細な凹凸でさえ位相欠陥となりうる。従って、基板上に多層反射膜を形成した後、表面欠陥検査により、例えば基板と多層反射膜との間に異物が介在したことによる凸状の膜下欠陥などが発見された多層反射膜付き基板は、反射型マスクを製造する反射型マスクブランクス用の基板として用いることが出来ない。
As the reflective film, that is, a reflective film having a multilayer structure (multilayer reflective film), a multilayer film in which a material having a relatively high refractive index and a material having a relatively low refractive index are alternately laminated in the order of several nm are used. Usually used. For example, a multilayer film in which thin films of Si and Mo are alternately stacked is known as one having a high reflectivity for 13 to 14 nm EUV light.
By the way, in such a reflective mask, if there are irregularities on the reflection surface, particularly in the vicinity of the pattern, the reflected light undergoes a phase change caused by the irregularities, and this phase change is caused by the position of the pattern to be transferred. It causes deterioration of accuracy and contrast. When light having a short wavelength, such as EUV light, is used as exposure light, the phase change becomes very sensitive to such irregularities, so that the effect on the transferred image is increased, and the phase derived from small irregularities. The change of cannot be ignored. For example, when EUV light having a wavelength of about 13 nm is used as exposure light, even fine irregularities of about 2 nm can be phase defects. Therefore, after forming a multilayer reflective film on the substrate, a substrate with a multilayer reflective film in which, for example, a convex sub-film defect due to the presence of foreign matter between the substrate and the multilayer reflective film was discovered by surface defect inspection. Cannot be used as a substrate for a reflective mask blank for manufacturing a reflective mask.

しかし、最近の半導体デバイス等の電子部品の低価格化競争は厳しくなる一方であり、露光用マスクの製造コストの抑制も重要な課題となっている。このような背景から、基板上に多層反射膜を形成後、表面欠陥が発見された多層反射膜付き基板を不良品としてそのまま廃棄せずに、基板から多層反射膜を剥離除去して基板を再生する方法が要望されている。例えば、下記特許文献2には、Mo/Si多層反射コーティングを超磨き光学支持体から除去する方法が開示され、Mo/Si多層膜を、塩素含有ガスを用いた反応性イオンエッチングによる乾式エッチングで除去することが記載されている。また、この特許文献2には、従来の技術として、Mo/Si多層膜を、フェロシアン化カリウム/アルカリ水酸化物およびフッ化水素酸/硝酸の双方のエッチング剤を使用した湿式エッチングで除去する方法が記載されている。
特許第2140060号公報 特表2000−506217号公報
However, recent competition for lowering prices of electronic components such as semiconductor devices is becoming increasingly severe, and it is also an important issue to suppress the manufacturing cost of exposure masks. Against this background, after forming a multilayer reflective film on the substrate, the substrate with the multilayer reflective film in which surface defects are found is removed as a defective product, and the multilayer reflective film is peeled off from the substrate and recycled. There is a need for a method to do this. For example, Patent Document 2 below discloses a method of removing a Mo / Si multilayer reflective coating from a super-polished optical support, and the Mo / Si multilayer film is formed by dry etching by reactive ion etching using a chlorine-containing gas. It is described to be removed. Further, in Patent Document 2, as a conventional technique, there is a method of removing a Mo / Si multilayer film by wet etching using both potassium ferrocyanide / alkali hydroxide and hydrofluoric acid / nitric acid etching agents. Has been described.
Japanese Patent No. 2140060 Special Table 2000-506217

しかしながら、前記特許文献2に開示された乾式エッチングによるMo/Si多層膜除去は次のような問題点がある。
即ち、反応性イオンエッチングを行うための大掛かりで且つ構造の複雑なエッチング装置を使用するため、ランニングコストが高くなる。また、エッチング装置のチャンバー内に付着したMo/Si多層膜成分の付着物の掃除が困難である。さらに、反応性イオンエッチングによるため多層膜除去後に基板に変質層が形成されたり、或いは基板の厚さ方向にダメージが発生し、このような変質層やダメージを完全に除去して基板を再生するには、研磨取代を多くとる必要があり、再研磨加工に長時間を要するので、工程上の負荷が大きく、コストが高くなる。
一方、同じく前記特許文献2に記載された特定溶液による湿式エッチングによるMo/Si多層膜除去についても次のような問題点がある。
即ち、基板と多層膜の間に耐腐食性のバリヤー層がないとエッチングによる基板のダメージが大きく、再研磨して基板を再生するにしても、再研磨の工程負荷が大きく、コストが高くなる。EUV反射型マスク用の基板として用いられる例えばSiO−TiO系の低膨張ガラスでは、上記エッチングによる表面の荒れが特に大きく、ダメージが大きい。このような基板のダメージを減らすには、基板と多層膜の間に耐腐食性バリヤー層(例えば耐腐食性アモルファス炭素バリヤー層)を設ける必要があり、多層反射膜付き基板の製造工程が増えるだけでなく、基板を再生する際にはこの耐腐食性バリヤー層を除去する必要があり、何れにしても工程の追加によりコストが高くなる。
However, the Mo / Si multilayer removal by dry etching disclosed in Patent Document 2 has the following problems.
That is, since a large-scale and complex etching apparatus for performing reactive ion etching is used, the running cost is increased. In addition, it is difficult to clean the deposits of the Mo / Si multilayer component adhering in the chamber of the etching apparatus. Furthermore, due to reactive ion etching, an altered layer is formed on the substrate after removing the multilayer film, or damage occurs in the thickness direction of the substrate, and the altered layer and damage are completely removed to regenerate the substrate. In this case, it is necessary to take a lot of machining allowance, and it takes a long time for the re-polishing process, so that the process load is large and the cost is high.
On the other hand, the removal of the Mo / Si multilayer film by wet etching with the specific solution described in Patent Document 2 also has the following problems.
That is, if there is no corrosion-resistant barrier layer between the substrate and the multilayer film, the substrate is damaged by the etching, and even if the substrate is re-polished after re-polishing, the re-polishing process load is large and the cost increases. . For example, in the SiO 2 —TiO 2 -based low expansion glass used as a substrate for an EUV reflective mask, the surface roughness due to the etching is particularly large and the damage is large. In order to reduce such damage to the substrate, it is necessary to provide a corrosion-resistant barrier layer (for example, a corrosion-resistant amorphous carbon barrier layer) between the substrate and the multilayer film, which only increases the manufacturing process of the multilayer reflective film-coated substrate. In addition, when the substrate is regenerated, it is necessary to remove the corrosion-resistant barrier layer, and in any case, the cost increases due to the addition of a process.

本発明は、上述した従来技術の問題点に鑑みなされたものであり、大掛かりで複雑な構造の装置を必要とせず、本発明で用いる処理装置に多層反射膜成分が付着しても掃除が簡単で、しかも多層反射膜の剥離除去による基板のダメージが少なく、再研磨の工程負荷も少ないことにより、基板の再生コストを低減できる多層反射膜付き基板の再生方法を提供することを目的とする。また、この再生方法により再生された基板を使用する多層反射膜付き基板の製造方法及び反射型マスクブランクスの製造方法を提供することを他の目的とする。   The present invention has been made in view of the above-described problems of the prior art, and does not require a large-scale and complicated structure apparatus, and is easy to clean even if a multilayer reflective film component adheres to the processing apparatus used in the present invention. In addition, it is an object of the present invention to provide a method for regenerating a substrate with a multilayer reflective film that can reduce the cost of regenerating the substrate by reducing damage to the substrate due to peeling and removing of the multilayer reflective film and reducing the process load of re-polishing. Another object of the present invention is to provide a method for manufacturing a substrate with a multilayer reflective film and a method for manufacturing a reflective mask blank using the substrate regenerated by this regenerating method.

