JP3519440B2 - Sea salt particle removal filter - Google Patents

Sea salt particle removal filter

Info

Publication number
JP3519440B2
JP3519440B2 JP29919493A JP29919493A JP3519440B2 JP 3519440 B2 JP3519440 B2 JP 3519440B2 JP 29919493 A JP29919493 A JP 29919493A JP 29919493 A JP29919493 A JP 29919493A JP 3519440 B2 JP3519440 B2 JP 3519440B2
Authority
JP
Japan
Prior art keywords
medium layer
filter
filter medium
fiber
sea salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29919493A
Other languages
Japanese (ja)
Other versions
JPH07148406A (en
Inventor
一夫 横山
Original Assignee
金井 宏之
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金井 宏之 filed Critical 金井 宏之
Priority to JP29919493A priority Critical patent/JP3519440B2/en
Publication of JPH07148406A publication Critical patent/JPH07148406A/en
Application granted granted Critical
Publication of JP3519440B2 publication Critical patent/JP3519440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、海岸部に建設されるビ
ルや工場等に設置される塩害防止用の海塩粒子除去フィ
ルターに関するものである。 【0002】 【従来の技術】従来から、海塩粒子除去用フィルターと
しては、実公平3−12332号公報に示される様な、
ガラス繊維より成り、空気流入層側の繊維密度を粗と
し、空気流出側の繊維密度を密とした2層構造のフィル
ターや、実開平1−122824号公報に示される様
な、撥水性を有する繊維からなる濾材を密度差をもたせ
て形成した2層構造のフィルター等が種々提案されてい
る。しかしこれらは、潮解により液状になった海塩粒子
が海塩粒子以外の塵埃を伝わり下流側へ流れるという欠
点があった。そこで本出願人は、これを解決すべく先の
出願(特願平4−342374号)において、撥水性を
有する2つの濾材間に、吸水性繊維を含んでなる中間層
を形成し、液状化した海塩粒子を捕捉することができる
フィルターを提案している。 【0003】 【発明が解決しようとする課題】しかしながら、吸水性
繊維は一般に吸水により体積が膨張するため、例えば潮
解が起り易い高湿度下で使用した場合時には、フィルタ
ーの圧力損失が急上昇し、塩分を含んだミストがフィル
ター後方へ飛散したり、或いはフィルターが破損したり
して、フィルター寿命を著しく低下させるという問題が
あった。 【0004】本発明は上記従来技術の欠点を解決するも
のであり、海塩粒子を確実に捕捉でき、寿命の長い海塩
粒子除去フィルターを提供することを目的とする。 【0005】 【課題を解決するための手段】 本発明は、撥水性を有
する、気流上流側の粗濾材層と気流下流側の密濾材層と
の間に、高湿度時に吸湿性を有し、低湿度時に脱湿性を
有するカルボン酸ナトリウム基を導入した吸脱湿性繊維
を少なくとも30重量%以上含んでなる中間濾材層を設
けて成る。 【0006】 【0007】 【0008】中間濾材層中、吸脱湿性繊維が30重量%
に満たない場合、良好な吸脱湿効果が得られず、潮解に
よる圧力損失の急上昇を起こすため、好ましくない。 【0009】 【0010】上流側の粗濾材層は、ポリエステルナイロ
ン、ポリ塩化ビニル、アクリロニトリル、ポリクラール
繊維や、ポリエチレン、ポリプロピレン等の合成繊維を
単独又は混合して形成できるが、疎水性を有するポリオ
レフィン系繊維で構成した場合、撥水性がより優れるた
め、好ましい。 【0011】使用する繊維径は、12μ〜40μが望ま
しく、特に望ましい平均繊維径は、20〜30μであ
る。14μ以下では、繊維間の空隙が狭くなり、海塩粒
子が潮解した時に繊維間に水膜を形成して圧力損失が上
昇し、また粉塵保持の為の空隙が少なくなって粉塵の保
持性能が劣化するため、好ましくない。また、40μ以
上では、粗濾材層で捕集された塩分が潮解して液状化し
ても繊維表面で球状とならず、繊維表面にそって落下し
ないために中間濾材層に到達せず、しかも、液状の海塩
粒子が下流側に通過してしまう事になり、好ましくな
い。 【0012】また、濾材層への撥水性の付与は、市販さ
れているフッ素系やシリコン系撥水剤を繊維表面上にコ
ーティングすればよい。 【0013】下流側の密濾材層は、中高性能フィルター
の性能測定法として一般的に行なわれている比色法NB
S効率90%以上の捕集効率を有するものであり、ポリ
エステル等の合成繊維やガラス繊維を単独又は混合して
形成したものである。また、密濾材層も上流側の粗濾材
層と同じく撥水処理されており、市販のシリコン系やフ
ッ素系の撥水剤を使用する事によって可能である。 【0014】 本発明の前記粗濾材層としては、ポリオ
レフィン系樹脂に撥水剤を練り込んだ繊維を有する構成
が好適である。 【0015】 【作用】本発明に従えば、気流上流側の粗濾材層で捕集
された海塩粒子は、湿度が高くなると潮解を起こし液状
になるが、繊維が撥水性を有しており、しかも繊維密度
が粗く繊維間距離が大きい為、水膜が張らず、その殆ど
は繊維上に水滴状となって存在する。この水滴状となっ
た海塩粒子は、ある一定の大きさに成長すると撥水性の
繊維表面を伝わって下流側へ落下し、中間濾材層で捕捉
される。一方、粗濾材層で捕集されなかった粒径の細か
い海塩粒子は、潮解によって粒径が大きくなり、密濾材
層表面上において水滴状になって存在しているが、これ
らも中間濾材層により捕捉される。これにより、下流側
の密濾材層の表面上には水膜が形成されることがなく、
しかも中間濾材層は吸水後の水分放湿速度が早いため、
吸水後においても体積が膨潤することが無く、圧力損失
の急上昇を引き起こすことがない。 【0016】 【実施例】以下、本発明の実施例を詳細に説明する。 【0017】(実施例1)繊維径2dのポリエステル繊
維70重量%、繊維径5dのポリエステル繊維30重量
%よりなる混合繊維を目付60g/m2のウエブとし、塩ビ
系樹脂60g/m2で固定した後、フッ素系撥水剤を両面に
5g/m2ずつ散布し、総目付130g/m2、厚さ740μm
、密度0.176g/cm3 の上流側の粗濾材層1を作成し
た。 【0018】次に、カルボン酸ナトリウム基を導入した
吸脱湿性繊維(東洋紡績(株)製、N−38,3d×5
7mm)70重量%、芯鞘ポリエステルバインダー繊維
(ユニチカ(株)製、メルテイ4080,4d×51m
m)30重量%よりなる混合繊維をウエブとし、熱風処
理により熱接着して目付60g/m2、厚さ450μm 、密
度0.133g/cm3 の中間濾材層2を作成した。 【0019】次に、6μガラス繊維40重量%、0.3μ
マイクロガラス繊維20重量%、1dポリエステル繊維
40重量%でなる混合繊維をポリビニルアルコール−メ
ラミン系混合樹脂にてなる結合剤を用いて湿式法にて抄
紙し、目付50g/m2のウエブとした。さらにこのウエブ
に、粗濾材層1と同様両面に撥水処理を行ない、目付5
7g/m2、厚さ340μm 、密度0.167g/cm3 の下流側
の密濾材層3を作成した。 【0020】上記各濾材層を公知の接合方法により、図
1に示すように一体化し、実施例1の海塩粒子除去フィ
ルター4を形成した。 【0021】(実施例2)予めフッ素系撥水剤を練り込
んだ繊維径2dのポリプロピレン繊維70重量%、偏芯
もしくは鞘芯型の繊維径4dのポリプロピレンバインダ
ー繊維30重量%でなる混合繊維ウエブを熱風により熱
接着し、目付40g/m2、厚さ760μm 、密度0.053
g/cm3 の粗濾材層を作成した。 【0022】次に、実施例1で用いた吸脱湿性繊維70
重量%、繊維径3dのポリエステル繊維30重量%でな
る混合繊維を目付60g/m2のウエブとし、塩ビ系バイン
ダーを片面が10g/m2となるように両面に散布し、目付
80g/m2、厚さ440μm 、密度0.182g/cm3 の中間
