JP3518991B2 - Combustion furnace - Google Patents

Combustion furnace

Info

Publication number
JP3518991B2
JP3518991B2 JP13856798A JP13856798A JP3518991B2 JP 3518991 B2 JP3518991 B2 JP 3518991B2 JP 13856798 A JP13856798 A JP 13856798A JP 13856798 A JP13856798 A JP 13856798A JP 3518991 B2 JP3518991 B2 JP 3518991B2
Authority
JP
Japan
Prior art keywords
furnace
combustion
heat
measurement
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13856798A
Other languages
Japanese (ja)
Other versions
JPH11325436A (en
Inventor
仁志 稲光
大偉 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP13856798A priority Critical patent/JP3518991B2/en
Publication of JPH11325436A publication Critical patent/JPH11325436A/en
Application granted granted Critical
Publication of JP3518991B2 publication Critical patent/JP3518991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はごみ焼却炉やボイラ
等の燃焼炉に関する。
TECHNICAL FIELD The present invention relates to a combustion furnace such as a refuse incinerator or a boiler.

【0002】[0002]

【従来の技術】従来、燃焼炉には炉本体に窓を形成して
あり、例えば炉内に供給された燃焼用空気が不完全燃焼
ガスに十分混合しているか否か等の燃焼状態を観測者が
窓から観測するようになっていた。
2. Description of the Related Art Conventionally, a combustion furnace has a window formed in the furnace body, and the combustion state such as whether or not the combustion air supplied into the furnace is sufficiently mixed with incomplete combustion gas is observed. People were observing through the window.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術によれ
ば、燃焼状態を観測者が観測していたために観測結果が
不正確で、その観測結果に基づく燃焼用空気の供給量の
変更調節などの制御を適切に行うことができず、完全燃
焼させにくかった。
According to the above-mentioned conventional technique, the observation result is inaccurate because the observer observes the combustion state, and the change of the supply amount of the combustion air based on the observation result is adjusted. Could not be properly controlled and it was difficult to completely burn.

【0004】本発明は上記実情に鑑みてなされたもの
で、その目的は、完全燃焼させやすい燃焼炉を提供する
点にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a combustion furnace in which complete combustion is easy.

【0005】[0005]

【課題を解決するための手段】請求項1による発明の構
成・作用・効果は次の通りである。
The constitution, operation and effect of the invention according to claim 1 are as follows.

【0006】 [構成] 炉本体の外側にレーザ流速計を配設し、前記炉本体に対
する燃焼用空気の送風路に、レーザ流速計用の粒子供給
装置の供給口を臨ませて、前記粒子供給装置からの粒子
が前記燃焼用空気により炉内に運ばれるとともに前記炉
内で燃焼ガスに流されるよう構成し、前記炉本体に、前
記レーザ流速計による前記燃焼ガスの流速の測定を許容
する測定窓を形成してあり、前記測定窓を前記炉本体に
複数形成し、前記測定窓に臨ませる前記レーザ流速計の
プローブを支持部に位置変更自在に支持させて、前記複
数の測定窓に各別に対応可能に構成してある。
[Structure] A laser velocity meter is arranged outside the furnace body, and a supply port of a particle supply device for the laser velocity meter is faced to an air blowing path of combustion air for the furnace body to supply the particles. A measurement that allows particles from the device to be carried into the furnace by the combustion air and to flow into the combustion gas in the furnace, and to allow the furnace body to measure the flow rate of the combustion gas with the laser anemometer. A window is formed, a plurality of the measurement windows are formed in the furnace main body, the probe of the laser anemometer facing the measurement window is supported on a support portion so that the probe can be repositioned, and each of the plurality of measurement windows is formed. It is configured so that it can be handled separately.

【0007】[作用] [イ]炉本体に対する燃焼用空気の送風路にレーザ流速
計用の粒子供給装置から粒子を供給する。この供給によ
り粒子が前記燃焼用空気で炉内に運ばれて炉内の燃焼ガ
スに流されるようになる。
[Operation] [a] Particles are supplied from the particle supply device for the laser anemometer to the air passage for the combustion air to the furnace body. By this supply, the particles are carried into the furnace by the combustion air and flow into the combustion gas in the furnace.

【0008】[ロ]一方、炉本体の外側に配置したレー
ザ流速計により炉本体の測定窓を通してレーザ光を炉内
に投射する。詳しくは、例えばレーザ光源からの平行な
2本のレーザビームをレーザ流速計のプローブ内のフロ
ントレンズでその焦点に結ばせ、その交点に干渉縞より
なる測定体積を炉内に位置する状態に形成する。
[B] On the other hand, laser light is projected into the furnace through a measurement window of the furnace body by a laser anemometer arranged outside the furnace body. Specifically, for example, two parallel laser beams from a laser light source are focused on the focal point by a front lens in a probe of a laser anemometer, and a measurement volume composed of interference fringes is formed at a crossing point in a state of being located in a furnace. To do.

【0009】[ハ]前記粒子が前記干渉縞を通過すると
レーザ光が散乱するので、その速度情報を含む散乱光を
前記測定窓を通してレーザ流速計の光検出部で検出し、
その検出情報に基づいて粒子の速度すなわち燃焼ガスの
流速を求める。このように請求項1の構成によれば、高
温である燃焼ガスの流速を測定できるようになる。
[C] Since the laser light is scattered when the particles pass through the interference fringes, scattered light containing velocity information thereof is detected by the photodetector of the laser anemometer through the measurement window.
The velocity of the particles, that is, the velocity of the combustion gas is obtained based on the detection information. Thus, according to the structure of claim 1, the flow velocity of the combustion gas having a high temperature can be measured.

【0010】[ニ]ごみ焼却炉のような大きな炉では粒
子供給装置から供給する粒子が多数必要となり、それだ
け粒子搬送用の空気も多くなるため、この種の炉に粒子
供給用の専用の空気路を設けた構造では、前記空気路か
ら送られる空気で燃焼ガスの流速が変わって、燃焼ガス
の流速を正しく求めることが困難になる不具合がある
が、請求項1の構成では、炉本体に対する燃焼用空気の
既設の送風路に前記粒子供給装置の供給口を臨ませて、
前記燃焼用空気により炉内に粒子を送り込むから、上記
の不具合を回避できるとともに、前記専用の空気路を形
成するための費用が不要になる。
[D] In a large furnace such as a refuse incinerator, a large number of particles are required to be supplied from the particle supply device, and the amount of air for particle transfer is increased accordingly. Therefore, a dedicated air for particle supply is supplied to this kind of furnace. In the structure provided with the passage, there is a problem that the flow velocity of the combustion gas is changed by the air sent from the air passage, which makes it difficult to accurately obtain the flow velocity of the combustion gas. With the supply port of the particle supply device facing the existing air flow path for combustion air,
Since the particles are sent into the furnace by the combustion air, the above problems can be avoided and the cost for forming the dedicated air passage is not necessary.