上述した課題を解決するため、本発明は以下の構成を有する。
(構成1)基板上に、モリブデン(Mo)と珪素(Si)の少なくとも一方を含む2種以上の屈折率の異なる材料を交互に積層してなる多層反射膜が形成された多層反射膜付き基板を、弗化水素酸、珪弗化水素酸、弗化水素アンモニウムから選ばれる少なくとも一つの弗素化合物と、過酸化水素からなる酸化剤とを含む水溶液、又は、弗化カリウム、弗化ナトリウム、弗化ヨウ素から選ばれる少なくとも一つの弗素化合物と、硫酸、硝酸、過酸化水素から選ばれる少なくとも一つの酸化剤とを含む水溶液からなる剥離液と接触させて、前記基板から多層反射膜を剥離除去し、基板を再生することを特徴とする多層反射膜付き基板の再生方法。
構成1によれば、多層反射膜付き基板を特定の水溶液からなる剥離液と接触させることで、基板上の多層反射膜を剥離除去して基板を再生することが出来る。本発明による多層反射膜付き基板の再生方法は、多層反射膜の剥離除去による基板のダメージを少なくできる。また、多層反射膜付き基板を剥離液と接触させることが可能な例えば処理槽を用いて実施でき、大掛かりで構造の複雑な装置は必要としない。また、除去された多層反射膜成分が例えば上記処理槽に付着しても簡単に掃除することが出来る。
上記MoとSiの少なくとも一方を含む2種以上の屈折率の異なる材料を交互に積層してなる多層反射膜は、例えば13〜14nmのEUV光に対する反射率が高い、MoとSiの数nmの薄膜を交互に積層したMo/Si多層反射膜である。
上記多層反射膜付き基板は、例えばEUV反射型マスクブランクス或いはEUV反射型マスクの製造に使用する多層反射膜付き基板、又は、EUVリソグラフィーシステムにおける多層反射膜ミラーとして使用する多層反射膜付き基板である。
In order to solve the above-described problems, the present invention has the following configuration.
(Configuration 1) A substrate with a multilayer reflective film in which a multilayer reflective film is formed by alternately laminating two or more materials having different refractive indexes including at least one of molybdenum (Mo) and silicon (Si) on the substrate. Or an aqueous solution containing at least one fluorine compound selected from hydrofluoric acid, silicohydrofluoric acid, and ammonium hydrogen fluoride and an oxidizing agent comprising hydrogen peroxide, or potassium fluoride, sodium fluoride, fluoride. The multilayer reflective film is peeled off from the substrate by contacting with a stripping solution comprising an aqueous solution containing at least one fluorine compound selected from iodine fluoride and at least one oxidizing agent selected from sulfuric acid, nitric acid, and hydrogen peroxide. A method for regenerating a substrate with a multilayer reflective film, wherein the substrate is regenerated.
According to the configuration 1, the multilayer reflective film on the substrate can be peeled and removed to regenerate the substrate by bringing the substrate with the multilayer reflective film into contact with a stripping solution made of a specific aqueous solution. The method for regenerating a substrate with a multilayer reflective film according to the present invention can reduce damage to the substrate due to peeling and removal of the multilayer reflective film. Moreover, it can implement using the processing tank which can contact a board | substrate with a multilayer reflective film with stripping solution, for example, and a large-scale and complicated apparatus is not required. Moreover, even if the removed multilayer reflection film component adheres to the said processing tank, it can be easily cleaned.
The multilayer reflective film formed by alternately laminating two or more kinds of materials having different refractive indexes including at least one of Mo and Si has a high reflectance with respect to EUV light of 13 to 14 nm, for example, a few nm of Mo and Si. This is a Mo / Si multilayer reflective film in which thin films are alternately stacked.
The substrate with a multilayer reflective film is, for example, a substrate with a multilayer reflective film used for manufacturing an EUV reflective mask blank or an EUV reflective mask, or a substrate with a multilayer reflective film used as a multilayer reflective film mirror in an EUV lithography system. .

(構成2)前記基板から多層反射膜を剥離除去した後、前記基板の表面を精密研磨することを特徴とする構成1記載の多層反射膜付き基板の再生方法。
構成2によれば、多層反射膜を剥離除去した基板表面を、例えば表面粗さ(二乗平均平方根粗さ(RMS))で0.15nmRms以下に回復することができる。EUV反射型マスク用のガラス基板の場合、表面粗さはRMSで0.15nmRms以下に鏡面研磨する。本発明による多層反射膜付き基板の再生方法は、多層反射膜の剥離除去による基板のダメージが少なく、再精密研磨の工程負荷が少ないので、基板の再生コストを低減でき、高品質の基板を再生することができる。
(構成3)前記剥離液の温度を室温以上80℃以下とすることを特徴とする構成1又は2記載の多層反射膜付き基板の再生方法。
構成3のように、剥離液の温度を上記範囲とすることにより、短い処理時間で多層反射膜を基板から剥離除去することができ、基板のダメージも少なくできる。
(Structure 2) The method for regenerating a substrate with a multilayer reflective film according to Structure 1, wherein the multilayer reflective film is peeled and removed from the substrate, and then the surface of the substrate is precisely polished.
According to Configuration 2, the surface of the substrate from which the multilayer reflective film has been peeled and removed can be recovered, for example, to a surface roughness (root mean square roughness (RMS)) of 0.15 nmRms or less. In the case of a glass substrate for an EUV reflective mask, the surface roughness is mirror-polished to an RMS of 0.15 nmRms or less. The method for regenerating a substrate with a multilayer reflective film according to the present invention causes less damage to the substrate due to peeling and removal of the multilayer reflective film, and reduces the process load of re-precise polishing. can do.
(Structure 3) The method for regenerating a substrate with a multilayer reflective film according to Structure 1 or 2, wherein the temperature of the stripping solution is set to room temperature to 80 ° C.
As in Configuration 3, by setting the temperature of the stripping solution in the above range, the multilayer reflective film can be stripped and removed from the substrate in a short processing time, and damage to the substrate can be reduced.

(構成4)構成1乃至3の何れかに記載の多層反射膜付き基板の再生方法により再生された基板上に、使用する光を反射する多層反射膜を形成することを特徴とする多層反射膜付き基板の製造方法。
構成4のように、本発明により再生された基板を使用した多層反射膜付き基板を製造することができる。
(構成5)構成1乃至3の何れかに記載の多層反射膜付き基板の再生方法により再生された基板上に、少なくとも、露光光を反射する多層反射膜と、該多層反射膜上に設けられる露光光を吸収する吸収体膜とを形成することを特徴とする反射型マスクブランクスの製造方法。
構成5のように、本発明により再生された基板を使用した反射型マスクブランクスを製造することができる。
(Structure 4) A multilayer reflective film for reflecting light to be used is formed on a substrate regenerated by the method for regenerating a substrate with a multilayer reflective film according to any one of Structures 1 to 3. A method for manufacturing a substrate with a substrate.
As in Configuration 4, a substrate with a multilayer reflective film using the substrate regenerated according to the present invention can be manufactured.
(Structure 5) At least a multilayer reflective film that reflects exposure light and a multilayer reflective film are provided on the substrate regenerated by the method for regenerating a substrate with a multilayer reflective film according to any one of Structures 1 to 3. A method of manufacturing a reflective mask blank, comprising forming an absorber film that absorbs exposure light.
As in Configuration 5, it is possible to manufacture a reflective mask blank using a substrate regenerated according to the present invention.

本発明によれば、基板から多層反射膜を剥離除去するのに、大掛かりで複雑な構造の装置は必要とせず、多層反射膜成分が処理装置に付着しても簡単に掃除でき、基板の再生コストを低減できる。また、本発明によれば、多層反射膜の剥離除去による基板のダメージが少なく、再研磨の工程負荷も少ないので、基板の再生コストを低減でき、しかも高品質の基板を再生することができる。また、再生された高品質の基板上に多層反射膜、吸収体膜等を成膜することにより、多層反射膜付き基板或いは反射型マスクブランクスを製造することができる。   According to the present invention, it is not necessary to use a large-scale and complicated apparatus for peeling and removing the multilayer reflective film from the substrate, and even if the multilayer reflective film component adheres to the processing apparatus, it can be easily cleaned and the substrate is regenerated. Cost can be reduced. In addition, according to the present invention, the substrate is less damaged due to the peeling and removal of the multilayer reflective film, and the re-polishing process load is also reduced. Therefore, the cost for regenerating the substrate can be reduced, and a high-quality substrate can be regenerated. In addition, by forming a multilayer reflective film, an absorber film or the like on the regenerated high-quality substrate, it is possible to manufacture a substrate with a multilayer reflective film or a reflective mask blank.