濾材層を作成した。 【0023】次に、実施例1と同じ繊維を使用し、目付
60g/m2、厚さ350μm 、密度0.171g/cm3 の密濾
材層を作成した。次にこれら各層を実施例1と同様に一
体化し、実施例2の海塩粒子除去フィルターを形成し
た。 【0024】(比較例1)繊維径2dのポリエステル繊
維70重量%、繊維径3dのポリエステル繊維30重量
%でなる混合繊維を目付50g/m2のウエブとし、フッ素
系撥水剤を2g/m2付着した結合剤を上記ウエブに30g/
m2付着し、密度0.082g/cm3 、厚み1mm、総目付82
g/m2の上流側濾材層を作成した。 【0025】次に、繊維径2dの吸水性繊維40重量
%、繊維径3dのポリエステル繊維60重量%でなる混
合繊維を目付50g/m2のウエブとし、スルホン酸基を導
入したポリアクリロニトリル樹脂を含有する高分子結合
剤を15g/m2付着させ、密度0.093g/cm3 、厚み0.7
mm、総目付65g/m2の中間濾材層を作成した。 【0026】次に、直径9μのガラス繊維80重量%、
直径0.4μのガラス繊維20重量%でなる混合繊維を湿
式法により目付80g/m2のウエブとし、フッ素系撥水剤
を3g/m2付着したポリビニルアルコール−ポリアクリロ
ニトリル混合樹脂でなる結合剤を上記ウエブに10g/m2
付着し、密度0.186g/cm3 、厚み0.5mm、総目付93
g/m2の下流側濾材層を作成した。 【0027】上記各層を、公知の接合方法により積層し
て一体化し、比較例1の海塩粒子除去フィルターを形成
した。 【0028】(比較例2)フッ素系撥水剤の付着を除い
た以外は実施例1の粗濾材層と同様にして、目付70g/
m2、厚さ850μm 、密度0.082g/cm3 の上流側濾材
層を作成した。 【0029】次に、フッ素系撥水剤の付着を除いた以外
は実施例1の密濾材層と同様にして、目付65g/m2、厚
さ485μm 、密度0.134g/cm3 の下流側濾材層を作
成した。 【0030】上記各層の間に実施例1で作成した中間濾
材層を介在させて積層、一体化し、比較例2の海塩粒子
除去フィルターを形成した。 【0031】(比較例3)実施例1で形成した積層一体
化した海塩粒子除去フィルターの気流上流側と気流下流
側とが逆となるように形成したフィルターを、比較例3
の海塩粒子除去フィルターとした。 【0032】上記実施例1〜2および比較例1〜3で得
た海塩粒子除去フィルターをひだ折り加工し、それぞれ
図2に示すようなユニット型エアーフィルタ−(タテ6
10mm,ヨコ610mm,奥行き290mm)5を形成し
た。 【0033】次に、各フィルターについて、表1に示す
項目についての性能比較試験を行なった。この試験は、
JIS B9908による試験装置を用い、ユニット型エア
ーフィルターをセットし、風量を定格風量の56m3/min
に調整してフィルターの上流側より10μm 以下の超微
霧の塩分ミストを発生できる工業用加湿器を用いて、1
0%食塩水のミスト発生量が6l/hrとなる条件で行なっ
た。 【0034】表中、塩分捕集効率は、下流側のミストを
高性能濾紙に吸引捕集し、炎光分析により塩分量を算出
し、次式により求めた。 【0035】 【数1】 【0036】ここに、y ;捕集効率 C1 ;上流側塩分濃度(g/m3) C2 ;下流側塩分濃度(g/m3) である。 【0037】また塩分保持量は、図3に示すように塩分
ミストの供給量と圧力損失の変化をグラフにプロットし
た。 【0038】又、各フィルターについて、JIS B−99
08,形式2,JIS 比色法による中性能フィルター試験
も同時に行なった。以下、結果を以下表1に示す。 【0039】 【表1】【0040】図3および表1に示すデータから明らかな
ように、実施例1,2の海塩粒子除去フィルターを用い
たユニット型エアーフィルターは、比較例1,2,3の
ものに比べて、初期圧力損失が低いとともに、圧力損失
の上昇も遅く、しかも海塩粒子の保持容量が大きい優れ
たものである事が判る。 【0041】 【発明の効果】以上のように本発明の海塩粒子除去フィ
ルターは、捕捉した海塩粒子が潮解しても、圧力損失の
上昇を生じることがない。したがって、フィルターの破
損等の心配もなく、フィルターの高寿命化を達成するこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter for removing sea salt particles for preventing salt damage, which is installed in a building or a factory constructed on a coast. 2. Description of the Related Art Conventionally, as a filter for removing sea salt particles, as disclosed in Japanese Utility Model Publication No. 3-12332,
It is made of glass fiber and has a two-layer filter in which the fiber density on the air inflow side is coarse and the fiber density on the air outflow side is high, and has water repellency as shown in Japanese Utility Model Laid-Open No. 1-122824. Various filters having a two-layer structure in which a filter medium made of fibers is formed with a difference in density have been proposed. However, these have the drawback that sea salt particles that have become liquid due to deliquescence travel to the downstream side through dust other than sea salt particles. In order to solve this problem, the present applicant has disclosed in an earlier application (Japanese Patent Application No. 4-342374) that an intermediate layer containing water-absorbing fibers is formed between two water-repellent filter media, and liquefaction is performed. We have proposed a filter that can capture sea salt particles. [0003] However, since the water-absorbing fiber generally expands in volume due to water absorption, for example, when used under high humidity where deliquescence is likely to occur, the pressure loss of the filter rises sharply and the salt content increases. There is a problem that the mist containing splatters to the rear of the filter or the filter is broken, thereby significantly reducing the filter life. An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide a filter for removing sea salt particles which can reliably capture sea salt particles and has a long life. [0005] The present invention provides a water-repellent coarse filter medium layer upstream of an airflow and a dense filter medium layer downstream of an airflow.