【0011】[ホ]前記作用[イ]〜[ニ]により炉内
の燃焼ガスの流速を測定できて、例えば炉内に供給され
た燃焼用空気が不完全燃焼ガスに十分混合しているか否
か等の炉内の燃焼状態を正しく把握でき、前記流速の測
定結果に基づく燃焼用空気の供給量の変更調節などの制
御を適切に行うことができることに加えて、レーザ流速
計のプローブを位置変更させることで炉本体の複数の測
定窓に対応できるから、炉内の広い範囲にわたる部分の
燃焼ガスの流速を測定できる。
[E] By the above-mentioned actions [A] to [D], it is possible to measure the flow velocity of the combustion gas in the furnace, and for example, whether the combustion air supplied into the furnace is sufficiently mixed with the incomplete combustion gas. In addition to being able to correctly grasp the combustion state in the furnace, such as changing the supply amount of combustion air based on the measurement result of the flow velocity, it is possible to appropriately control the probe of the laser velocity meter. By changing it, it is possible to correspond to a plurality of measurement windows of the furnace body, so that it is possible to measure the flow velocity of the combustion gas over a wide range in the furnace.

【0012】 [効果] 従って、完全燃焼させやすい燃焼炉を、製作コストを低
廉化した状態で提供することができた。
[Effects] Therefore, it was possible to provide a combustion furnace in which the complete combustion is facilitated at a low manufacturing cost.

【0013】また、例えば炉内の形状や燃焼用空気の供
給条件により燃焼ガスがどのような流速になるかを解明
できて、性能のよい燃焼炉を設計しやすくなったことに
加えて、炉内の広い範囲にわたる部分の燃焼状態を正し
く把握できて、より完全燃焼させやすい燃焼炉を提供す
ることができるようになった。
In addition to the fact that the flow velocity of the combustion gas can be clarified depending on the shape of the furnace and the supply conditions of the combustion air, for example, it becomes easy to design a combustion furnace with good performance. It has become possible to provide a combustion furnace in which it is possible to correctly understand the combustion state of a wide range of the inside and to more easily complete combustion.

【0014】請求項2による発明の構成・作用・効果は
次の通りである。
The structure, action and effect of the invention according to claim 2 are as follows.

【0015】 [構成] 炉本体の外側にレーザ流速計を配設し、前記炉本体に対
する燃焼対象物の供給路に、レーザ流速計用の粒子供給
装置の供給口を臨ませて、前記粒子供給装置からの粒子
が前記供給路を通って炉内に入り込むとともに前記炉内
で燃焼ガスに流されるよう構成し、前記炉本体に、前記
レーザ流速計による前記燃焼ガスの流速の測定を許容す
る測定窓を形成してあり、前記測定窓を前記炉本体に複
数形成し、前記測定窓に臨ませる前記レーザ流速計のプ
ローブを支持部に位置変更自在に支持させて、前記複数
の測定窓に各別に対応可能に構成してある。
[Structure] A laser velocity meter is provided outside the furnace body, and a supply port of a particle feeder for a laser velocity meter is made to face a supply path of a combustion object to the furnace body to supply the particles. A measurement that allows the particles from the device to enter the furnace through the supply path and to be flown to the combustion gas in the furnace, and to allow the furnace body to measure the flow velocity of the combustion gas by the laser anemometer. A window is formed, a plurality of the measurement windows are formed in the furnace main body, the probe of the laser anemometer facing the measurement window is supported on a support portion so that the probe can be repositioned, and each of the plurality of measurement windows is formed. It is configured so that it can be handled separately.

【0016】[作用] [ヘ]炉本体に対する燃焼対象物の供給路に、レーザ流
速計用の粒子供給装置が粒子を供給する。この供給によ
り粒子が前記供給路を通って炉内に入り込み、炉内の燃
焼ガスに流されるようになる。図1,図2に示すような
ごみ焼却炉における縦形の供給路としてのホッパー1で
は、粒子は自重で燃焼対象物であるごみとともに炉内に
入り込む。
[Operation] [f] The particle supply device for the laser anemometer supplies particles to the supply path of the combustion object to the furnace body. By this supply, the particles enter the furnace through the supply passage and are made to flow into the combustion gas in the furnace. In the hopper 1 as a vertical supply path in the refuse incinerator as shown in FIGS. 1 and 2, the particles enter the furnace together with the refuse, which is an object of combustion, by their own weight.

【0017】[ト]一方、炉本体の外側に配置したレー
ザ流速計により炉本体の測定窓を通してレーザ光を炉内
に投射する。詳しくは、例えばレーザ光源からの平行な
2本のレーザビームをレーザ流速計のプローブ内のフロ
ントレンズでその焦点に結ばせ、その交点に干渉縞より
なる測定体積を炉内に位置する状態に形成する。
[G] On the other hand, laser light is projected through the measurement window of the furnace body into the furnace by a laser anemometer arranged outside the furnace body. Specifically, for example, two parallel laser beams from a laser light source are focused on the focal point by a front lens in a probe of a laser anemometer, and a measurement volume composed of interference fringes is formed at a crossing point in a state of being located in a furnace. To do.

【0018】[チ]前記粒子が前記干渉縞を通過すると
レーザ光が散乱するので、その速度情報を含む散乱光を
前記測定窓を通してレーザ流速計の光検出部で検出し、
その検出情報に基づいて粒子の速度すなわち燃焼ガスの
流速を求める。つまり請求項2の構成によれば、高温で
ある燃焼ガスの流速を測定できるようになる。
[H] Since the laser light is scattered when the particles pass through the interference fringes, scattered light including velocity information thereof is detected by the photodetector of the laser anemometer through the measurement window.
The velocity of the particles, that is, the velocity of the combustion gas is obtained based on the detection information. That is, according to the configuration of claim 2, it becomes possible to measure the flow velocity of the combustion gas having a high temperature.

【0019】[リ]ごみ焼却炉のような大きな炉では粒
子供給装置から供給する粒子が多数必要となり、それだ
け粒子搬送用の空気も多くなるため、この種の炉に粒子
供給用の専用の空気路を設けた構造では、前記空気路か
ら送られる空気で燃焼ガスの流速が変わって、燃焼ガス
の流速を正しく求めることが困難になる不具合がある
が、請求項2の構成では、炉本体に対する燃焼対象物の
既設の供給路に前記粒子供給装置の供給口を臨ませて炉
内に粒子を送り込むから、上記の不具合を回避できると
ともに、前記専用の空気路を形成するための費用が不要
になる。
[Li] In a large furnace such as a refuse incinerator, a large number of particles are required to be supplied from the particle supply device, and the amount of air for conveying particles is increased accordingly. Therefore, a dedicated air for supplying particles to this type of furnace is used. In the structure provided with the passage, there is a problem that the flow velocity of the combustion gas is changed by the air sent from the air passage, which makes it difficult to accurately obtain the flow velocity of the combustion gas. Since the particles are fed into the furnace by facing the supply port of the particle supply device to the existing supply path of the combustion object, the above problems can be avoided, and the cost for forming the dedicated air path is unnecessary. Become.

【0020】[ヌ]前記作用[ヘ]〜[リ]により炉内
の燃焼ガスの流速を測定できて、例えば炉内に供給され
た燃焼用空気が不完全燃焼ガスに十分混合しているか否
か等の炉内の燃焼状態を正しく把握でき、前記流速の測
定結果に基づく燃焼用空気の供給量の変更調節などの制
御を適切に行うことができる。
[E] The flow rate of the combustion gas in the furnace can be measured by the above-mentioned actions [F] to [R], and whether the combustion air supplied into the furnace is sufficiently mixed with the incomplete combustion gas, for example. It is possible to correctly grasp the combustion state in the furnace such as the above, and to appropriately perform control such as change adjustment of the supply amount of combustion air based on the measurement result of the flow velocity.