次に、本発明の実施の形態について説明する。
本発明の一実施の形態は、基板上に、MoとSiの少なくとも一方を含む2種以上の屈折率の異なる材料を交互に積層してなる多層反射膜が形成された多層反射膜付き基板を、下記(A)又は(B)の水溶液からなる剥離液と接触させて、前記基板から多層反射膜を剥離除去し、基板を再生する。
(A)弗化水素酸、珪弗化水素酸、弗化水素アンモニウムから選ばれる少なくとも一つの弗素化合物と、過酸化水素からなる酸化剤とを含む水溶液
(B)弗化カリウム、弗化ナトリウム、弗化ヨウ素から選ばれる少なくとも一つの弗素化合物と、硫酸、硝酸、過酸化水素から選ばれる少なくとも一つの酸化剤とを含む水溶液
Next, an embodiment of the present invention will be described.
In one embodiment of the present invention, there is provided a substrate with a multilayer reflective film in which a multilayer reflective film formed by alternately laminating two or more materials having different refractive indexes including at least one of Mo and Si is formed on the substrate. Then, the multilayer reflective film is peeled and removed from the substrate by contacting with a stripping solution comprising the following aqueous solution (A) or (B) to regenerate the substrate.
(A) an aqueous solution containing at least one fluorine compound selected from hydrofluoric acid, silicohydrofluoric acid, and ammonium hydrogen fluoride and an oxidizing agent comprising hydrogen peroxide; (B) potassium fluoride, sodium fluoride, An aqueous solution containing at least one fluorine compound selected from iodine fluoride and at least one oxidizing agent selected from sulfuric acid, nitric acid, and hydrogen peroxide

本発明が適用される上記MoとSiの少なくとも一方を含む2種以上の屈折率の異なる材料を交互に積層してなる多層反射膜としては、例えば13〜14nmのEUV光に対する反射率が高い、MoとSiを交互に40周期程度積層したMo/Si多層反射膜が挙げられる。EUV光の領域で使用されるその他の多層反射膜の例としては、Ru/Si周期多層反射膜、Mo/Be周期多層反射膜、Mo化合物/Si化合物周期多層反射膜、Si/Nb周期多層反射膜、Si/Mo/Ru周期多層反射膜、Si/Mo/Ru/Mo周期多層反射膜、Si/Ru/Mo/Ru周期多層反射膜などが挙げられる。これらの多層反射膜を基板上に形成した多層反射膜付き基板は、例えばEUV反射型マスクブランクス又はEUV反射型マスクにおける多層反射膜付き基板、或いはEUVリソグラフィーシステムにおける多層反射膜ミラーとして使用される。   As a multilayer reflective film formed by alternately laminating two or more materials having different refractive indexes including at least one of Mo and Si to which the present invention is applied, for example, the reflectance with respect to EUV light of 13 to 14 nm is high. A Mo / Si multilayer reflective film in which Mo and Si are alternately stacked for about 40 cycles can be mentioned. Examples of other multilayer reflective films used in the EUV light region include Ru / Si periodic multilayer reflective films, Mo / Be periodic multilayer reflective films, Mo compound / Si compound periodic multilayer reflective films, and Si / Nb periodic multilayer reflective films. Examples thereof include a film, a Si / Mo / Ru periodic multilayer reflective film, a Si / Mo / Ru / Mo periodic multilayer reflective film, and a Si / Ru / Mo / Ru periodic multilayer reflective film. A substrate with a multilayer reflective film in which these multilayer reflective films are formed on a substrate is used as, for example, a substrate with a multilayer reflective film in an EUV reflective mask blank or an EUV reflective mask, or a multilayer reflective film mirror in an EUV lithography system.

本発明では、多層反射膜付き基板における基板を再生するため、この多層反射膜付き基板を上記剥離液と接触させる。多層反射膜付き基板を剥離液と接触させる方法としては、例えば剥離液を入れた処理槽内に多層反射膜付き基板を浸漬させる方法(浸漬法)が挙げられる。他の方法としては、多層反射膜付き基板の表面(多層反射膜表面)にスプレー等で剥離液を直接噴き付ける方法が挙げられる。特に前者の多層反射膜付き基板を剥離液に浸漬させる方法は、多層反射膜全面に略均一に剥離液が供給され、また基板端面からも剥離液が浸透するので、剥離が促進され、本発明にとって好適である。また、この際に超音波を印加することも好適である。また、この浸漬法による処理中、基板を剥離液中で揺動することが好ましい。剥離液が基板の多層反射膜近傍で停滞しないので、多層反射膜成分と剥離液との化学反応が促進され、多層反射膜の剥離が好ましく進行するからである。基板を揺動する手段としては、基板を剥離液中で保持するためのホルダーを例えば上下方向に揺動する方法が例示される。また、基板を揺動する代わりに、或いは基板を揺動することに加えて、剥離液を撹拌するようにしてもよい。なお、使用済みの剥離液は適宜交換することが望ましい。   In the present invention, in order to regenerate the substrate in the substrate with the multilayer reflective film, the substrate with the multilayer reflective film is brought into contact with the stripping solution. As a method of bringing the substrate with a multilayer reflective film into contact with the stripping solution, for example, a method (immersion method) of immersing the substrate with a multilayer reflective film in a treatment tank containing the stripping solution can be mentioned. As another method, a method of spraying a stripping solution directly on the surface of the substrate with a multilayer reflective film (the surface of the multilayer reflective film) with a spray or the like can be mentioned. In particular, the former method of immersing a substrate with a multilayer reflective film in a stripping solution is such that the stripping solution is supplied substantially uniformly over the entire surface of the multilayer reflective film, and the stripping solution penetrates from the end surface of the substrate. It is suitable for. In this case, it is also preferable to apply ultrasonic waves. Further, it is preferable to swing the substrate in the stripping solution during the treatment by the dipping method. This is because the stripping solution does not stagnate in the vicinity of the multilayer reflective film of the substrate, so that the chemical reaction between the multilayer reflective film component and the stripping liquid is promoted, and the multilayer reflective film is preferably peeled off. Examples of means for swinging the substrate include a method of swinging a holder for holding the substrate in the stripping solution in the vertical direction. Further, instead of shaking the substrate, or in addition to shaking the substrate, the stripping solution may be stirred. In addition, it is desirable to replace the used stripping solution as appropriate.