And an intermediate filter medium layer containing at least 30% by weight or more of a moisture absorbing / desorbing fiber into which a sodium carboxylate group having hygroscopicity at high humidity and dehumidifying at low humidity is introduced. In the intermediate filter medium layer, 30% by weight of the moisture-absorbing and desorbing fibers is contained.
If the pressure is less than the above range, a good moisture absorption / desorption effect cannot be obtained, and a sudden increase in pressure loss due to deliquescence is not preferred. The upstream coarse filter medium layer can be formed by using polyester nylon, polyvinyl chloride, acrylonitrile, polyclar fiber, or synthetic fiber such as polyethylene or polypropylene alone or in combination. The use of fibers is preferable because the water repellency is more excellent. The fiber diameter used is desirably from 12 to 40 μm, and the particularly desirable average fiber diameter is from 20 to 30 μm. If it is 14μ or less, the gap between the fibers becomes narrow, a water film is formed between the fibers when the sea salt particles deliquesce, the pressure loss increases, and the gap for holding the dust decreases, and the dust holding performance decreases. It is not preferable because it deteriorates. In addition, if it is 40 μ or more, even if the salt collected in the coarse filter medium layer deliquesces and liquefies, it does not become spherical on the fiber surface, does not fall along the fiber surface, does not reach the intermediate filter medium layer, and Liquid sea salt particles will pass downstream, which is not preferable. In order to impart water repellency to the filter medium layer, a commercially available fluorine-based or silicon-based water repellent may be coated on the fiber surface. The dense filter medium layer on the downstream side is formed by a colorimetric method NB which is generally used as a method for measuring the performance of a medium-high performance filter.
It has a collection efficiency of 90% or more in S efficiency, and is formed by using a synthetic fiber such as polyester or glass fiber alone or by mixing. The dense filter medium layer is also subjected to a water-repellent treatment similarly to the upstream coarse filter medium layer, and can be realized by using a commercially available silicon-based or fluorine-based water-repellent agent. [0014] The coarse filter medium layer of the present invention is preferably configured to have a fiber in which a water repellent is kneaded into a polyolefin resin. According to the present invention, the sea salt particles collected by the coarse filter medium layer on the upstream side of the air stream deliquesce and become liquid when the humidity increases, but the fibers have water repellency. In addition, since the fiber density is low and the distance between the fibers is large, a water film is not formed, and almost all of the fibers are present in the form of water droplets on the fibers. When the sea salt particles in the form of water droplets grow to a certain size, they fall along the surface of the water-repellent fiber, fall to the downstream side, and are captured by the intermediate filter medium layer. On the other hand, sea salt particles having a small particle size that are not collected by the coarse filter medium layer have a large particle size due to deliquescence and are present as water droplets on the surface of the dense filter medium layer. Is captured by Thereby, a water film is not formed on the surface of the downstream dense filter medium layer,
Moreover, since the intermediate filter medium layer has a high moisture release rate after absorbing water,
Even after absorbing water, the volume does not swell, and the pressure loss does not suddenly increase. Embodiments of the present invention will be described below in detail. [0017] Fixed (Example 1) polyester fibers 70% by weight of the fiber diameter 2d, polyester fibers 30% by weight from the consisting mixed fiber of fiber diameter 5d and the web having a basis weight of 60 g / m 2, vinyl chloride resin 60 g / m 2 after the fluorine-based water repellent agent sprayed by 5 g / m 2 on both surfaces, the total basis weight of 130 g / m 2, a thickness of 740μm
And a coarse filter medium layer 1 on the upstream side having a density of 0.176 g / cm 3 . Next, a moisture absorbing / desorbing fiber having a sodium carboxylate group introduced therein (N-38, 3d × 5, manufactured by Toyobo Co., Ltd.)
7 mm) 70% by weight, core-sheath polyester binder fiber (manufactured by Unitika Ltd., melty 4080, 4d × 51m)
m) A mixed fiber consisting of 30% by weight was made into a web, and thermally bonded by hot air treatment to prepare an intermediate filter medium layer 2 having a basis weight of 60 g / m 2 , a thickness of 450 μm, and a density of 0.133 g / cm 3 . Next, 40% by weight of 6μ glass fiber, 0.3μ
A mixed fiber consisting of 20% by weight of micro glass fiber and 40% by weight of 1d polyester fiber was made into paper by a wet method using a binder made of a polyvinyl alcohol-melamine-based mixed resin to obtain a web having a basis weight of 50 g / m 2 . Further, the web was subjected to a water-repellent treatment on both sides in the same manner as the coarse filter medium layer 1 to obtain a basis weight of 5%.
7 g / m 2, was prepared a thickness 340 .mu.m, dense filter layer 3 on the downstream side of the density of 0.167 g / cm 3. The respective filter media layers were integrated by a known joining method as shown in FIG. 1 to form a sea salt particle removal filter 4 of Example 1. (Example 2) A mixed fiber web composed of 70% by weight of a polypropylene fiber having a diameter of 2d and 30% by weight of an eccentric or sheath-core type polypropylene binder fiber having a diameter of 4d in which a fluorine-based water repellent was previously kneaded. Are bonded by hot air, and have a basis weight of 40 g / m 2 , a thickness of 760 μm, and a density of 0.053.
A coarse filter medium layer of g / cm 3 was prepared. Next, the moisture absorbing / desorbing fiber 70 used in Example 1 was used.
A mixed fiber composed of 30% by weight of a polyester fiber having a fiber diameter of 3d and a fiber diameter of 3d was made into a web having a basis weight of 60 g / m 2 , and a PVC binder was sprayed on both sides so that one side became 10 g / m 2, and a basis weight of 80 g / m 2. An intermediate filter medium layer having a thickness of 440 μm and a density of 0.182 g / cm 3 was prepared. Next, using the same fibers as in Example 1, a dense filter medium layer having a basis weight of 60 g / m 2 , a thickness of 350 μm, and a density of 0.171 g / cm 3 was prepared. Next, these layers were integrated in the same manner as in Example 1 to form the sea salt particle removal filter of Example 2. [0024] (Comparative Example 1) polyester fibers 70% by weight of the fiber diameter 2d, a mixed fiber made of polyester fibers 30% by weight of the fiber diameter 3d the web having a mass per unit area of 50 g / m 2, 2 g of a fluorine-based water repellent / m (2) 30 g /
m 2 adheres, density 0.082 g / cm 3, thickness 1 mm, the total basis weight 82
An upstream filter medium layer of g / m 2 was prepared. Next, a mixed fiber consisting of 40% by weight of water-absorbent fiber having a fiber diameter of 2d and 60% by weight of polyester fiber having a fiber diameter of 3d was made into a web having a basis weight of 50 g / m 2 , and a polyacrylonitrile resin having a sulfonic acid group introduced therein was used. 15 g / m 2 of the polymer binder contained was applied, the density was 0.093 g / cm 3 , and the thickness was 0.7.
mm, an intermediate filter medium layer having a total basis weight of 65 g / m 2 was prepared. Next, 80% by weight of glass fiber having a diameter of 9 μm,
A binder made of a mixed resin of polyvinyl alcohol and polyacrylonitrile, to which a mixed fiber comprising 20% by weight of glass fiber having a diameter of 0.4 μm is made into a web having a basis weight of 80 g / m 2 by a wet method, and a fluorine-based water repellent is adhered to 3 g / m 2. To the above web at 10 g / m 2
Adhering, density 0.186g / cm 3 , thickness 0.5mm, total weight 93
A downstream filter medium layer of g / m 2 was prepared. The above layers were laminated and integrated by a known bonding method to form a sea salt particle removal filter of Comparative Example 1. (Comparative Example 2) A basis weight of 70 g / ml was obtained in the same manner as in the coarse filter medium layer of Example 1 except that the adhesion of the fluorine-based water repellent was removed.
An upstream filter medium layer having an m 2 thickness of 850 μm and a density of 0.082 g / cm 3 was prepared. Next, in the same manner as in the dense filter medium layer of Example 1 except that the adhesion of the fluorine-based water repellent was removed, the downstream side having a basis weight of 65 g / m 2 , a thickness of 485 μm, and a density of 0.134 g / cm 3 was used. A filter medium layer was formed. A filter for removing sea salt particles of Comparative Example 2 was formed by laminating and integrating the intermediate filter medium layer prepared in Example 1 between the respective layers. (Comparative Example 3) A filter formed so that the upstream side and the downstream side of the airflow of the laminated and integrated sea salt particle removal filter formed in Example 1 are reversed is shown in Comparative Example 3.
Was used as a sea salt particle removal filter. The sea salt particle removal filters obtained in the above Examples 1 and 2 and Comparative Examples 1 to 3 were pleated and unit-type air filters (vertical 6) as shown in FIG.
10 mm, width 610 mm, depth 290 mm) 5 were formed. Next, for each filter, a performance comparison test was performed on the items shown in Table 1. This exam is
Using a test device according to JIS B9908, set a unit type air filter, and set the air volume to the rated air volume of 56 m 3 / min.
Using an industrial humidifier capable of generating a salt mist of ultra-fine fog of 10 μm or less from the upstream side of the filter.
The test was performed under the condition that the mist generation amount of 0% saline was 6 l / hr. In the table, the salt collection efficiency was obtained by suctioning and collecting the mist on the downstream side on a high-performance filter paper, calculating the salt content by flame light analysis, and using the following equation. ## EQU1 ## Here, y: collection efficiency C 1 ; upstream salt concentration (g / m 3 ) C 2 ; downstream salt concentration (g / m 3 ) As for the amount of retained salt, as shown in FIG. 3, the change in the supply amount of salt mist and the change in pressure loss were plotted on a graph. For each filter, JIS B-99
08, Type 2, medium performance filter test by JIS colorimetric method was also performed at the same time. The results are shown in Table 1 below. [Table 1] As is apparent from the data shown in FIG. 3 and Table 1, the unit-type air filters using the sea salt particle removing filters of Examples 1 and 2 are different from those of Comparative Examples 1, 2 and 3. It can be seen that the initial pressure loss is low, the pressure loss rises slowly, and the holding capacity of sea salt particles is large. As described above, the sea salt particle removing filter of the present invention does not cause an increase in pressure loss even if the captured sea salt particles deliquesce. Therefore, the service life of the filter can be extended without worrying about the breakage of the filter.

【図面の簡単な説明】 【図1】本発明の一実施例である海塩粒子除去フィルタ
ーの概略構成図である。 【図2】本発明の海塩粒子除去フィルターを用いたユニ
ット型エアーフィルターの斜視図である。 【図3】実施例および比較例の海塩粒子除去フィルター
の圧力損失と塩分供給量の関係を示す曲線図である。 【符号の説明】 1 粗濾材層 2 中間濾材層 3 密濾材層 4 海塩粒子除去フィルター 5 ユニット型エアーフィルター
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a sea salt particle removal filter according to one embodiment of the present invention. FIG. 2 is a perspective view of a unit-type air filter using the sea salt particle removal filter of the present invention. FIG. 3 is a curve diagram showing a relationship between a pressure loss and a supply amount of a salt in the sea salt particle removing filters of the example and the comparative example. [Description of Signs] 1 Coarse filter medium layer 2 Intermediate filter medium layer 3 Dense filter medium layer 4 Sea salt particle removal filter 5 Unit type air filter

Claims (1)

(57)【特許請求の範囲】 【請求項1】 撥水性を有する、気流上流側の粗濾材層
と気流下流側の密濾材層との間に、高湿度時に吸湿性を
有し、低湿度時に脱湿性を有するカルボン酸ナトリウム
基を導入した吸脱湿性繊維を少なくとも30重量%以上
含んでなる中間濾材層を設けたことを特徴とする海塩粒
子除去フィルター。
(57) [Claims 1] A coarse filter medium layer on the upstream side of an air stream having water repellency
Comprising at least 30% by weight or more of a moisture-absorbing and desorbing fiber into which a sodium carboxylate group having a hygroscopic property at a high humidity and having a dehumidifying property at a low humidity is introduced between the air filter and the dense filter medium layer on the downstream side of the airflow. A sea salt particle removal filter comprising a filter medium layer.
JP29919493A 1993-11-30 1993-11-30 Sea salt particle removal filter Expired - Fee Related JP3519440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29919493A JP3519440B2 (en) 1993-11-30 1993-11-30 Sea salt particle removal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29919493A JP3519440B2 (en) 1993-11-30 1993-11-30 Sea salt particle removal filter