【0021】[ル]図1,図2に示すようなごみ焼却炉
では、RDFと呼ばれるごみ固形化燃料を燃焼させて乾
燥ストーカ3Aに1次燃焼空気を供給しない場合がある
が、このような場合であっても供給路としてのホッパー
1に粒子を供給することで、粒子とごみを混合して炉内
に供給することができ、乾燥ストーカ3A上の燃焼ガス
の流速を測定できることに加えて、レーザ流速計のプロ
ーブを位置変更させることで炉本体の複数の測定窓に対
応できるから、炉内の広い範囲にわたる部分の燃焼ガス
の流速を測定できる。
[L] In the refuse incinerator as shown in FIGS. 1 and 2, there is a case where refuse solidified fuel called RDF is burned and the primary combustion air is not supplied to the dry stoker 3A. In such a case, However, by supplying particles to the hopper 1 as a supply path, the particles and dust can be mixed and supplied into the furnace, and in addition to being able to measure the flow rate of the combustion gas on the dry stoker 3A, By changing the position of the probe of the laser anemometer, it is possible to deal with a plurality of measurement windows of the furnace body, so that the flow rate of the combustion gas over a wide range in the furnace can be measured.

【0022】 [効果] 従って、完全燃焼させやすい燃焼炉を、製作コストを低
廉化した状態で提供することができた。
[Effects] Therefore, it was possible to provide a combustion furnace in which the complete combustion is facilitated at a low manufacturing cost.

【0023】また、例えば炉内の形状や燃焼用空気の供
給条件により燃焼ガスがどのような流速になるかを解明
できて、性能のよい燃焼炉を設計しやすくなった。さら
に、燃焼炉としてのごみ焼却炉においては、1次燃焼空
気を乾燥ストーカに1次燃焼空気を入れない場合でも、
燃焼ガスの流速を測定できて、上記の効果を奏すること
ができるようになったことに加えて、炉内の広い範囲に
わたる部分の燃焼状態を正しく把握できて、より完全燃
焼させやすい燃焼炉を提供することができるようになっ
た。
Further, for example, the flow velocity of the combustion gas can be clarified depending on the shape of the inside of the furnace and the supply condition of the combustion air, and it becomes easy to design a combustion furnace with good performance. Furthermore, in the refuse incinerator as a combustion furnace, even if the primary combustion air is not put into the drying stoker,
In addition to being able to measure the flow velocity of the combustion gas and being able to achieve the above effects, it is also possible to correctly understand the combustion state of a wide range of parts in the furnace and It is now possible to provide.

【0024】請求項3による発明の構成・作用・効果は
次の通りである。
The structure, operation, and effect of the invention according to claim 3 are as follows.

【0025】 [構成] 請求項1又は2による発明の構成において、前記支持部
は、前記プローブを前記測定窓が並ぶ方向と前記測定窓
の軸芯方向とに位置変更自在に支持する第1支持体と、
前記第1支持体を前記測定窓が並ぶ方向に位置変更自在
に支持する位置固定状態の第2支持体とから構成してあ
る。
[Structure] In the structure of the invention according to claim 1 or 2, the support portion is a first support for supporting the probe so that the position of the probe can be changed in the direction in which the measurement windows are arranged and in the axial direction of the measurement window. Body and
The second support body is in a position-fixed state and supports the first support body so that the position of the first support body can be changed in the direction in which the measurement windows are arranged.

【0026】[作用] 請求項1又は2の構成による作用と同様の作用を奏する
ことができるのに加え、次の作用を奏することができる
(図2,図3参照)。
[Operation] In addition to the same operation as the operation according to the first or second aspect, the following operation can be performed (see FIGS. 2 and 3).

【0027】プローブ14を目標の測定窓12に臨ませ
る場合、プローブ14と第1支持体19とを位置固定状
態の第2支持体20に対して一体に位置変更させて、そ
のプローブ14を前記測定窓12の近くに位置させ、次
に、プローブ14を第1支持体19に対して位置変更さ
せて測定窓12に臨ませる。
When the probe 14 is exposed to the target measurement window 12, the probe 14 and the first supporting body 19 are integrally repositioned with respect to the second supporting body 20 in a fixed state, and the probe 14 is moved to the above-mentioned position. The probe 14 is positioned near the measurement window 12, and then the probe 14 is repositioned with respect to the first support 19 to face the measurement window 12.

【0028】つまり、プローブ14をあらかじめ大まか
に位置変更調節してから細かく位置変更調節する。この
測定窓12からの測定を終えて近くの別の測定窓12に
プローブ14を臨ませる場合、あるいは最初から近くの
測定窓12にプローブ14を臨ませる場合は、プローブ
14と第1支持体19とを第2支持体20に対して位置
変更させることなく、プローブ14を第1支持体19に
対して位置変更させて臨ませる。
That is, the position of the probe 14 is roughly adjusted and then finely adjusted. When the probe 14 is exposed to another nearby measurement window 12 after the measurement from this measurement window 12 is completed, or when the probe 14 is exposed to the measurement window 12 near from the beginning, the probe 14 and the first support 19 are placed. The position of the probe 14 is changed with respect to the first support 19 to face the first support 19 without changing the positions of and with respect to the second support 20.

【0029】このように、プローブ14をあらかじめ大
まかに位置変更調節してから細かく位置変更調節する構
造のものでは、例えば、互いに近くにある複数の測定窓
12を各別に測定する場合、上記のようにプローブ14
と第1支持体19とを第2支持体20に対して一体に位
置変更させる必要がなくなる。
As described above, in the structure in which the position of the probe 14 is roughly adjusted in advance and then finely adjusted, for example, when a plurality of measurement windows 12 close to each other are individually measured, Probe 14
It is not necessary to change the position of the first support 19 and the first support 19 integrally with the second support 20.

【0030】測定窓12に臨ませた後、プローブ14を
測定窓12の軸芯方向に移動させると、粒子が通過する
前記干渉縞が前記軸芯方向で位置変更するから、前記軸
芯方向の複数箇所の燃焼ガスの流速を測定できる(図3
参照)。
When the probe 14 is moved in the axial direction of the measuring window 12 after facing the measuring window 12, the interference fringes through which the particles pass are repositioned in the axial direction. The flow velocity of combustion gas at multiple points can be measured (Fig. 3
reference).

【0031】 [効果] 従って、請求項1又は2の構成による効果と同様の効果
を奏することができるのに加え、炉内の広い範囲にわた
る部分の燃焼状態を正しく把握できて、より完全燃焼さ
せやすい燃焼炉を提供することができるようになった。
また、互いに近くにある複数の測定窓12を各別に測定
する場合、プローブ14と第1支持体19とを第2支持
体20に対して一体に位置変更させる必要がなくなるか
ら、動力を節約できるようになった。
[Effect] Therefore, in addition to the same effect as the effect according to the first or second aspect of the invention, in addition to being able to correctly grasp the combustion state of a wide area in the furnace, more complete combustion can be achieved. It became possible to provide an easy combustion furnace.
Further, when separately measuring a plurality of measurement windows 12 that are close to each other, it is not necessary to integrally change the position of the probe 14 and the first support 19 with respect to the second support 20, so that power can be saved. It became so.

【0032】請求項4による発明の構成・作用・効果は
次の通りである。
The structure, operation, and effect of the invention according to claim 4 are as follows.