多層反射膜を剥離液と接触させる場合の処理条件、例えば剥離液の濃度、温度、処理時間については特に制約する必要はないが、本発明の作用を好ましく得る観点からは、多層反射膜の材料や層数(膜厚)、基板材料によって適宜選定するのが望ましい。
剥離液濃度については、例えば、弗素化合物は0.1〜5重量%、酸化剤は0.5〜45重量%の範囲で適宜選定することが好ましい。各物質の濃度が例示した下限値よりも低いと、剥離の進行が遅くなり、結果として処理時間が長くなり、剥離しずらくなる。一方、各物質の濃度が例示した上限値よりも高いと、剥離が早く進行し、処理時間は短縮できるものの、基板ダメージ(表面が荒れる)が大きい。
剥離液温度については、室温〜80℃の範囲内とするのが好ましい。ここで、室温とは20℃程度である。剥離液温度が室温よりも低いと、剥離の進行が遅くなり、処理時間も長くなるので、結果として剥離しずらくなる。一方、剥離液温度が80℃を超えると、剥離が早く進行し、処理時間を短縮できるものの、基板ダメージ(表面が荒れる)が大きい。本発明で特に好ましくは35〜65℃の範囲である。
また、処理時間については、多層反射膜が基板から剥離除去されるのに十分な時間であればよい。本発明の剥離液の場合、上述の剥離液の濃度や温度によっても、或いは多層反射膜の膜厚にもよるが、概ね10〜120分の範囲で本発明の作用が好ましく得られる。
There are no particular restrictions on the processing conditions when the multilayer reflective film is brought into contact with the stripping solution, for example, the concentration, temperature, and processing time of the stripping solution. It is desirable to select appropriately according to the number of layers (film thickness) and the substrate material.
The concentration of the stripping solution is preferably selected as appropriate in the range of, for example, 0.1 to 5% by weight for fluorine compounds and 0.5 to 45% by weight for oxidizing agents. If the concentration of each substance is lower than the exemplified lower limit, the progress of peeling becomes slow, resulting in a longer processing time and difficulty in peeling. On the other hand, when the concentration of each substance is higher than the exemplified upper limit value, peeling progresses quickly, and the processing time can be shortened, but the substrate damage (the surface becomes rough) is large.
The stripping solution temperature is preferably in the range of room temperature to 80 ° C. Here, room temperature is about 20 ° C. When the stripping solution temperature is lower than room temperature, the progress of stripping becomes slow and the processing time becomes long, resulting in difficulty in stripping. On the other hand, when the stripping solution temperature exceeds 80 ° C., the stripping progresses quickly and the processing time can be shortened, but the substrate damage (surface becomes rough) is large. In the present invention, it is particularly preferably in the range of 35 to 65 ° C.
Further, the processing time may be a time sufficient for the multilayer reflective film to be peeled off from the substrate. In the case of the stripping solution of the present invention, although depending on the concentration and temperature of the stripping solution described above or depending on the film thickness of the multilayer reflective film, the action of the present invention is preferably obtained in the range of about 10 to 120 minutes.

本発明に用いる剥離液は、上記(A)又は(B)の水溶液からなり、特定の弗素化合物と酸化剤(酸化性物質)を含む水溶液である。このような剥離液は、酸性溶液中で活性化されたフッ素イオンが十分に存在するため、例えばSiのように酸性溶液中でないと弗素化合物に対する溶解反応が極めて遅い多層反射膜成分であっても、この溶解反応を促進し、多層反射膜の剥離の進行を早めることが可能である。
例えば、MoとSiの交互積層膜からなるMo/Si多層反射膜の、弗化水素酸と過酸化水素を含む水溶液からなる剥離液に対する溶解は、以下の化学反応式によって示すことができる。
MoSi+7H+14HF→MoF+2SiF↑+14H
The stripping solution used in the present invention is an aqueous solution comprising the above-described aqueous solution (A) or (B) and containing a specific fluorine compound and an oxidizing agent (oxidizing substance). Since such a stripping solution has sufficient fluorine ions activated in an acidic solution, even if it is a multilayer reflection film component that has a very slow dissolution reaction with a fluorine compound unless it is in an acidic solution, such as Si. It is possible to accelerate this dissolution reaction and accelerate the progress of peeling of the multilayer reflective film.
For example, dissolution of a Mo / Si multilayer reflective film composed of alternately laminated films of Mo and Si in a stripping solution composed of an aqueous solution containing hydrofluoric acid and hydrogen peroxide can be expressed by the following chemical reaction formula.
MoSi 2 + 7H 2 O 2 + 14HF → MoF 6 + 2SiF 4 ↑ + 14H 2 O

多層反射膜付き基板における基板材料としては、低熱膨張係数を有するアモルファスガラス(例えばSiO2−TiO2系ガラス等)、石英ガラス、β石英固溶体を析出した結晶化ガラス、シリコン、金属(例えばインバー合金(Fe-Ni系合金)等)が挙げられる。前述の従来技術の方法によると多層反射膜除去後の基板表面のダメージが特に大きい低膨張係数を有するガラスにあっても、本発明によれば多層反射膜除去後の基板ダメージを少なくできるので、本発明が好適である。 As a substrate material in a substrate with a multilayer reflective film, amorphous glass (eg, SiO 2 —TiO 2 glass) having a low thermal expansion coefficient, quartz glass, crystallized glass on which β-quartz solid solution is precipitated, silicon, metal (eg, Invar alloy) (Fe—Ni alloy) and the like. According to the method of the prior art described above, even in a glass having a low expansion coefficient, particularly damage to the substrate surface after removing the multilayer reflective film can reduce the substrate damage after removing the multilayer reflective film, The present invention is preferred.

このようにして、多層反射膜付き基板から多層反射膜を剥離除去した後、基板の表面を精密研磨することにより、多層反射膜剥離前の基板の表面粗さに回復することができる。例えばEUV反射型マスク用のガラス基板の場合、精密研磨により、表面粗さをRMS(二乗平均平方根粗さ)で0.15nmRms以下にする。
精密研磨は、通常、基板主表面に、酸化セリウム、コロイダルシリカ等の遊離砥粒を含有する研磨液を供給しながら、研磨パッドを用いて行う。この際、基板の片面ずつ研磨する片面研磨方法、基板の両面を同時に研磨する両面研磨方法の何れを用いてもよい。本発明による多層反射膜付き基板の再生方法は、多層反射膜の剥離除去による基板のダメージが少ないので、再精密研磨の工程負荷が少なくて済む。従って、基板の再生コストを低減でき、しかも高品質の基板を再生することができる。
In this manner, after removing the multilayer reflective film from the substrate with the multilayer reflective film, the surface of the substrate can be precisely polished to recover the surface roughness of the substrate before the multilayer reflective film is stripped. For example, in the case of a glass substrate for an EUV reflective mask, the surface roughness is reduced to RMS (root mean square roughness) by 0.15 nmRms or less by precision polishing.
Precision polishing is usually performed using a polishing pad while supplying a polishing liquid containing free abrasive grains such as cerium oxide and colloidal silica to the main surface of the substrate. At this time, either a single-side polishing method for polishing one side of the substrate or a double-side polishing method for simultaneously polishing both surfaces of the substrate may be used. In the method for regenerating a substrate with a multilayer reflective film according to the present invention, the damage on the substrate due to peeling and removal of the multilayer reflective film is small, so that the process load of re-precise polishing is small. Accordingly, it is possible to reduce the cost of regenerating the substrate and to regenerate a high-quality substrate.

本発明による多層反射膜付き基板の再生方法により再生された基板上に、使用する光(例えばEUV光)を反射する多層反射膜を形成することにより、多層反射膜付き基板を製造することができる。製造した多層反射膜付き基板は、例えばEUVリソグラフィーシステムにおいて多層反射膜ミラーとして用いられ、勿論、露光用反射型マスクブランクスの製造にも用いられる。
また、本発明による多層反射膜付き基板の再生方法により再生された基板上に、少なくとも、露光光(例えばEUV光)を反射する多層反射膜と、該多層反射膜上に設けられる露光光を吸収する吸収体膜とを形成することにより、露光用反射型マスクブランクスを製造することが出来る。必要に応じて、多層反射膜と吸収体膜の間に、吸収体膜へのパターン形成時のエッチング環境に耐性を有し、多層反射膜を保護するためのバッファ膜を有していてもよい。
A substrate with a multilayer reflective film can be manufactured by forming a multilayer reflective film that reflects light to be used (for example, EUV light) on the substrate regenerated by the method for regenerating a substrate with a multilayer reflective film according to the present invention. . The manufactured substrate with a multilayer reflective film is used as a multilayer reflective film mirror in, for example, an EUV lithography system, and of course, it is also used for manufacturing a reflective mask blank for exposure.
Further, on the substrate regenerated by the method for regenerating a substrate with a multilayer reflective film according to the present invention, at least a multilayer reflective film that reflects exposure light (for example, EUV light) and the exposure light provided on the multilayer reflective film are absorbed. By forming the absorber film to be formed, a reflective mask blank for exposure can be manufactured. If necessary, a buffer film for protecting the multilayer reflective film may be provided between the multilayer reflective film and the absorber film, which is resistant to the etching environment during pattern formation on the absorber film. .