Publications (2)

Publication Number Publication Date
JPH07148406A JPH07148406A (en) 1995-06-13
JP3519440B2 true JP3519440B2 (en) 2004-04-12

Family

ID=17869362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29919493A Expired - Fee Related JP3519440B2 (en) 1993-11-30 1993-11-30 Sea salt particle removal filter

Country Status (1)

Country Link
JP (1) JP3519440B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096726B2 (en) * 2005-11-07 2012-12-12 三菱製紙株式会社 Composite filter media
JP2008049333A (en) * 2006-07-27 2008-03-06 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
JP6895829B2 (en) * 2017-07-10 2021-06-30 タイガースポリマー株式会社 Non-woven filter material and its manufacturing method

Also Published As

Publication number Publication date
JPH07148406A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
JP3259782B2 (en) Filter media for air purification
CN101983097B (en) Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
US7063733B2 (en) Filter member
US7501003B2 (en) Composite filter media
JP4944540B2 (en) FILTER ELEMENT, MANUFACTURING METHOD THEREOF, AND USE METHOD
CA2208488C (en) High capacity filter media
EP1855780B1 (en) Composite filter media
JP5334364B2 (en) Gas removal filter medium, composite filter and filter element
JP2012125714A (en) Filter material for air filter and air filter
JP3519440B2 (en) Sea salt particle removal filter
JP3968613B2 (en) Air filter media and air filter
JP3114079B2 (en) Filter material made of non-woven fabric for removing salt and air filter using the same
JP3164159B2 (en) Electret air filter for removing sea salt particles
JP2002001027A (en) Multilayered dust collecting filter
JPH04176310A (en) Honeycomb electret filter
JP2000153122A (en) Filter unit
JP3242208B2 (en) Filter media for air cleaner
JP2003210921A (en) Thin filter
JPH0663114U (en) Ventilation fan filter
RU2464067C2 (en) Method of air cleaning from aerosols in enclosed spaces
RU1792339C (en) Filtration material for trapping fume mainly of ammonium salts
JPH0515485B2 (en)
JP2013220287A (en) Dust-collecting and deodorizing air filter unit for air cleaner
JPH11188212A (en) Bornless filter
JPH11290623A (en) Filter medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

LAPS Cancellation because of no payment of annual fees