【0033】 [構成] 請求項1,2,3のいずれか一つによる発明の構成にお
いて、前記測定窓を構成するに、前記炉本体に形成した
開口部に、光を透過可能な耐熱部材を嵌め込むととも
に、前記耐熱部材よりも前記炉本体の内方側に、前記耐
熱部材を前記炉内の熱から保護する耐熱保護部材を、非
測定時用の保護作用姿勢と、測定時用の非保護作用姿勢
とに切り換え自在に設け、光の透過を妨げる物質が前記
耐熱部材に付着するのを阻止する阻止手段を設けてあ
る。
[Structure] In the structure of the present invention according to any one of claims 1, 2 and 3, in forming the measurement window, a heat-resistant member capable of transmitting light is provided in an opening formed in the furnace body. Along with fitting, a heat-resistant protective member that protects the heat-resistant member from the heat in the furnace on the inner side of the furnace body with respect to the heat-resistant member, a protective action posture for non-measurement, and a non-measurement A protective means is provided so as to be switchable between the protective posture and a blocking means for blocking a substance that blocks light transmission from adhering to the heat resistant member.

【0034】[作用] 請求項1,2,3のいずれか一つの構成による作用と同
様の作用を奏することができるのに加え、次の作用を奏
することができる。
[Operation] In addition to the same operation as the operation by the configuration according to any one of claims 1, 2 and 3, the following operation can be performed.

【0035】燃焼ガスの流速を測定するときは、耐熱保
護部材を前記非保護作用姿勢に設定してからレーザ光を
投射する。耐熱部材は光を透過可能であり、しかも、炉
本体の開口部に嵌め込んだ耐熱部材に対して前記阻止手
段を設けて、光の透過を妨げるすすや水蒸気等の物質が
耐熱部材に付着するのを阻止するようにしてあるから、
レーザ光を耐熱部材を透過させて炉内に到達させること
ができるとともに、前述の散乱光を耐熱部材を通して光
検出部で検出できて、燃焼ガスの流速を求めることがで
きる。
When measuring the flow velocity of the combustion gas, the heat-resistant protective member is set in the non-protective working posture and then the laser beam is projected. The heat-resistant member is permeable to light, and the blocking means is provided for the heat-resistant member fitted in the opening of the furnace body, so that substances such as soot and water vapor that impede light transmission adhere to the heat-resistant member. I'm trying to prevent
The laser light can be transmitted through the heat resistant member to reach the inside of the furnace, and the scattered light can be detected by the photodetector through the heat resistant member, and the flow velocity of the combustion gas can be obtained.

【0036】燃焼ガスの流速を測定しないときは、耐熱
保護部材を前記保護作用姿勢に設定しておく。これによ
り前記耐熱部材を炉内の熱から保護できる。
When the flow velocity of the combustion gas is not measured, the heat resistant protective member is set in the protective action posture. Thereby, the heat resistant member can be protected from heat in the furnace.

【0037】上記のようにして燃焼ガスの流速を測定す
るから、例えば測定窓として炉本体に開口部を形成した
だけの構造に比べると、炉内圧と大気圧との差が大きい
場合でも燃焼ガスと大気との出入りがないという利点が
ある。
Since the flow velocity of the combustion gas is measured as described above, even if the difference between the furnace pressure and the atmospheric pressure is large, the combustion gas is larger than the structure in which the opening is formed in the furnace body as a measurement window, for example. And there is an advantage that there is no access to the atmosphere.

【0038】 [効果] 従って、燃焼ガスと大気との出入りに起因する炉内の燃
焼の不安定化を回避できながら、請求項1,2,3のい
ずれか一つの構成による効果と同様の効果を奏すること
ができるようになった。また、燃焼ガスの流速を測定す
るための炉本体の測定窓の耐久性を向上させることがで
きた。
[Effect] Therefore, while avoiding the instability of the combustion in the furnace due to the inflow and outflow of the combustion gas and the atmosphere, the same effect as that of the configuration according to any one of claims 1, 2 and 3. You can play. Further, the durability of the measurement window of the furnace body for measuring the flow velocity of the combustion gas could be improved.

【0039】請求項5による発明の構成・作用・効果は
次の通りである。
The structure, operation, and effect of the invention according to claim 5 are as follows.

【0040】 [構成] 請求項4による発明の構成において、前記阻止手段は、
前記耐熱部材の内面側に圧縮空気を吹きつける圧縮空気
吹きつけ機構から構成してある。
[Structure] In the structure of the invention according to claim 4, the blocking means is
It comprises a compressed air blowing mechanism for blowing compressed air to the inner surface side of the heat resistant member.

【0041】[作用] 請求項4の構成による作用と同様の作用を奏することが
できるのに加え、次の作用を奏することができる。
[Operation] In addition to the same operation as the operation according to the fourth aspect, the following operation can be performed.

【0042】例えば、耐熱部材の内面を耐熱性の拭き取
り部材で繰り返し拭くことで、光の透過を妨げるすすや
水蒸気等の物質が耐熱部材に付着するのを阻止する構造
では、耐熱部材の表面が前記拭き取り部材で傷ついた
り、拭き取り部材が炉内の熱で劣化したりする不具合が
考えられるが、請求項5の構成によれば、圧縮空空気吹
きつけ機構から耐熱部材の内面側に圧縮空気を吹きつけ
て、光の透過を妨げる物質が耐熱部材に付着するのを阻
止するから、上記の不具合を回避できる。
For example, in a structure in which substances such as soot and water vapor that impede light transmission are prevented from adhering to the heat resistant member by repeatedly wiping the inner surface of the heat resistant member with the heat resistant wiping member, the surface of the heat resistant member is There is a possibility that the wiping member may be damaged or the wiping member may be deteriorated by the heat in the furnace. However, according to the configuration of claim 5, compressed air is blown from the compressed air blowing mechanism to the inner surface side of the heat resistant member. The above-mentioned inconvenience can be avoided because the substance that blocks the transmission of light is prevented from adhering to the heat-resistant member by spraying.

【0043】 [効果] 従って、請求項4の構成による効果と同様の効果を奏す
ることができるのに加え、測定窓の耐久性をより向上さ
せることができた。
[Effect] Therefore, in addition to the same effect as the effect according to the fourth aspect, the durability of the measurement window can be further improved.

【0044】[0044]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0045】図1,図2に、燃焼炉の一例であるごみ焼
却炉を示してある。このごみ焼却炉は、燃焼対象物であ
るごみを投入するホッパー1(燃焼対象物の供給路に相
当)を炉本体2に設け、ホッパー1からのごみを燃焼さ
せるストーカ3を炉本体2内に設けるとともに、ストー
カ3の上方に燃焼室4を形成し、燃焼用空気としての一
次燃焼空気を前記ストーカ3を通して燃焼室4内に供給
する一次燃焼空気供給装置5と、炉本体2の側壁2Aに
形成した送風口を通して燃焼室4に二次燃焼空気を供給
する二次燃焼空気供給装置6と、燃焼後の焼却灰を取り
出す灰排出口7とを設けて構成してある。
1 and 2 show a refuse incinerator which is an example of a combustion furnace. In this waste incinerator, a hopper 1 (corresponding to a supply path for the burning target) for charging the burning target waste is provided in the furnace main body 2, and a stoker 3 for burning the waste from the hopper 1 is installed in the furnace main body 2. The combustion chamber 4 is provided above the stoker 3, and the combustion chamber 4 is formed above the stoker 3 to supply the primary combustion air as combustion air into the combustion chamber 4 through the stoker 3 and the side wall 2A of the furnace body 2. A secondary combustion air supply device 6 for supplying secondary combustion air to the combustion chamber 4 through the formed blower port, and an ash discharge port 7 for taking out incinerated ash after combustion are provided.