多層反射膜は、基板上に例えば、DCマグネトロンスパッタ法により形成できる。Mo/Si多層反射膜の場合、Arガス雰囲気下で、SiターゲットとMoターゲットを交互に用いて、30〜60周期、好ましくは40周期程度積層し、最後に保護膜としてSi膜を成膜する。他の成膜方法としては、IBD(多層反射膜成膜用ターゲットにイオンビームを照射しイオンビームスパッタリングして成膜するイオン・ビーム・デポディション(或いはイオンビームスパッタともいう))法等が使用できる。   The multilayer reflective film can be formed on the substrate by, for example, DC magnetron sputtering. In the case of the Mo / Si multilayer reflective film, the Si target and the Mo target are alternately used in an Ar gas atmosphere to stack 30 to 60 cycles, preferably about 40 cycles, and finally a Si film is formed as a protective film. . As another film forming method, an IBD (ion beam deposition (also referred to as ion beam sputtering)) method in which an ion beam is applied to a target for forming a multilayer reflective film and ion beam sputtering is used is used. it can.

バッファ膜は、吸収体膜に転写パターンを形成する際に、エッチング停止層として下層の多層反射膜を保護する機能を有し、通常は多層反射膜と吸収体膜との間に形成される。なお、バッファ膜は必要に応じて設ければよい。
バッファ膜の材料としては、吸収体膜とのエッチング選択比が大きい材料が選択される。バッファ膜と吸収体膜のエッチング選択比は5以上、好ましくは10以上、さらに好ましくは20以上である。更に、低応力で、平滑性に優れた材料が好ましく、とくに0.3nmRms以下の平滑性を有していることが好ましい。このような観点から、バッファ膜を形成する材料は、微結晶あるいはアモルファス構造であることが好ましい。
一般に、吸収体膜の材料には、TaやTa合金等が良く用いられている。吸収体膜の材料にTa系の材料を用いた場合、バッファ膜としては、Crを含む材料を用いるのが好ましい。例えば、Cr単体や、Crに窒素、酸素、炭素の少なくとも1つの元素が添加された材料が挙げられる。具体的には、窒化クロム(CrN)等である。
一方、吸収体膜として、Cr単体や、Crを主成分とする材料を用いる場合には、バッファ膜には、Taを主成分とする材料、例えば、TaとBを含む材料や、TaとBとNを含む材料等を用いることができる。
The buffer film has a function of protecting the lower multilayer reflective film as an etching stop layer when a transfer pattern is formed on the absorber film, and is usually formed between the multilayer reflective film and the absorber film. Note that the buffer film may be provided as necessary.
As the material of the buffer film, a material having a high etching selectivity with the absorber film is selected. The etching selectivity between the buffer film and the absorber film is 5 or more, preferably 10 or more, more preferably 20 or more. Furthermore, a material having low stress and excellent smoothness is preferable, and in particular, it has a smoothness of 0.3 nmRms or less. From such a viewpoint, it is preferable that the material for forming the buffer film has a microcrystalline or amorphous structure.
In general, Ta, Ta alloy, or the like is often used as a material for the absorber film. When a Ta-based material is used as the material of the absorber film, it is preferable to use a material containing Cr as the buffer film. For example, Cr alone or a material in which at least one element of nitrogen, oxygen, and carbon is added to Cr can be used. Specifically, chromium nitride (CrN) or the like is used.
On the other hand, when Cr alone or a material mainly containing Cr is used as the absorber film, the buffer film is made of a material mainly containing Ta, for example, a material containing Ta and B, or Ta and B. A material containing N and N can be used.

このバッファ膜は、反射型マスク形成時には、マスクの反射率低下を防止するために、吸収体膜に形成されたパターンに従って、パターン状に除去してもよいが、バッファ膜に露光光の透過率の大きい材料を用い、膜厚を十分薄くすることが出来れば、パターン状に除去せずに、多層反射膜を覆うように残しておいてもよい。バッファ膜は、例えば、DCスパッタ、RFスパッタ、イオンビームスパッタ等のスパッタ法で形成することができる。   This buffer film may be removed in a pattern according to the pattern formed on the absorber film in order to prevent a reduction in the reflectance of the mask when the reflective mask is formed. If a large material can be used and the film thickness can be sufficiently reduced, the multilayer reflective film may be left without being removed in a pattern. The buffer film can be formed by, for example, a sputtering method such as DC sputtering, RF sputtering, or ion beam sputtering.

吸収体膜の材料としては、露光光の吸収率が高く、吸収体膜の下側に位置する膜(通常バッファ膜或いは多層反射膜)とのエッチング選択比が十分大きいものが選択される。例えば、Taを主要な金属成分とする材料が好ましい。この場合、バッファ膜にCrを主成分とする材料を用いれば、エッチング選択比を大きく(10以上)取ることができる。Taを主要な金属元素とする材料は、通常金属または合金である。また、平滑性、平坦性の点から、アモルファス状または微結晶の構造を有しているものが好ましい。Taを主要な金属元素とする材料としては、TaとBを含む材料、TaとNを含む材料、TaとBとOを含む材料、TaとBとNを含む材料、TaとSiを含む材料、TaとSiとNを含む材料、TaとGeを含む材料、TaとGeとNを含む材料等を用いることができる。TaにBやSi,Ge等を加えることにより、アモルファス状の材料が容易に得られ、平滑性を向上させることができる。また、TaにNやOを加えれば、酸化に対する耐性が向上するため、経時的な安定性を向上させることができるという効果が得られる。   As the material of the absorber film, a material having a high exposure light absorptivity and a sufficiently large etching selection ratio with a film (usually a buffer film or a multilayer reflective film) located below the absorber film is selected. For example, a material having Ta as a main metal component is preferable. In this case, if a material containing Cr as a main component is used for the buffer film, the etching selectivity can be increased (10 or more). A material having Ta as a main metal element is usually a metal or an alloy. Further, those having an amorphous or microcrystalline structure are preferable from the viewpoint of smoothness and flatness. Materials containing Ta as a main metal element include materials containing Ta and B, materials containing Ta and N, materials containing Ta, B and O, materials containing Ta, B and N, and materials containing Ta and Si A material containing Ta, Si and N, a material containing Ta and Ge, a material containing Ta, Ge and N can be used. By adding B, Si, Ge or the like to Ta, an amorphous material can be easily obtained and the smoothness can be improved. In addition, when N or O is added to Ta, resistance to oxidation is improved, so that an effect of improving stability over time can be obtained.

他の吸収体膜の材料としては、Crを主成分とする材料(クロム、窒化クロム等)、タングステンを主成分とする材料(窒化タングステン等)、チタンを主成分とする材料(チタン、窒化チタン)等を用いることができる。
これらの吸収体膜は、通常のスパッタ法で形成する事が出来る。
以上のようにして、再生された基板を使用した反射型マスクブランクスが得られる。反射型マスクは、この反射型マスクブランクスの吸収体膜にフォトリソ法により所定の転写パターンを形成することで製造できる。
次に、実施例により本発明の実施の形態を更に具体的に説明する。
Other absorber film materials include Cr-based materials (chromium, chromium nitride, etc.), tungsten-based materials (tungsten nitride, etc.), and titanium-based materials (titanium, titanium nitride). ) Etc. can be used.
These absorber films can be formed by a normal sputtering method.
As described above, a reflective mask blank using the regenerated substrate is obtained. The reflective mask can be manufactured by forming a predetermined transfer pattern on the absorber film of the reflective mask blank by photolithography.
Next, the embodiment of the present invention will be described more specifically with reference to examples.

(実施例1)
本実施例は、EUV反射型マスクブランクスの製造に用いる多層反射膜付き基板を例に取り説明する。
基板の表面粗さがRMSで0.15nm以下に鏡面研磨された石英ガラス基板上に、DCマグネトロンスパッタリング法により、まずSiターゲットを用いてArガス圧0.1PaでSi膜を4.2nm成膜し、その後、Moターゲットを用いてArガス圧0.1PaでMo膜を2.8nm成膜し、これを1周期として、40周期積層した後、最後にSi膜を4nm成膜して、多層反射膜付き基板を作製した。
この得られた多層反射膜付き基板を、表面欠陥検査装置にて検査したところ、基板と多層反射膜との間に異物が介在したと思われる凸状の膜下欠陥を発見した。
(Example 1)
In this embodiment, a substrate with a multilayer reflective film used for manufacturing EUV reflective mask blanks will be described as an example.
On a quartz glass substrate whose surface is mirror-polished to an RMS of 0.15 nm or less by RMS, a Si film is first formed by DC magnetron sputtering using an Si target at an Ar gas pressure of 0.1 Pa and a thickness of 4.2 nm. Then, using a Mo target, an Mo film was formed at 2.8 nm at an Ar gas pressure of 0.1 Pa, and this was set as one period, and after 40 periods were laminated, an Si film was finally formed at 4 nm to obtain a multilayer. A substrate with a reflective film was produced.
When the obtained substrate with a multilayer reflective film was inspected with a surface defect inspection apparatus, a convex subfilm defect in which a foreign substance was thought to be present between the substrate and the multilayer reflective film was found.

そこで、このような表面欠陥を有する多層反射膜付き基板の多層反射膜を剥離して基板の再生を行った。図1に示すように、処理槽1に収容された剥離液2中に、複数枚の多層反射膜付き基板4を保持したホルダー3を所定時間浸漬し、多層反射膜を基板から剥離した。剥離液として、弗化水素アンモニウム(1wt%)と過酸化水素(2wt%)と純水(97wt%)の混合水溶液を用いた。尚、このときの剥離液の温度は40℃、処理時間は30分とした。また、処理中は、上記ホルダー3を動かすことにより、基板を上下方向に揺動して行った。
こうしてMo/Si膜からなる多層反射膜を剥離した基板の表面を電子顕微鏡にて観察したところ、Mo/Si膜の残滓は確認されなかった。また、多層反射膜を剥離した基板の表面は、上述の剥離液により若干荒れていたものの、基板表面を再精密研磨することによって容易に表面粗さ(RMS)を0.15nmRms以下に回復することができ、平坦度も100nm以下にすることができた。尚、ここでいう平坦度とは、TIR(total indicated reading)で表わされる表面の反り(変形量)を表わす値で、次のように定義したものとした。基板表面を基に最小二乗法で定められる平面を焦平面とし、この焦平面を基準として焦平面より上にある基板表面の最も高い位置と、焦平面より下にある最も低い位置との間にある高低差の絶対値を平坦度とした。
本実施例による多層反射膜剥離の場合、剥離液を交換しないで複数回使用した後、処理槽に付着した付着物は容易に掃除することができ、また、大掛かりな装置も必要とせず、再生コストが安いという利点もある。
Therefore, the multilayer reflective film of the multilayer reflective film-coated substrate having such surface defects was peeled off to regenerate the substrate. As shown in FIG. 1, a holder 3 holding a plurality of multilayer reflective film-coated substrates 4 was immersed in a stripping solution 2 accommodated in a processing tank 1 for a predetermined time, and the multilayer reflective film was peeled from the substrate. As a stripping solution, a mixed aqueous solution of ammonium hydrogen fluoride (1 wt%), hydrogen peroxide (2 wt%) and pure water (97 wt%) was used. The temperature of the stripping solution at this time was 40 ° C., and the treatment time was 30 minutes. During the processing, the substrate 3 was swung in the vertical direction by moving the holder 3.
Thus, when the surface of the board | substrate which peeled the multilayer reflective film which consists of Mo / Si films was observed with the electron microscope, the residue of Mo / Si film was not confirmed. In addition, the surface of the substrate from which the multilayer reflective film has been peeled is slightly roughened by the above-described peeling solution, but the surface roughness (RMS) can be easily restored to 0.15 nmRms or less by re-precise polishing of the substrate surface. The flatness could be reduced to 100 nm or less. Here, the flatness is a value representing the surface warpage (deformation amount) represented by TIR (total indicated reading), and is defined as follows. A plane defined by the least square method based on the substrate surface is defined as a focal plane, and between this focal plane, the highest position on the substrate surface above the focal plane and the lowest position below the focal plane. The absolute value of a certain level difference was defined as flatness.
In the case of peeling off the multilayer reflective film according to the present embodiment, the deposit adhered to the treatment tank can be easily cleaned after being used a plurality of times without replacing the stripping solution, and does not require a large-scale apparatus and is regenerated. There is also an advantage that the cost is low.

(実施例2)
実施例1により再生された基板を使用して再度、DCマグネトロンスパッタ法によりMo/Si膜の多層反射膜を形成し、多層反射膜付き基板を作製した。
この得られた多層反射膜付き基板を、表面欠陥検査装置にて検査したところ、上述の凸状の膜下欠陥は確認されなかった。
この多層反射膜付き基板を使用して、EUV反射型マスクブランクス、及びEUV反射型マスクの製造方法を以下に説明する。
多層反射膜付き基板の多層反射膜上にバッファ膜として、窒化クロム(CrN)膜を30nmの厚さに形成した。成膜は、Crターゲットを用いて、スパッタガスとして、窒素とArを用いてDCマグネトロンスパッタ法によって行った。成膜されたCrN膜において、Cr:Nの組成比は0.9:0.1であった。
次に、CrN膜より構成されるバッファ膜の上に、吸収体膜として、タンタルとホウ素と窒素からなる合金(TaBN膜)を60nmの厚さで形成した。成膜は、Ta及びBを含むターゲットを用いて、Arに窒素を10%添加して、DCマグネトロンスパッタ法によって行った。成膜されたTaBN膜において、組成比は、Taは0.8、Bは0.1、Nは0.1であり、結晶状態はアモルファスであった。
以上のようにして、本実施例のEUV反射型マスクブランクスを得た。
(Example 2)
Using the substrate regenerated in Example 1, a multilayer reflective film of Mo / Si film was again formed by DC magnetron sputtering to produce a substrate with a multilayer reflective film.
When the obtained substrate with a multilayer reflective film was inspected with a surface defect inspection apparatus, the above-mentioned convex subfilm defects were not confirmed.
An EUV reflective mask blank and an EUV reflective mask manufacturing method using this multilayer reflective film-coated substrate will be described below.
A chromium nitride (CrN) film having a thickness of 30 nm was formed as a buffer film on the multilayer reflective film of the substrate with the multilayer reflective film. Film formation was performed by a DC magnetron sputtering method using a Cr target and using nitrogen and Ar as sputtering gases. In the formed CrN film, the composition ratio of Cr: N was 0.9: 0.1.
Next, an alloy (TaBN film) made of tantalum, boron, and nitrogen was formed to a thickness of 60 nm as an absorber film on the buffer film made of the CrN film. Film formation was performed by DC magnetron sputtering using a target containing Ta and B, adding 10% nitrogen to Ar. In the formed TaBN film, the composition ratio was 0.8 for Ta, 0.1 for B, 0.1 for N, and the crystalline state was amorphous.
As described above, the EUV reflective mask blanks of this example were obtained.

次に、このEUV反射型マスクブランクスを用いて、デザインルールが0.07μmの16Gbit−DRAM用のパターンを有するEUV反射型マスクを以下の方法により作製した。
まず、上記EUV反射型マスクブランクス上に電子線描画用レジストを塗布し、135℃でのベーク処理してレジスト膜を形成し、電子線により描画して、現像を行い、レジストパターンを形成した。
このレジストパターンをマスクとして、TaBN膜からなる吸収体膜を塩素を用いてドライエッチングし、吸収体膜パターンを形成した。
更に吸収体膜パターン上に残ったレジストパターンを100℃の熱硫酸で除去した。次に、CrN膜からなるバッファ膜を塩素と酸素の混合ガスを用いて、吸収体膜のパターンに従ってドライエッチングし、パターン状のバッファ膜とした。
以上の様にして、本実施例のEUV反射型マスクが得られた。この反射型マスクを用いて、半導体基板上へのパターン転写を行ったところ、高精度のパターン転写を行うことができた。
Next, using this EUV reflective mask blank, an EUV reflective mask having a pattern for a 16 Gbit DRAM having a design rule of 0.07 μm was produced by the following method.
First, a resist for electron beam drawing was applied on the EUV reflective mask blank, and a resist film was formed by baking at 135 ° C., followed by drawing with an electron beam, development, and a resist pattern was formed.
Using this resist pattern as a mask, the absorber film made of a TaBN film was dry-etched using chlorine to form an absorber film pattern.
Further, the resist pattern remaining on the absorber film pattern was removed with hot sulfuric acid at 100 ° C. Next, the buffer film made of the CrN film was dry-etched according to the pattern of the absorber film using a mixed gas of chlorine and oxygen to obtain a patterned buffer film.
As described above, the EUV reflective mask of this example was obtained. When pattern transfer onto a semiconductor substrate was performed using this reflective mask, pattern transfer with high accuracy could be performed.

(実施例3〜5)
次に、実施例1における剥離液を、弗化水素(0.1wt%)と過酸化水素(1.0wt%)と純水(98.9wt%)の混合水溶液(温度35℃)(実施例3)、珪弗化水素(0.1wt%)と過酸化水素(1.0wt%)と純水(98.9wt%)の混合水溶液(温度45℃)(実施例4)、弗化水素アンモニウム(0.2wt%)と過酸化水素(2.0wt%)と硝酸(2.0wt%)と純水(95.8wt%)の混合水溶液(温度40℃)(実施例5)にした以外は実施例1と同様にして多層反射膜付き基板の多層反射膜を剥離して基板の再生を行った。
こうしてMo/Si膜からなる多層反射膜を剥離した基板の表面を電子顕微鏡にて観察したところ、Mo/Si膜の残滓は確認されなかった。また、多層反射膜を剥離した基板の表面は、上述の剥離液により若干荒れていたものの、基板表面を再精密研磨することによって容易に表面粗さ(RMS)を0.15nmRms以下に回復することができ、平坦度も100nm以下にすることができた。
上述の実施例2と同様にして、上述の実施例3〜5により再生された基板を使用してDCマグネトロンスパッタ法によりMo/Si膜の多層反射膜を形成して多層反射膜付き基板を作製し、さらにこの多層反射膜付き基板を使用してEUV反射型マスクブランクス、及びEUV反射型マスクを作製した。
その結果、得られた多層反射膜付き基板を表面欠陥検査装置にて検査したところ、凸状の膜下欠陥は確認されず、また、得られた反射型マスクを用いて半導体基板上へのパターン転写を行ったところ、高精度のパターン転写を行うことができた。
次に、上述の実施例に対する比較例を説明する。
(Examples 3 to 5)
Next, the stripping solution in Example 1 is a mixed aqueous solution (temperature 35 ° C.) of hydrogen fluoride (0.1 wt%), hydrogen peroxide (1.0 wt%), and pure water (98.9 wt%) (Example 3) Mixed aqueous solution (temperature 45 ° C.) of hydrogen silicofluoride (0.1 wt%), hydrogen peroxide (1.0 wt%) and pure water (98.9 wt%) (Example 4), ammonium hydrogen fluoride (Example 5) except that a mixed aqueous solution (temperature 40 ° C.) of (0.2 wt%), hydrogen peroxide (2.0 wt%), nitric acid (2.0 wt%), and pure water (95.8 wt%) was used. In the same manner as in Example 1, the multilayer reflective film of the multilayer reflective film-coated substrate was peeled off to regenerate the substrate.
Thus, when the surface of the board | substrate which peeled the multilayer reflecting film which consists of Mo / Si films was observed with the electron microscope, the residue of Mo / Si film was not confirmed. In addition, the surface of the substrate from which the multilayer reflective film has been peeled is slightly roughened by the above-described peeling solution, but the surface roughness (RMS) can be easily restored to 0.15 nmRms or less by re-precise polishing of the substrate surface. The flatness could be reduced to 100 nm or less.
In the same manner as in Example 2 described above, a multilayer reflective film of Mo / Si film is formed by DC magnetron sputtering using the substrate regenerated in Examples 3 to 5 described above to produce a substrate with a multilayer reflective film. Furthermore, EUV reflective mask blanks and EUV reflective masks were produced using this multilayer reflective film-coated substrate.
As a result, when the obtained substrate with a multilayer reflective film was inspected with a surface defect inspection apparatus, no convex subfilm defects were confirmed, and a pattern on a semiconductor substrate was obtained using the obtained reflective mask. As a result of the transfer, a highly accurate pattern transfer could be performed.
Next, a comparative example for the above embodiment will be described.

(比較例)
前記特許文献2に記載された塩素含有ガスを用いた反応性イオンエッチング(RIE)(特許文献2に記載されたエッチング条件)により、実施例1と同じ多層反射膜付き基板におけるMo/Si多層反射膜を剥離した。その結果、30分程度でMo/Si多層反射膜を剥離することができた。しかし、剥離した基板の表面には、反応性イオンエッチングによる深さ方向に基板ダメージや変質層が確認された。基板表面を再精密研磨することでそれらを除去した。
また、このような反応性イオンエッチングによる多層反射膜剥離の場合、反応性イオンエッチング装置のチャンバー内に付着した多層反射膜成分の付着物の掃除が困難であること、装置が大掛かりであることから、再生コストが高くなるという欠点がある。
(Comparative example)
Mo / Si multilayer reflection on the same substrate with a multilayer reflective film as in Example 1 by reactive ion etching (RIE) using chlorine-containing gas described in Patent Document 2 (etching conditions described in Patent Document 2) The film was peeled off. As a result, the Mo / Si multilayer reflective film could be peeled off in about 30 minutes. However, substrate damage and altered layers were confirmed in the depth direction by reactive ion etching on the surface of the peeled substrate. They were removed by re-precise polishing of the substrate surface.
In addition, in the case of peeling of the multilayer reflective film by such reactive ion etching, it is difficult to clean the deposits of the multilayer reflective film components adhering in the chamber of the reactive ion etching apparatus, and the apparatus is large-scale. There is a disadvantage that the reproduction cost becomes high.

以上のように、本発明によれば、大掛かりな装置を特に必要とせず、簡便な装置を用いて、多層反射膜を基板から剥離することが出来、しかも剥離による基板ダメージが少ないので、再研磨の工程負荷が少なくて済み、基板の再生コストを低減することが可能である。なお、本発明の実施の形態について、実施例を用いて説明したが、実施例に挙げた剥離液にかかわらず、例えば、弗化カリウム等の弗素化合物と、硫酸、硝酸、過酸化水素から選ばれる少なくとも一つの酸化剤とを含む水溶液を剥離液としても、上述の実施例と同様の効果が得られる。   As described above, according to the present invention, a large-scale device is not particularly required, and the multilayer reflective film can be peeled off from the substrate using a simple device, and the substrate damage due to peeling is small, so that re-polishing Thus, the process load of the substrate can be reduced, and the cost for regenerating the substrate can be reduced. Although the embodiment of the present invention has been described with reference to examples, it is selected from, for example, fluorine compounds such as potassium fluoride, sulfuric acid, nitric acid, and hydrogen peroxide, regardless of the stripping solution mentioned in the examples. Even when an aqueous solution containing at least one oxidizing agent is used as the stripping solution, the same effect as in the above-described embodiment can be obtained.

本発明の実施例における浸漬法の概略構成図である。It is a schematic block diagram of the immersion method in the Example of this invention.

符号の説明Explanation of symbols

1 処理槽
2 剥離液
3 ホルダー
4 多層反射膜付き基板
1 treatment tank 2 stripping solution 3 holder 4 substrate with multilayer reflective film

Claims (5)

基板上に、モリブデン(Mo)と珪素(Si)の少なくとも一方を含む2種以上の屈折率の異なる材料を交互に積層してなる多層反射膜が形成された多層反射膜付き基板を、弗化水素酸、珪弗化水素酸、弗化水素アンモニウムから選ばれる少なくとも一つの弗素化合物と、過酸化水素からなる酸化剤とを含む水溶液、又は、弗化カリウム、弗化ナトリウム、弗化ヨウ素から選ばれる少なくとも一つの弗素化合物と、硫酸、硝酸、過酸化水素から選ばれる少なくとも一つの酸化剤とを含む水溶液からなる剥離液と接触させて、前記基板から多層反射膜を剥離除去し、基板を再生することを特徴とする多層反射膜付き基板の再生方法。 A substrate with a multilayer reflective film in which a multilayer reflective film is formed by alternately laminating two or more materials having different refractive indexes including at least one of molybdenum (Mo) and silicon (Si) on a substrate is fluorinated. An aqueous solution containing at least one fluorine compound selected from hydrofluoric acid, silicohydrofluoric acid and ammonium hydrogen fluoride and an oxidizing agent comprising hydrogen peroxide, or selected from potassium fluoride, sodium fluoride and iodine fluoride The multilayer reflective film is peeled and removed from the substrate by contacting with a stripping solution comprising an aqueous solution containing at least one fluorine compound and at least one oxidizing agent selected from sulfuric acid, nitric acid, and hydrogen peroxide, and the substrate is regenerated. A method for regenerating a substrate with a multilayer reflective film. 前記基板から多層反射膜を剥離除去した後、前記基板の表面を精密研磨することを特徴とする請求項1記載の多層反射膜付き基板の再生方法。 2. The method for regenerating a substrate with a multilayer reflective film according to claim 1, wherein after the multilayer reflective film is peeled and removed from the substrate, the surface of the substrate is precisely polished. 前記剥離液の温度を室温以上80℃以下とすることを特徴とする請求項1又は2記載の多層反射膜付き基板の再生方法。 The method for regenerating a substrate with a multilayer reflective film according to claim 1 or 2, wherein the temperature of the stripping solution is from room temperature to 80 ° C. 請求項1乃至3の何れかに記載の多層反射膜付き基板の再生方法により再生された基板上に、使用する光を反射する多層反射膜を形成することを特徴とする多層反射膜付き基板の製造方法。 A multilayer reflective film for reflecting light to be used is formed on a substrate regenerated by the method for regenerating a substrate with a multilayer reflective film according to any one of claims 1 to 3. Production method. 請求項1乃至3の何れかに記載の多層反射膜付き基板の再生方法により再生された基板上に、少なくとも、露光光を反射する多層反射膜と、該多層反射膜上に設けられる露光光を吸収する吸収体膜とを形成することを特徴とする反射型マスクブランクスの製造方法。 4. At least a multilayer reflective film that reflects exposure light, and exposure light provided on the multilayer reflective film on the substrate regenerated by the method for regenerating a substrate with a multilayer reflective film according to claim 1. The manufacturing method of the reflective mask blank characterized by forming the absorber film | membrane to absorb.
JP2003432125A 2003-12-26 2003-12-26 Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank Pending JP2005191352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432125A JP2005191352A (en) 2003-12-26 2003-12-26 Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432125A JP2005191352A (en) 2003-12-26 2003-12-26 Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Publications (1)

Publication Number Publication Date
JP2005191352A true JP2005191352A (en) 2005-07-14

Family

ID=34789926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432125A Pending JP2005191352A (en) 2003-12-26 2003-12-26 Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Country Status (1)

Country Link
JP (1) JP2005191352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101349A (en) * 2005-10-04 2007-04-19 Nikon Corp Multilayer mirror, its reproducing method and exposure system
CN102109756A (en) * 2009-11-18 2011-06-29 Hoya株式会社 Substrate regeneration method, mask blank manufacturing method, substrate with multi-layer reflective film and manufacturing method of reflective mask blank
JP2011227260A (en) * 2010-04-19 2011-11-10 Hoya Corp Manufacturing method for recycled photomask substrate, manufacturing method for recycled photomask blank, recycled photomask and manufacturing method for the same, and pattern transfer method
JP2016031451A (en) * 2014-07-29 2016-03-07 株式会社Adeka Composition and method for mask blank removal
JP2017181733A (en) * 2016-03-30 2017-10-05 Hoya株式会社 Method for regenerating substrate with multilayer film, method for manufacturing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101349A (en) * 2005-10-04 2007-04-19 Nikon Corp Multilayer mirror, its reproducing method and exposure system
CN102109756A (en) * 2009-11-18 2011-06-29 Hoya株式会社 Substrate regeneration method, mask blank manufacturing method, substrate with multi-layer reflective film and manufacturing method of reflective mask blank
JP2011127221A (en) * 2009-11-18 2011-06-30 Hoya Corp Method for regenerating substrate, method for producing mask blank, method for producing multilayer reflection film-fitted substrate and method for producing reflection type mask blank
TWI494682B (en) * 2009-11-18 2015-08-01 Hoya Corp Method of reproducing a substrate, method of manufacturing a mask blank, method of manufacturing a substrate with a multilayer reflective film and method of manufacturing a reflective-type mask blank
KR101757924B1 (en) * 2009-11-18 2017-07-13 호야 가부시키가이샤 Method for reproducing substrate, method for manufacturing mask blak, method for manufacturing substrate having a multi layer reflection film and method for manufacturing reflection type mask blank
JP2011227260A (en) * 2010-04-19 2011-11-10 Hoya Corp Manufacturing method for recycled photomask substrate, manufacturing method for recycled photomask blank, recycled photomask and manufacturing method for the same, and pattern transfer method
JP2016031451A (en) * 2014-07-29 2016-03-07 株式会社Adeka Composition and method for mask blank removal
JP2017181733A (en) * 2016-03-30 2017-10-05 Hoya株式会社 Method for regenerating substrate with multilayer film, method for manufacturing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Similar Documents

Publication Publication Date Title
JP6574034B2 (en) Mask blank substrate, substrate with multilayer reflective film, reflective mask blank, reflective mask, transmissive mask blank, transmissive mask, and semiconductor device manufacturing method
JP4652946B2 (en) Reflective mask blank substrate manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
US9740091B2 (en) Substrate with multilayer reflective film, reflective mask blank for EUV lithography, reflective mask for EUV lithography, and method of manufacturing the same, and method of manufacturing a semiconductor device
JP4521753B2 (en) Reflective mask manufacturing method and semiconductor device manufacturing method
JP6184026B2 (en) REFLECTIVE MASK BLANK AND MANUFACTURING METHOD THEREFOR, MANUFACTURING METHOD OF REFLECTIVE MASK
JP5677812B2 (en) Substrate regeneration method, mask blank manufacturing method, multilayer reflective film coated substrate manufacturing method, and reflective mask blank manufacturing method
JP5317092B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
JP6082385B2 (en) Multilayer reflective film-coated substrate, reflective mask blank for EUV lithography, reflective mask manufacturing method for EUV lithography, and semiconductor device manufacturing method
JP5997530B2 (en) Mask blank, transfer mask, and semiconductor device manufacturing method
JP6716316B2 (en) Method for reclaiming substrate with multilayer film, method for producing substrate with multilayer reflective film, and method for producing reflective mask blank
JP5635839B2 (en) Mask blank substrate manufacturing method and mask blank manufacturing method
JP2005191352A (en) Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank
JP6223756B2 (en) Multilayer reflective film-coated substrate, reflective mask blank for EUV lithography, reflective mask for EUV lithography, method for manufacturing the same, and method for manufacturing a semiconductor device
JP2018054794A (en) Regeneration method of glass substrate for mask blank, manufacturing method of mask blank and manufacturing method of mask for transfer
JP2016122751A (en) Substrate with multilayer reflection film, reflection type mask blank, reflection type mask, and method of manufacturing semiconductor device
JP5896402B2 (en) Mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006