【0046】前記ストーカ3は、乾燥ストーカ3Aと燃
焼ストーカ3Bと後燃焼ストーカ3Cとから成り、前記
一次燃焼空気供給装置5の送風機30からの一次燃焼空
気を通す一次空気ダクト8(炉本体に対する燃焼用空気
の送風路に相当)を、各ストーカ3A,3B,3Cの下
端側に連通接続してある。また、二次燃焼空気供給装置
6の送風機30からの二次燃焼空気を通す複数の二次空
気ダクト9(炉本体に対する燃焼用空気の送風路に相
当)を、炉本体2の側壁2Aに連通接続してある。
The stoker 3 is composed of a dry stoker 3A, a combustion stoker 3B, and a post-combustion stoker 3C, and a primary air duct 8 (combustion for the furnace main body) through which the primary combustion air from the blower 30 of the primary combustion air supply device 5 is passed. (Corresponding to a ventilation air passage) is connected to the lower ends of the stokers 3A, 3B, 3C. In addition, a plurality of secondary air ducts 9 (corresponding to the ventilation air passages for the combustion air to the furnace body) that pass the secondary combustion air from the blower 30 of the secondary combustion air supply device 6 are connected to the side wall 2A of the furnace body 2. It is connected.

【0047】上記の構造により、ホッパー1に投入され
たごみは、乾燥ストーカ3A・燃焼ストーカ3B・後燃
焼ストーカ3Cの順に送られながら一次燃焼空気によっ
て一次燃焼する。乾燥ストーカ3Aでは、後段の燃焼ス
トーカ3B・後燃焼ストーカ3Cでの燃焼により生じる
高温燃焼ガスによって主としてごみが乾燥し、一部燃焼
が始まる。燃焼ストーカ3Bでは、一次燃焼空気により
主としてごみが燃焼する。乾燥ストーカ3A及び燃焼ス
トーカ3Bの上方の一次燃焼領域における燃焼ガスは1
000°C以上の高温に達する。後燃焼ストーカ3Cで
は、乾燥ストーカ3A及び燃焼ストーカ3Bに比べて比
較的大きな空燃比になる状態に一次燃焼空気を供給し
て、焼却灰中に多量の未燃固形物もしくは不完全燃焼固
形物が残存するのを防止してある。
With the above structure, the dust thrown into the hopper 1 is primarily burned by the primary burning air while being sent in the order of the dry stoker 3A, the burning stoker 3B, and the post-burning stoker 3C. In the dry stoker 3A, the high temperature combustion gas generated by the combustion in the post-stage combustion stoker 3B and the post-combustion stoker 3C mainly dries the dust and starts a partial combustion. In the combustion stoker 3B, dust is mainly burned by the primary combustion air. The combustion gas in the primary combustion region above the dry stoker 3A and the combustion stoker 3B is 1
Reach high temperatures above 000 ° C. In the post-combustion stoker 3C, the primary combustion air is supplied in a state in which the air-fuel ratio becomes relatively larger than that of the dry stoker 3A and the combustion stoker 3B, and a large amount of unburned solid matter or incompletely burned solid matter is contained in the incineration ash. It is prevented from remaining.

【0048】図2,図3に示すように、前記炉本体2の
外側にレーザ流速計10を配設し、前記複数の一次空気
ダクト8・複数の二次空気ダクト9・ホッパー1に、レ
ーザ流速計10用の複数の粒子供給装置11の供給口3
2(図4参照)を各別に臨ませて、粒子供給装置11か
らの粒子が一次燃焼空気・二次燃焼空気により炉内に運
ばれ、また、ホッパー1内を通ってごみに混合した状態
で炉内に落下して、炉内で燃焼ガスに流されるよう構成
し、炉本体2に、レーザ流速計10による燃焼ガスの流
速の測定を許容する複数の測定窓12を形成してある。
As shown in FIGS. 2 and 3, a laser velocimeter 10 is provided outside the furnace main body 2, and lasers are provided on the plurality of primary air ducts 8, the plurality of secondary air ducts 9 and the hopper 1. Supply port 3 of a plurality of particle supply devices 11 for anemometer 10
2 (see FIG. 4) facing each other, the particles from the particle supply device 11 are carried into the furnace by the primary combustion air and the secondary combustion air, and also pass through the hopper 1 to be mixed with dust. A plurality of measurement windows 12 are formed in the furnace body 2 so as to be dropped into the furnace and flow into the combustion gas in the furnace, and which allows the laser gas flow meter 10 to measure the flow rate of the combustion gas.

【0049】前記粒子としては、シリカ粉のように燃え
にくく比重が小さくて燃焼ガスの流れに追従するものを
用いる。図4に示すように前記粒子供給装置11は、簡
単に説明すると、縦姿勢の粒子用ホッパー33と、粒子
用ホッパー33からの粒子を搬送するコンベア34と、
コンベア34からの粒子をエジェクタ16によって空気
に混合して搬送する空気混合部とから成る。前記粒子用
ホッパー33の下端側に粒子用ホッパー33の軸芯周り
に回転する混合羽根25を設けて、シリカ粉の凝集を防
止してある。
As the particles, particles such as silica powder that are hard to burn and have a small specific gravity and follow the flow of combustion gas are used. As shown in FIG. 4, the particle supply device 11 will be briefly described. A particle hopper 33 in a vertical posture, a conveyor 34 that conveys particles from the particle hopper 33,
An air mixing unit that mixes particles from the conveyor 34 with air by the ejector 16 and conveys the particles. On the lower end side of the particle hopper 33, a mixing blade 25 rotating around the axis of the particle hopper 33 is provided to prevent the silica powder from aggregating.

【0050】前記レーザ流速計10は差動光法により燃
焼ガスの流速を求めるもので、図2に示すように、レー
ザ光源を備えた流速計本体13と、測定窓12に臨ませ
る耐熱プローブ14とを光ファイバーケーブル15を介
して接続するとともに、光検出部と、その検出情報を演
算処理する第1制御装置17とを設けて構成してある。
The laser anemometer 10 obtains the velocity of the combustion gas by the differential light method. As shown in FIG. 2, the anemometer body 13 having a laser light source and the heat-resistant probe 14 facing the measurement window 12 are provided. Are connected via an optical fiber cable 15, and a photodetector and a first controller 17 for calculating the detection information are provided.

【0051】つまり、レーザ光源からの平行な2本のレ
ーザビームを耐熱プローブ14内のフロントレンズでそ
の焦点に結ばせ、その交点に干渉縞よりなる測定体積を
炉内に位置する状態に形成し、前記粒子が前記干渉縞を
通過することにより散乱した速度情報を含む散乱光を、
測定窓12を通して光検出部で検出し、その検出情報に
基づいて前記第1制御装置17で粒子の速度すなわち燃
焼ガスの流速を求める。
That is, the two parallel laser beams from the laser light source are focused on their focal points by the front lens in the heat-resistant probe 14, and a measurement volume consisting of interference fringes is formed at the intersection so as to be positioned in the furnace. , Scattered light containing velocity information scattered by the particles passing through the interference fringes,
The light is detected by the photodetector through the measurement window 12, and the velocity of the particles, that is, the velocity of the combustion gas is determined by the first controller 17 based on the detection information.

【0052】図2,図3に示すように、前記耐熱プロー
ブ14を支持部18に位置変更自在に支持させて、前記
複数の測定窓12に各別に対応可能に構成してある。前
記支持部18は、耐熱プローブ14を測定窓12が並ぶ
上下左右方向と測定窓12の軸芯方向とに位置変更自在
に支持する第1支持体19と、この第1支持体19を上
下方向に位置変更自在に支持する位置固定状態の第2支
持体20とから構成してある。
As shown in FIGS. 2 and 3, the heat-resistant probe 14 is supported by the supporting portion 18 so that the position thereof can be freely changed, and the plurality of measurement windows 12 can be individually supported. The support 18 includes a first support 19 that supports the heat-resistant probe 14 such that the position of the measurement window 12 is aligned in the vertical and horizontal directions and the axial direction of the measurement window 12, and the first support 19 is vertically positioned. And a second support body 20 in a position-fixed state that supports the position changeably.

【0053】前記第1支持体19は、縦姿勢のフレーム
部分によって耐熱プローブ14を上下方向及び測定窓1
2の軸芯方向に位置変更自在に支持するL形フレーム2
1と、このL形フレーム21の横姿勢のフレーム部分を
左右方向に位置変更自在に支持する下側フレーム23と
から成る。耐熱プローブ14とL形フレーム21とはス
ライド移動機構を介して電動モータの駆動で位置変更す
る。
The first support 19 has the frame portion in a vertical posture so that the heat-resistant probe 14 can be moved vertically and in the measurement window 1.
L-shaped frame 2 that supports the position changeable in the axial direction of 2
1 and a lower frame 23 that supports the laterally-positioned frame portion of the L-shaped frame 21 so as to be positionally changeable in the left-right direction. The positions of the heat-resistant probe 14 and the L-shaped frame 21 are changed by driving an electric motor via a slide movement mechanism.

【0054】前記耐熱プローブ14は、図3に示すよう
に、L形フレーム21の縦姿勢のフレーム部分に上下ス
ライド移動自在に設けたガイドレール24上を電動モー
タによる駆動でスライド移動して、前記測定窓12の軸
芯方向に位置変更する。
As shown in FIG. 3, the heat-resistant probe 14 slides on a guide rail 24 provided in a vertically oriented frame portion of the L-shaped frame 21 so as to be vertically slidable by driving by an electric motor, The position is changed in the axial direction of the measurement window 12.

【0055】前記第2支持体20は、下側フレーム23
の両端部を各別に支持する複数の縦姿勢の固定フレーム
22から成る。下側フレーム23はスライド移動機構を
介して電動モータの駆動で固定フレーム22に対して位
置変更する。
The second support member 20 has a lower frame 23.
It is composed of a plurality of fixed frames 22 in a vertical posture that support both ends of each of them separately. The position of the lower frame 23 is changed with respect to the fixed frame 22 by driving an electric motor via a slide movement mechanism.

【0056】さらに、耐熱プローブ14の位置を検出す
る位置センサと、この位置センサの検出情報に基づい
て、各電動モータを制御する第2制御装置26を設けて
ある。これにより、炉内のどの位置の燃焼ガスの流速を
検出したかを知ることができる。
Further, a position sensor for detecting the position of the heat resistant probe 14 and a second controller 26 for controlling each electric motor based on the detection information of the position sensor are provided. This makes it possible to know at which position in the furnace the flow velocity of the combustion gas was detected.

【0057】耐熱プローブ14を目標の測定窓12に臨
ませる場合、耐熱プローブ14とL形フレーム21と下
側フレーム23とを、固定フレーム22に対して一体に
上下方向に位置変更させて、耐熱プローブ14を前記測
定窓12の近くに位置させ、次に、L形フレーム21を
下側フレーム23に対して左右に位置変更させるととも
に、ガイドレール24(図3参照)をL形フレーム21
に対して上下方向に位置変更させて前記測定窓12に臨
ませる。
When the heat-resistant probe 14 is exposed to the target measurement window 12, the heat-resistant probe 14, the L-shaped frame 21, and the lower frame 23 are integrally moved with respect to the fixed frame 22 in the vertical direction so as to be heat-resistant. The probe 14 is positioned near the measurement window 12, and then the L-shaped frame 21 is moved to the left and right with respect to the lower frame 23, and the guide rail 24 (see FIG. 3) is moved to the L-shaped frame 21.
The position is vertically changed to face the measurement window 12.

【0058】前記測定窓12は、炉本体2の側壁2Aに
開口部を形成して構成したもので、開口部は耐火レンガ
等の耐熱材から成る蓋で通常は塞いで燃焼空気の漏れを
防止する。測定時には蓋を取り去る。この場合、大気と
燃焼ガスの相互の流通が自由になるが、炉内圧が大気庄
とあまり変わらない場合は問題にならない。
The measurement window 12 is formed by forming an opening in the side wall 2A of the furnace body 2, and the opening is normally closed with a lid made of a heat-resistant material such as refractory brick to prevent combustion air from leaking. To do. Remove the lid when measuring. In this case, mutual circulation of the atmosphere and the combustion gas becomes free, but it does not matter if the pressure in the furnace does not change much from the atmospheric pressure.

【0059】上記の構成により、一次空気ダクト8・二
次空気ダクト9・ホッパー1に粒子供給装置11から粒
子を供給する。この供給により粒子が燃焼用空気で炉内
に運ばれて炉内の燃焼ガスに流されるようになる。
With the above structure, particles are supplied from the particle supply device 11 to the primary air duct 8, the secondary air duct 9 and the hopper 1. By this supply, the particles are carried into the furnace by the combustion air and flow into the combustion gas in the furnace.

【0060】目標の測定窓12に耐熱プローブ14を臨
ませた後、前述したように、レーザ光源からの平行な2
本のレーザビームを耐熱プローブ14内のフロントレン
ズでその焦点に結ばせ、その交点に干渉縞よりなる測定
体積を炉内に形成する。前記粒子が前記干渉縞を通過す
るとレーザ光が散乱するので、その速度情報を含む散乱
光を測定窓12を通してレーザ流速計10の光検出部で
検出し、その検出情報に基づいて粒子の速度すなわち燃
焼ガスの流速を求める。
After the heat-resistant probe 14 is exposed to the target measurement window 12, as described above, a parallel beam from the laser light source is emitted.
The laser beam of the book is focused on its focal point by the front lens in the heat-resistant probe 14, and a measurement volume consisting of interference fringes is formed in the furnace at the intersection. When the particles pass through the interference fringes, the laser light is scattered. Therefore, the scattered light including the velocity information is detected by the photodetector of the laser velocity meter 10 through the measurement window 12, and the velocity of the particles Calculate the flow velocity of combustion gas.

【0061】耐熱プローブ14をガイドレール24上で
測定窓12の軸芯方向に移動させると、粒子が通過する
前記干渉縞が前記軸芯方向に位置変更するので、前記軸
芯方向の複数箇所の燃焼ガスの流速を測定することがで
きる。
When the heat resistant probe 14 is moved on the guide rail 24 in the axial direction of the measurement window 12, the interference fringes through which the particles pass are repositioned in the axial direction. The flow rate of combustion gas can be measured.

【0062】[別実施形態] 上記実施形態では前記粒子供給装置11を一次空気ダク
ト8と二次空気ダクト9とホッパ1とのいずれに対して
も設けたが、粒子供給装置11がこれらのうちの少なく
とも一つに対して設けてある構造であってもよい。
[Other Embodiments] In the above embodiment, the particle supply device 11 is provided for each of the primary air duct 8, the secondary air duct 9 and the hopper 1. However, the particle supply device 11 is one of them. The structure may be provided for at least one of the above.

【0063】前記測定窓12は図5に示すように2重窓
に形成してあってもよい。つまり、炉本体2に形成した
開口部に耐熱部材としての耐熱ガラス27を嵌め込み、
耐熱ガラス27よりも炉本体2の内方側(紙面下側)
に、耐熱ガラス27を炉内の熱から保護する鉄製の仕切
板28(耐熱保護部材に相当)を、仕切り板開閉棒31
の操作により非測定時用の保護作用姿勢と、測定時用の
非保護作用姿勢とに軸芯P周りに揺動切り換え自在に設
け、光の透過を妨げるすすや水蒸気等の物質が耐熱ガラ
ス27に付着するのを阻止する阻止手段29を設けてあ
る。前記阻止手段29は耐熱ガラス27の内面側に圧縮
空気を吹きつける圧縮空気吹きつけ機構から構成してあ
る。
The measurement window 12 may be formed as a double window as shown in FIG. That is, the heat resistant glass 27 as a heat resistant member is fitted into the opening formed in the furnace body 2,
Inner side of furnace body 2 than heat-resistant glass 27 (lower side of paper)
In addition, an iron partition plate 28 (corresponding to a heat resistant protection member) for protecting the heat resistant glass 27 from the heat in the furnace, and a partition plate opening / closing bar 31
Is provided so as to be swingable around the axis P between the protective action posture for non-measurement and the non-protective action posture for measurement, and substances such as soot and water vapor that block the transmission of light are heat-resistant glass 27. A blocking means 29 is provided for blocking the adherence to the. The blocking means 29 is composed of a compressed air blowing mechanism for blowing compressed air to the inner surface of the heat resistant glass 27.

【0064】上記の構造において、燃焼ガスの流速を測
定するときは、仕切板開閉棒31の操作で耐熱ガラス2
7を前記非保護作用姿勢に設定してからレーザ光を投射
する。耐熱ガラス27は光を透過可能であり、しかも、
前記阻止手段29を設けて、光の透過を妨げるすすや水
蒸気等の物質が耐熱ガラス27に付着するのを阻止する
ようにしてあるから、レーザ光を耐熱ガラス27を透過
させて炉内に到達させることができるとともに、前述の
散乱光を耐熱ガラス27を通して光出検出部で検出でき
て、燃焼ガスの流速を求めることができる。
In the above structure, when the flow velocity of the combustion gas is measured, the heat resistant glass 2 is operated by operating the partition plate opening / closing bar 31.
7 is set to the non-protective working posture, and then laser light is projected. The heat-resistant glass 27 can transmit light, and moreover,
Since the blocking means 29 is provided to prevent substances such as soot and water vapor that block the transmission of light from adhering to the heat-resistant glass 27, the laser light passes through the heat-resistant glass 27 and reaches the furnace. In addition, the scattered light can be detected by the light output detection unit through the heat resistant glass 27, and the flow velocity of the combustion gas can be obtained.

【0065】燃焼ガスの流速を測定しないときは、仕切
板開閉棒31を操作して、仕切板28を前記保護作用姿
勢に設定しておく。これにより耐熱ガラス27を炉内の
熱から保護できる。
When the flow velocity of the combustion gas is not measured, the partition plate opening / closing bar 31 is operated to set the partition plate 28 in the protective action posture. Thereby, the heat resistant glass 27 can be protected from the heat in the furnace.

【0066】上記のようにして燃焼ガスの流速を測定す
るから、例えば測定窓12として炉本体2に開口部を形
成しただけの構造に比べると、炉内圧と大気圧との差が
大きい場合でも燃焼ガスと大気との出入りがなく、炉内
の燃焼の不安定化を回避できる。
Since the flow velocity of the combustion gas is measured as described above, even when the difference between the pressure inside the furnace and the atmospheric pressure is large compared to the structure in which the opening is formed in the furnace body 2 as the measurement window 12, for example. Since there is no inflow or outflow of the combustion gas and the atmosphere, instability of combustion in the furnace can be avoided.

【0067】前記耐熱ガラス27は前記開口部に着脱自
在に嵌め込んであるから、長時間の使用で汚れるような
ことがあれば、別の清浄な耐熱ガラス27と交換するこ
とができる。
Since the heat-resistant glass 27 is detachably fitted in the opening, it can be replaced with another clean heat-resistant glass 27 if it becomes dirty due to long-term use.

【0068】本発明は各種ボイラにも適用できる。この
場合、燃焼用空気の送風路に前記粒子供給装置の供給口
を臨ませて、粒子を燃焼室に送り込む。
The present invention can be applied to various boilers. In this case, the supply port of the particle supply device is exposed to the air blowing path of the combustion air to send the particles into the combustion chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】ごみ焼却炉の内部構造を示す概略図FIG. 1 is a schematic diagram showing the internal structure of a refuse incinerator.

【図2】ごみ焼却炉の外部構造を示す概略図FIG. 2 is a schematic diagram showing an external structure of a refuse incinerator.

【図3】耐熱プローブの支持構造を示す図FIG. 3 is a diagram showing a support structure for a heat-resistant probe.

【図4】粒子供給装置を示す概略図FIG. 4 is a schematic view showing a particle supply device.

【図5】別実施形態における測定窓を示す図FIG. 5 is a diagram showing a measurement window in another embodiment.

【符号の説明】[Explanation of symbols]

1 ホッパー(供給路) 2 炉本体 3 ストーカ 3A 乾燥ストーカ 3B 燃焼ストーカ 3C 後燃焼ストーカ 4 燃焼室 5 一次燃焼空気供給装置 6 二次燃焼空気供給装置 7 灰排出口 8 一次空気ダクト(送風路) 9 二次空気ダクト(送風路) 10 レーザ流速計 11 粒子供給装置 12 測定窓 13 レーザ光源 14 プローブ 15 光ファイバーケーブル 16 エジェクタ 17 第1制御装置 18 支持部 19 第1支持体 20 第2支持体 21 L形フレーム 22 固定フレーム 23 下側フレーム 24 ガイドレール 25 混合羽根 26 第2制御装置 27 耐熱ガラス(耐熱部材) 28 仕切板 29 阻止手段 30 送風機 31 仕切板開閉棒 32 供給口 33 粒子用ホッパー 34 コンベア 1 hopper (supply path) 2 furnace body 3 stalker 3A dry stoker 3B combustion stoker 3C after-burning stoker 4 Combustion chamber 5 Primary combustion air supply device 6 Secondary combustion air supply device 7 Ash outlet 8 Primary air duct (air duct) 9 Secondary air duct (air duct) 10 Laser velocity meter 11 Particle feeder 12 Measurement window 13 Laser light source 14 probes 15 Optical fiber cable 16 ejectors 17 First control device 18 Support 19 First support 20 Second support 21 L-shaped frame 22 Fixed frame 23 Lower frame 24 Guide rail 25 mixing blades 26 Second control device 27 Heat-resistant glass (heat-resistant member) 28 Partition Board 29 blocking means 30 blower 31 Partition plate open / close bar 32 supply port 33 particle hopper 34 Conveyor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−201413(JP,A) 特開 平11−325432(JP,A) 特開 平9−60857(JP,A) 特開 昭62−41508(JP,A) 特開 平8−170114(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 5/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-8-201413 (JP, A) JP-A-11-325432 (JP, A) JP-A-9-60857 (JP, A) JP-A-62- 41508 (JP, A) JP-A-8-170114 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F23G 5/50

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炉本体の外側にレーザ流速計を配設し、
前記炉本体に対する燃焼用空気の送風路に、レーザ流速
計用の粒子供給装置の供給口を臨ませて、前記粒子供給
装置からの粒子が前記燃焼用空気により炉内に運ばれる
とともに前記炉内で燃焼ガスに流されるよう構成し、前
記炉本体に、前記レーザ流速計による前記燃焼ガスの流
速の測定を許容する測定窓を形成してある燃焼炉におい
て、 前記測定窓を前記炉本体に複数形成し、前記測定窓に臨
ませる前記レーザ流速計のプローブを支持部に位置変更
自在に支持させて、前記複数の測定窓に各別に対応可能
に構成してあることを特徴とする燃焼炉
1. A laser anemometer is provided outside the furnace body,
The air supply path of the combustion air to the furnace main body faces the supply port of the particle supply device for the laser velocity meter, and the particles from the particle supply device are carried into the furnace by the combustion air and the inside of the furnace in configured to be flowed to the combustion gases, into the furnace body, the combustion furnace odor is formed a measuring window that allows measurement of flow velocity of the combustion gas by said laser velocimeter
A plurality of measurement windows are formed in the furnace main body, and the measurement windows are exposed.
Change the position of the laser velocimeter probe to the support.
Can be freely supported and can be used for each of the multiple measurement windows
Combustion furnace characterized by being configured into .
【請求項2】 炉本体の外側にレーザ流速計を配設し、
前記炉本体に対する燃焼対象物の供給路に、レーザ流速
計用の粒子供給装置の供給口を臨ませて、前記粒子供給
装置からの粒子が前記供給路を通って炉内に入り込むと
ともに前記炉内で燃焼ガスに流されるよう構成し、前記
炉本体に、前記レーザ流速計による前記燃焼ガスの流速
の測定を許容する測定窓を形成してある燃焼炉におい
て、 前記測定窓を前記炉本体に複数形成し、前記測定窓に臨
ませる前記レーザ流速計のプローブを支持部に位置変更
自在に支持させて、前記複数の測定窓に各別に対応可能
に構成してあることを特徴とする燃焼炉
2. A laser velocity meter is provided outside the furnace body,
The supply path of the object to be burned to the furnace main body faces the supply port of the particle supply device for the laser velocity meter, and the particles from the particle supply device enter the furnace through the supply path and the inside of the furnace. in configured to be flowed to the combustion gases, into the furnace body, the combustion furnace odor is formed a measuring window that allows measurement of flow velocity of the combustion gas by said laser velocimeter
A plurality of measurement windows are formed in the furnace main body, and the measurement windows are exposed.
Change the position of the laser velocimeter probe to the support.
Can be freely supported and can be used for each of the multiple measurement windows
Combustion furnace characterized by being configured into .
【請求項3】 前記支持部は、前記プローブを前記測定
窓が並ぶ方向と前記測定窓の軸芯方向とに位置変更自在
に支持する第1支持体と、前記第1支持体を前記測定窓
が並ぶ方向に位置変更自在に支持する位置固定状態の第
2支持体とから構成してある請求項1又は2記載の燃焼
炉。
3. The support unit is configured to measure the probe.
The position can be changed between the direction in which the windows are lined up and the axis of the measuring window.
A first support that supports the first support, and the first support that supports the measurement window.
The position-fixed state that supports the position changeable in the direction
The combustion furnace according to claim 1 or 2, wherein the combustion furnace is composed of two supports .
【請求項4】 前記測定窓を構成するに、前記炉本体に
形成した開口部に、光を透過可能な耐熱部材を嵌め込む
とともに、前記耐熱部材よりも前記炉本体の内方側に、
前記耐熱部材を前記炉内の熱から保護する耐熱保護部材
を、非測定時用の保護作用姿勢と、測定時用の非保護作
用姿勢とに切り換え自在に設け、光の透過を妨げる物質
が前記耐熱部材に付着するのを阻止する阻止手段を設け
てある請求項1,2,3のいずれか一つに記載の燃焼
炉。
4. The furnace main body for forming the measurement window
Fit a heat-resistant member that can transmit light into the formed opening
Together with the inside of the furnace body than the heat-resistant member,
Heat-resistant protective member for protecting the heat-resistant member from heat in the furnace
The protective action posture for non-measurement and the non-protective action for measurement.
A substance that blocks the transmission of light and can be switched to the desired position
Is provided with a blocking means for blocking adhesion of the heat-resistant member to the heat-resistant member.
The combustion furnace according to any one of claims 1, 2 and 3 .
【請求項5】 前記阻止手段は、前記耐熱部材の内面側
に圧縮空気を吹きつける圧縮空気吹きつけ機構から構成
してある請求項4記載の燃焼炉。
5. The blocking means is an inner surface side of the heat resistant member.
Composed of a compressed air blowing mechanism that blows compressed air onto the
The combustion furnace according to claim 4, wherein
JP13856798A 1998-05-20 1998-05-20 Combustion furnace Expired - Fee Related JP3518991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13856798A JP3518991B2 (en) 1998-05-20 1998-05-20 Combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13856798A JP3518991B2 (en) 1998-05-20 1998-05-20 Combustion furnace

Publications (2)

Publication Number Publication Date
JPH11325436A JPH11325436A (en) 1999-11-26
JP3518991B2 true JP3518991B2 (en) 2004-04-12

Family

ID=15225165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13856798A Expired - Fee Related JP3518991B2 (en) 1998-05-20 1998-05-20 Combustion furnace

Country Status (1)

Country Link
JP (1) JP3518991B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857527B2 (en) * 2001-01-09 2006-12-13 株式会社タクマ Combustion furnace

Also Published As

Publication number Publication date
JPH11325436A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
WO2017175483A1 (en) Stoker-type incinerator
JP4830140B2 (en) Combustion control method and incinerator
EP1304525A1 (en) Waste incinerator and method of operating the incinerator
JP4448799B2 (en) A waste combustion state detection method using a grate temperature in a stoker type incinerator, a waste incineration control method and a grate temperature control method using the method.
JP3518991B2 (en) Combustion furnace
EP1726877A1 (en) Method and device for controlling injection of primary and secondary air in an incineration system
JP6695161B2 (en) Stoker incinerator
JPH0634118A (en) Combustion controller of incinerator
JPH074628A (en) Controlling method for combustion in incinerator using thermal fluid analysis
JP2000018577A (en) Combustion controller and combustion furnace with it
JP3857527B2 (en) Combustion furnace
JP3763963B2 (en) Stoker temperature control device for waste incinerator and combustion control device for waste incinerator equipped with the same
JPH05272732A (en) Method of controlling combustion in waste incinerator
JP3912209B2 (en) Grate-type waste incinerator
EP2933557B1 (en) Swirling type fluidized bed furnace
JP3391614B2 (en) Waste combustion control method in refuse incinerator
JP2800871B2 (en) Incinerator combustion control device
JP3052967B2 (en) Secondary air supply device for incinerator
JP3798330B2 (en) Stoker waste incinerator
JP2002071546A (en) Apparatus for measuring fluid mixed state
JP3513790B2 (en) Variable supply air nozzle
JP3928709B2 (en) Combustion control device for waste incinerator
JPH0465290B2 (en)
US3807325A (en) Incinerator draft system
JP3252281B2 (en) Incinerator, circulating air pipe and incineration method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040127

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees