JP3518296B2 - Axial stress measurement method and axial stress measurement device - Google Patents

Axial stress measurement method and axial stress measurement device

Info

Publication number
JP3518296B2
JP3518296B2 JP33671497A JP33671497A JP3518296B2 JP 3518296 B2 JP3518296 B2 JP 3518296B2 JP 33671497 A JP33671497 A JP 33671497A JP 33671497 A JP33671497 A JP 33671497A JP 3518296 B2 JP3518296 B2 JP 3518296B2
Authority
JP
Japan
Prior art keywords
propagation time
axial stress
stress
axial
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33671497A
Other languages
Japanese (ja)
Other versions
JPH11166870A (en
Inventor
一 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33671497A priority Critical patent/JP3518296B2/en
Publication of JPH11166870A publication Critical patent/JPH11166870A/en
Application granted granted Critical
Publication of JP3518296B2 publication Critical patent/JP3518296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ボルトなど部品の
軸方向に加わる軸応力を、当該部品中を伝播する音波の
伝播時間に基づき測定する方法および測定する装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring axial stress applied to a part such as a bolt in the axial direction based on the propagation time of a sound wave propagating in the part.

【0002】[0002]

【従来の技術】二つまたはそれ以上の部品を締結する方
法として、ボルトによる締結方法は最も広く知られた方
法の一つである。この締結力は、ボルトの軸方向にかか
る力である軸力の反力として発生する。また、軸力は、
軸応力を軸方向に直交する断面で積分したものであるの
で、軸応力を求めることによって、ボルトの軸力を測定
することができる。ボルト軸力を測定することによっ
て、当該ボルトが複数の部品を締結している力を知るこ
とができる。
2. Description of the Related Art As a method of fastening two or more parts, a fastening method using bolts is one of the most widely known methods. This fastening force is generated as a reaction force of an axial force that is a force applied in the axial direction of the bolt. Also, the axial force is
Since the axial stress is integrated in a cross section orthogonal to the axial direction, the axial force of the bolt can be measured by obtaining the axial stress. By measuring the bolt axial force, the force with which the bolt is fastening the plurality of parts can be known.

【0003】ボルトの軸力または軸応力を測定するため
の様々な方法が知られている。最も広く用いられている
方法は、ボルトを締め付けるトルクに基づき測定を行う
ものである。しかし、この方法は、簡易ではあるが、ボ
ルトと締結される部品との摩擦力のばらつきが大きいた
めに誤差が大きく、場合によっては、十分な精度を得る
ことができないという問題があった。
Various methods are known for measuring the axial force or stress of bolts. The most widely used method is to make measurements based on the torque to tighten the bolt. However, although this method is simple, there is a large error due to a large variation in the frictional force between the bolt and the component to be fastened, and in some cases sufficient accuracy cannot be obtained.

【0004】また、別の方法として、ボルト内部を伝播
する音波の伝播時間に基づきボルト軸応力を求める方法
が知られている。軸応力が加わるとボルトが延びるため
に伝播時間が延び、また軸応力による応力場により音速
が低下することによっても伝播時間が延びる。この方法
においては、この伝播時間の変化を利用してボルトの軸
応力を測定している。
As another method, there is known a method of obtaining the bolt axial stress based on the propagation time of a sound wave propagating inside the bolt. When the axial stress is applied, the propagation time is extended because the bolt extends, and also the propagation time is extended when the sonic velocity is reduced due to the stress field due to the axial stress. In this method, the change in the propagation time is used to measure the axial stress of the bolt.

【0005】また、ボルトを伝播する音波の横波と縦波
の音速の比を用いて軸応力を測定する方法が知られてい
る。前述のように音速は、その伝達媒体の応力が高くな
ると低下する傾向を示すが、その低下率、すなわち音弾
性係数は、縦波と横波で異なっている。したがって、縦
波と横波の各々の伝播時間の比からボルトの軸応力を推
定することができる。
There is also known a method of measuring the axial stress by using the ratio of the sound velocity of the transverse wave and the sound velocity of the longitudinal wave propagating in the bolt. As described above, the speed of sound tends to decrease as the stress of the transmission medium increases, but the rate of decrease, that is, the acoustic elasticity coefficient, differs between longitudinal waves and transverse waves. Therefore, the axial stress of the bolt can be estimated from the ratio of the propagation times of the longitudinal wave and the transverse wave.

【0006】[0006]

【発明が解決しようとする課題】これらの音波を用いた
軸応力の測定においては、ボルトの軸部のように、軸直
交断面における軸応力分布が一様であり、軸方向におい
ても軸応力が変化しない応力場を仮定して軸応力を算出
している。しかし、実際のボルトにおいては、ボルト頭
の応力分布、特に軸部に近い部分の応力分布は、前記の
ような一様な分布とはならない。また、ボルトに設けら
れたねじ部の他部品と嵌合している部分(以下、ねじ嵌
合部)の軸応力は、ボルト先端に向かうほど小さくな
り、前記の軸方向において軸応力が変化しないとの仮定
が成り立たない。特に、ボルト長さが比較的短い場合、
全体の長さにしめるボルト頭およびねじ部嵌合部の長さ
が相対的に長くなり、これらの部分の応力分布および変
形が無視できないものとなり、測定誤差を大きくすると
いう問題があった。
In the measurement of axial stress using these sound waves, the axial stress distribution is uniform in a cross section orthogonal to the axis, like the axial portion of the bolt, and the axial stress is also present in the axial direction. The axial stress is calculated assuming a stress field that does not change. However, in an actual bolt, the stress distribution at the bolt head, particularly the stress distribution near the shaft, does not have the uniform distribution as described above. Further, the axial stress of the portion of the bolt provided on the bolt that is fitted with another component (hereinafter referred to as the screw fitting portion) becomes smaller toward the tip of the bolt, and the axial stress does not change in the axial direction. The assumption is not valid. Especially when the bolt length is relatively short,
There is a problem that the lengths of the bolt head and the threaded portion fitting portion that make up the entire length become relatively long, the stress distribution and deformation of these portions cannot be ignored, and the measurement error increases.

【0007】また、ボルトを何回締め付けても、形成さ
れる応力場は、常に一定であるという前提で測定が行わ
れているが、これを確認する方法はなく、この前提が成
り立たない、言い換えれば、この前提が成り立たないほ
ど高精度の測定を行う場合は、これが誤差となる。
Further, the measurement is performed on the assumption that the formed stress field is always constant no matter how many times the bolt is tightened, but there is no way to confirm this, and this assumption does not hold. For example, this is an error when performing a measurement with such a high accuracy that this assumption cannot be established.

【0008】本発明は、前述の問題点を解決するために
なされたものであり、ボルト頭やねじ嵌合部などの一様
でない応力分布および変形や、軸力を加わえるたびに応
力分布が一定とはならないことを考慮して軸応力を測定
する、軸応力測定方法および軸応力測定装置を提供する
ことを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the uneven stress distribution and deformation of the bolt head and the screw fitting portion, and the stress distribution each time an axial force is applied. An object of the present invention is to provide an axial stress measuring method and an axial stress measuring device that measure axial stress in consideration of the fact that the stress is not constant.

【0009】[0009]

【課題を解決するための手段】前述の課題を解決するた
めに、本発明にかかる軸応力測定方法は、部品の軸方向
に加わる軸応力を、当該部品中を伝わる音波の、当該部
品の所定の点の間の伝播時間に基づき測定する軸応力測
定方法であって、測定対象となる部品と同種の部品に
て、軸応力と、軸応力が加わる前後の音波の横波または
縦波の伝播時間の差との関係を示す伝播時間差−軸応力
関数を求めるステップと、測定対象となる部品の同種の
部品にて、軸応力と、軸応力が加わったときの音波の横
波と縦波の伝播時間の比との関係を示す伝播時間比−軸
応力関数を求めるステップと、測定対象部品に実際に軸
応力が加えられる前後の音波の横波または縦波の伝播時
間の差から、前記伝播時間差−軸応力関数に基づき伝播
時間差軸応力を算出するステップと、測定対象部品に実
際に軸応力が加えられたときの音波の横波と縦波の伝播
時間の比から、前記伝播時間比−軸応力関数に基づき伝
播時間比軸応力を算出するステップと、前記伝播時間差
軸応力に基づき、部品の軸方向長さに対する等価応力長
さの比である等価応力長さ比を変更したときの軸応力で
ある修正伝播時間差軸応力を算出するステップと、前記
伝播時間比軸応力に基づき、等価応力長さ比を変更した
ときの軸応力である修正伝播時間比軸応力を算出するス
テップと、前記修正伝播時間差軸応力を算出するステッ
プと前記修正伝播時間比軸応力を算出するステップにお
いて、等価軸応力長さ比を順次変更し、前記修正伝播時
間差軸応力と前記修正伝播時間比軸応力の差が実質的に
最小となるときの、これらの修正された軸応力に基づき
実際の軸応力を算出するステップと、を有している。
In order to solve the above-mentioned problems, a method of measuring axial stress according to the present invention is designed so that the axial stress applied in the axial direction of the component is determined by the sound waves transmitted through the component. A method for measuring axial stress based on the propagation time between points, where the axial stress and the transverse or longitudinal wave propagation time of the acoustic wave before and after the axial stress are applied to the same type of component as the measurement target Difference between the propagation time and the step of obtaining the axial stress function, and the axial stress, and the propagation time of the transverse and longitudinal waves of the acoustic wave when the axial stress is applied in the same type of parts to be measured. From the step of obtaining the propagation time ratio-axis stress function indicating the relationship with the ratio, and from the difference in the propagation time of the transverse or longitudinal waves of the acoustic wave before and after the axial stress is actually applied to the measurement target component, the propagation time difference-axis Calculate time difference axial stress based on stress function And a step of calculating the propagation time ratio axial stress based on the propagation time ratio-axial stress function from the ratio of the propagation time of the transverse wave and the longitudinal wave of the sound wave when the axial stress is actually applied to the measurement target component. And, based on the propagation time difference axial stress, a step of calculating a modified propagation time difference axial stress which is the axial stress when the equivalent stress length ratio, which is the ratio of the equivalent stress length to the axial length of the component, is changed, Based on the propagation time ratio axial stress, a step of calculating a modified propagation time ratio axial stress that is an axial stress when the equivalent stress length ratio is changed, a step of calculating the modified propagation time difference axial stress, and the modified propagation time In the step of calculating the specific axial stress, the equivalent axial stress length ratio is sequentially changed, and when the difference between the modified propagation time difference axial stress and the modified propagation time ratio axial stress is substantially minimized, these modified stresses are corrected. It has a step of calculating the actual axial stress on the basis of the axial stress, the.

【0010】前記の等価応力長さとは、実際の軸応力、
すなわち均一ではない軸応力による部品の伸びと、ある
軸方向長さにおいて均一な軸応力が加わったとしたとき
の部品の伸びが一致するときの、前記「ある軸方向長
さ」のことである。
The equivalent stress length is the actual axial stress,
That is, it means the "certain axial length" when the elongation of the component due to the non-uniform axial stress and the elongation of the component when uniform axial stress is applied at a certain axial length match.

【0011】前述のように本発明にかかる軸応力測定方
法は、異なる二つの方法により軸力を求める。すなわ
ち、前記の伝播時間差軸応力と伝播時間比軸応力を求め
ている。同一の測定対象について軸応力を測定している
のであるから、これらの軸応力は、その測定・算出方法
よらず本来ならば一致するはずである。本方法において
は、これが一致していないのは、前記等価応力長さ、ま
たはその比が、伝播時間差と軸応力および伝播時間比と
軸応力の関係を求めたときと変わっていることが原因で
あるとする。そして、前記二つの軸応力が一致しない場
合、等価応力長さ比を変更して改めて前記二つの軸応力
を算出し、これらが一致するときの等価応力長さ比が実
際の測定対象の等価応力長さ比であるとし、このときの
軸応力が実際の軸応力であるとする。実際には、他の誤
差要因のために、二つの軸応力が一致しない場合もある
ので、二つの軸応力の差が最小となるときの、これらの
相加平均を実際の軸応力として算出する。
As described above, the axial stress measuring method according to the present invention obtains the axial force by two different methods. That is, the propagation time difference axial stress and the propagation time ratio axial stress are obtained. Since the axial stress is measured with respect to the same measurement object, these axial stresses should be the same, regardless of the measuring / calculating method. In this method, the reason why this does not match is that the equivalent stress length or its ratio is different from that when the relationship between the propagation time difference and the axial stress and the propagation time ratio and the axial stress is obtained. Suppose there is. Then, if the two axial stresses do not match, the equivalent stress length ratio is changed to calculate the two axial stresses again, and the equivalent stress length ratio when these match is the actual equivalent stress of the measurement target. It is assumed to be a length ratio, and the axial stress at this time is the actual axial stress. In reality, there are cases where the two axial stresses do not match due to other error factors, so the arithmetic mean of these two axial stresses when the difference between the two axial stresses is the minimum is calculated as the actual axial stress. .

【0012】また、本発明の他の態様である軸応力測定
装置は、部品の軸方向に加わる軸応力を、当該部品中を
伝わる音波の、当該部品の所定の点の間の伝播時間に基
づき測定する軸応力測定装置であって、前記部品に対し
音波を送信する送信手段と、前記送信された音波を前記
部品より、音波の横波と縦波を分離して受信する受信手
段と、音波が送信されてから受信されるまでの伝播時間
を測定する伝播時間測定手段と、測定対象となる部品と
同種の部品における諸関数を記憶する記憶手段と、前記
記憶された諸関数と前記測定された音波の伝播時間とに
基づき測定対象部品の軸応力を算出する演算手段とを有
している。
Further, according to another aspect of the present invention, an axial stress measuring device determines an axial stress applied in the axial direction of a component based on a propagation time of a sound wave propagating in the component between predetermined points of the component. An axial stress measuring device for measuring, a transmitting means for transmitting a sound wave to the component, a receiving means for receiving the transmitted sound wave by separating the transverse wave and the longitudinal wave of the sound wave from the component, and the sound wave Propagation time measuring means for measuring the propagation time from transmission to reception, storage means for storing various functions of the same kind of component as the component to be measured, the stored various functions and the measured And a calculation means for calculating the axial stress of the measurement target component based on the propagation time of the sound wave.

【0013】前記記憶手段は、軸応力と、軸応力が加わ
る前後の音波の横波または縦波の伝播時間の差との関係
を示す伝播時間差−軸応力関数と、軸応力と、軸応力が
加わったときの音波の横波と縦波の伝播時間の比との関
係を示す伝播時間比−軸応力関数と、部品の軸方向長さ
に対する等価応力長さの比である等価応力長さ比と音波
の横波および縦波の伝播時間差の関係である伝播時間差
関数と、を記憶するものである。
The storage means stores the relationship between the axial stress and the difference in the propagation time of the transverse wave or the longitudinal wave of the acoustic wave before and after the axial stress is applied-the axial stress function, the axial stress, and the axial stress. Propagation time ratio showing the relationship between the transverse and longitudinal wave propagation times of a sound wave-the axial stress function, and the equivalent stress length ratio and sound wave, which is the ratio of the equivalent stress length to the axial length of the component. And a propagation time difference function, which is a relationship of the propagation time difference between the transverse wave and the longitudinal wave.

【0014】また、前記演算手段は、測定対象部品に実
際に軸応力が加えられる前後の音波の横波または縦波の
伝播時間の差から、前記伝播時間差−軸応力関数に基づ
き伝播時間差軸応力を算出し、測定対象部品に実際に軸
応力が加えられたときの音波の横波と縦波の伝播時間の
比から、前記伝播時間比−軸応力関数に基づき伝播時間
比軸応力を算出し、前記伝播時間差軸応力と前記伝播時
間差関数に基づき、等価応力長さ比を変更したときの軸
応力である修正伝播時間差軸応力を算出し、前記伝播時
間比軸応力と前記伝播時間差関数に基づき、等価応力長
さ比を変更したときの軸応力である修正伝播時間比軸応
力を算出し、前記修正伝播時間差軸応力および前記修正
伝播時間比軸応力の算出において、等価軸応力長さ比を
順次変更し、前記修正伝播時間差軸応力と前記修正伝播
時間比軸応力の差が実質的に最小となるときの、これら
の修正された軸応力に基づき実際の軸応力を算出するも
のである。
Further, the calculation means calculates the propagation time difference axial stress based on the propagation time difference-axial stress function from the difference in the propagation time of the transverse wave or longitudinal wave of the acoustic wave before and after the axial stress is actually applied to the component to be measured. Calculated, from the ratio of the propagation time of the transverse wave and the longitudinal wave of the sound wave when the axial stress is actually applied to the measurement target component, the propagation time ratio-calculating the propagation time ratio axial stress based on the axial stress function, Based on the propagation time difference axial stress and the propagation time difference function, calculate the modified propagation time difference axial stress which is the axial stress when the equivalent stress length ratio is changed, and based on the propagation time ratio axial stress and the propagation time difference function, the equivalent The modified propagation time ratio axial stress, which is the axial stress when the stress length ratio is changed, is calculated, and the equivalent axial stress length ratio is sequentially changed in the calculation of the modified propagation time difference axial stress and the modified propagation time ratio axial stress. The above When the difference between the positive propagation time Sajiku stress the modified propagation time ratio axis stress is substantially minimized, and calculates the actual axial stress based on these modified axial stress.

【0015】また、前記の軸力測定方法の少なくとも一
部の手順をコンピュータに実行させるためのプログラム
を記録したコンピュータ読み取り可能な記録媒体に記録
することができる。
The program for causing a computer to execute at least part of the procedure of the axial force measuring method can be recorded in a computer-readable recording medium.

【0016】また、本発明を実施するのに好適な記録媒
体として、部品に加わる軸応力と、前記軸応力が加わる
前後の部品の所定点間の音波の横波または縦波の伝播時
間の差との関係を示す伝播時間差−軸応力関数をメモリ
から読み込む手順と、軸応力と、軸応力が加わったとき
の音波の横波と縦波の伝播時間の比との関係を示す伝播
時間比−軸応力関数をメモリから読み込む手順と、部品
の軸方向長さに対する等価応力長さの比である等価応力
長さ比と音波の横波および縦波の伝播時間差の関係であ
る伝播時間差関数を読み込む手順と、測定対象部品に実
際に軸応力が加えられる前後の音波の横波または縦波の
伝播時間の差から、前記伝播時間差−軸応力関数に基づ
き伝播時間差軸応力を算出する手順と、測定対象部品に
実際に軸応力が加えられたときの音波の横波と縦波の伝
播時間の比から、前記伝播時間比−軸応力関数に基づき
伝播時間比軸応力を算出する手順と、前記伝播時間差軸
応力と前記伝播時間差関数に基づき、等価応力長さ比を
変更したときの軸応力である修正伝播時間差軸応力を算
出する手順と、前記伝播時間比軸応力と前記伝播時間差
関数に基づき、等価応力長さ比を変更したときの軸応力
である修正伝播時間比軸応力を算出する手順と、前記修
正伝播時間差軸応力および前記修正伝播時間比軸応力の
算出において、等価軸応力長さ比を順次変更し、前記修
正伝播時間差軸応力と前記修正伝播時間比軸応力の差が
実質的に最小となるときの、これらの修正された軸応力
に基づき実際の軸応力を算出する手順と、をコンピュー
タに実行させるためのプログラムを記録したコンピュー
タ読み取り可能な記録媒体を作製することができる。
Further, as a recording medium suitable for carrying out the present invention, an axial stress applied to a component and a difference in propagation time of a transverse wave or a longitudinal wave of a sound wave between predetermined points of the component before and after the axial stress is applied. Time difference indicating the relationship between the axial stress function and the procedure for reading the axial stress function from memory, and the relationship between the axial stress and the ratio of the propagation time of the transverse wave to the longitudinal wave of the acoustic wave when the axial stress is applied. A procedure for reading the function from the memory, and a procedure for reading the propagation time difference function, which is the relationship between the equivalent stress length ratio, which is the ratio of the equivalent stress length to the axial length of the part, and the propagation time difference between the transverse and longitudinal waves of the sound wave, From the difference in the propagation time of the transverse wave or longitudinal wave of the acoustic wave before and after the axial stress is actually applied to the measurement target component, the procedure for calculating the propagation time difference axial stress based on the propagation time difference-axial stress function, and the actual measurement target component Axial stress is applied to From the ratio of the propagation time of the transverse wave and the longitudinal wave of the sound wave at the time, the procedure of calculating the propagation time ratio-axial stress based on the propagation time ratio-axial stress function, based on the propagation time difference axial stress and the propagation time difference function. , A procedure for calculating a modified propagation time difference axial stress that is the axial stress when the equivalent stress length ratio is changed, and based on the propagation time ratio axial stress and the propagation time difference function, when changing the equivalent stress length ratio In the procedure of calculating the modified propagation time ratio axial stress which is the axial stress, and in the modified propagation time difference axial stress and the modified propagation time ratio axial stress calculation, the equivalent axial stress length ratio is sequentially changed to A program for causing a computer to execute a procedure for calculating an actual axial stress based on the corrected axial stress when the difference between the stress and the corrected propagation time ratio axial stress is substantially minimum. It can be prepared a computer readable recording medium recording.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)を、図面に従って説明する。図1は、
本実施形態の装置概要を示す構成ブロック図である。測
定対象は、二つの部品10,12を締結している六角ボ
ルト14(以下、単にボルト14と記す)である。ボル
ト頭頂部には、ボルト14内に音波を送信し、およびボ
ルト14から音波を受信する超音波探触子16が配置さ
れる。本実施形態においては、送受信される音波は、一
般的な約5〜20MHzの超音波が用いられている。超
音波送探触子16は、ボルト14内部に横波と縦波の超
音波を生成し、またこれらを受信できるものであれば、
公知のどのような探触子を使用することもできる。特に
横波と縦波を同時に送受信できる構造であることが好ま
しい。さらには、ボルトが反った場合、そりの外側・内
側で伝播経路が異なるので、これが相殺されるように超
音波振動子の横波と縦波の送受信部が配置されることが
好ましい。このような配置には、たとえば中心部に横波
の送受信部、そしてその周囲に円環状の縦波の送受信部
を配する方法がある。また、円を複数本の直径で分割し
た扇型の各部分に交互に横波・縦波の送受信部を配置す
ることができる。超音波の送信は、送受信制御部18に
より制御される送信回路20から送信される送信信号に
よって実行される。また、受信回路22は、ボルト14
の先端で反射した反射波を受信する。反射波を受信した
時刻と、前述の送受信制御部18の送信制御の時刻に基
づきボルト14の全長を超音波が往復した時間(伝播時
間)を横波、縦波それぞれについて伝播時間算出部24
が算出する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings. Figure 1
It is a block diagram which shows the outline of the apparatus of this embodiment. The measurement target is a hexagon bolt 14 (hereinafter simply referred to as bolt 14) that fastens the two components 10 and 12. An ultrasonic probe 16 that transmits a sound wave into the bolt 14 and receives a sound wave from the bolt 14 is arranged on the top of the bolt 14. In the present embodiment, the transmitted and received sound waves are generally ultrasonic waves of about 5 to 20 MHz. The ultrasonic transducer 16 is capable of generating transverse and longitudinal ultrasonic waves inside the bolt 14 and receiving them.
Any known probe can be used. Particularly, it is preferable to have a structure capable of simultaneously transmitting and receiving the transverse wave and the longitudinal wave. Further, when the bolt is warped, the propagation paths on the outside and inside of the warp are different, so it is preferable to arrange the transversal wave and longitudinal wave transmitter / receivers of the ultrasonic transducer so as to cancel them. For such an arrangement, for example, there is a method of arranging a transversal wave transmission / reception unit in the center and an annular longitudinal wave transmission / reception unit in the periphery thereof. In addition, transverse wave / longitudinal wave transmitter / receivers can be alternately arranged in each sector-shaped portion obtained by dividing a circle by a plurality of diameters. The transmission of ultrasonic waves is executed by a transmission signal transmitted from the transmission circuit 20 controlled by the transmission / reception control unit 18. In addition, the receiving circuit 22 uses the bolt 14
Receives the reflected wave reflected at the tip of the. Based on the time when the reflected wave is received and the time when the transmission control of the transmission / reception control unit 18 is performed, the time (propagation time) in which the ultrasonic wave reciprocates the entire length of the bolt 14 is calculated for each of the transverse wave and the longitudinal wave.
Is calculated.

【0018】メモリ26には、軸応力と軸応力が加わる
前後の音波の横波または縦波の伝播時間の差との関係を
示す伝播時間差−軸応力関数と、軸応力と軸応力が加わ
ったときの音波の横波と縦波の伝播時間の比との関係を
示す伝播時間比−軸応力関数と、ボルトの軸方向長さに
対する等価応力長さの比である等価応力長さ比と音波の
横波および縦波の伝播時間差の関係である伝播時間差関
数とが記憶されている。これらの関数は、測定対象とな
るボルト14と同種、すなわち材質、形状が同一である
ボルトによって、あらかじめ求められている。
In the memory 26, when the axial stress and the axial stress are applied, the propagation time difference-axial stress function showing the relationship between the axial stress and the difference in the propagation time of the transverse wave or the longitudinal wave of the acoustic wave before and after the axial stress is applied. Time Ratio-Axial Stress Function, which shows the relationship between the transverse wave and longitudinal wave propagation time ratios, and the equivalent stress length ratio, which is the ratio of the equivalent stress length to the axial length of the bolt, and the transverse wave of sound waves. And a propagation time difference function which is a relationship of the propagation time difference between the longitudinal waves. These functions are obtained in advance by the same kind of bolt 14 as the measurement object, that is, the bolt having the same material and shape.

【0019】前記伝播時間差−軸応力関数は、ボルト1
4に軸力が加わる前の音波の伝播時間と、軸力が加わっ
た後の音波の伝播時間をそれぞれ測定し、このときの軸
応力と伝播時間の差を算出して求められている。軸力の
複数の値において、軸応力と伝播時間差を算出し、これ
らの近似線を伝播時間差−軸応力関数と定めている。音
波の伝播時間は、原理的には横波、縦波のいずれを用い
ても測定可能であるが、本実施形態においては、軸応力
に対する音速の変化が大きい、すなわち測定精度が高い
縦波によって求めている。
The propagation time difference-axial stress function is the bolt 1
4 is obtained by measuring the propagation time of the sound wave before the axial force is applied to 4 and the propagation time of the sound wave after the axial force is applied, and calculating the difference between the axial stress and the propagation time at this time. The axial stress and the propagation time difference are calculated for a plurality of values of the axial force, and these approximate lines are defined as the propagation time difference-axial stress function. The propagation time of a sound wave can be measured using either a transverse wave or a longitudinal wave in principle, but in the present embodiment, the change in the sound velocity with respect to the axial stress is large, that is, it is obtained by a longitudinal wave with high measurement accuracy. ing.

【0020】前記伝播時間比−軸応力関数は、ボルト1
4に軸力が加わった後の音波の横波と縦波の伝播時間を
測定し、このときの軸応力と伝播時間の比を算出して求
められている。軸量の複数の値において、軸応力と伝播
時間比を算出し、これらの近似線を伝播時間比−軸応力
関数と定めている。
The propagation time ratio-axial stress function is the bolt 1
4 is obtained by measuring the propagation time of the transverse wave and the longitudinal wave of the sound wave after the axial force is applied to 4, and calculating the ratio of the axial stress and the propagation time at this time. The axial stress and the propagation time ratio are calculated for a plurality of values of the axial amount, and these approximate lines are defined as the propagation time ratio-axial stress function.

【0021】前記伝播時間差関数は、The propagation time difference function is

【数1】 と表される。この詳細については後述する。[Equation 1] Is expressed as The details will be described later.

【0022】演算部28は、ボルト14に軸力が加えら
れる前の縦波の伝播時間と、軸力が加えられた後の横波
および縦波の伝播時間と前記の複数の関数とに基づき軸
力を算出する。まず、軸力が加えられる前後の縦波の伝
播時間の差と、伝播時間差軸応力関数に基づき伝播時間
差軸応力が算出される。また、軸力が加えられた後の横
波と縦波の伝播時間の比と伝播時間比−軸応力関数から
伝播時間比軸応力が算出される。これらの伝播時間差軸
応力と伝播時間比軸応力は、算出の方法が異なっている
が、同一の対象について測定したものであるから、本来
一致するはずである。これらが一致しないのは、前記の
各関数を求めたときの応力場と、実際の測定を行ったと
きの応力場が異なる、すなわち等価応力長さ、またはそ
の比が異なっているためとの仮定の下に、軸応力の算出
が行われる。この軸応力の算出については、後に詳述す
る。
The calculation unit 28 calculates the axis based on the propagation time of the longitudinal wave before the axial force is applied to the bolt 14, the propagation time of the transverse wave and the longitudinal wave after the axial force is applied, and the above-mentioned plurality of functions. Calculate the force. First, the propagation time difference axial stress is calculated based on the difference between the propagation times of the longitudinal waves before and after the axial force is applied and the propagation time difference axial stress function. Further, the propagation time ratio axial stress is calculated from the ratio of the propagation time of the transverse wave and the longitudinal wave after the axial force is applied and the propagation time ratio-axial stress function. Although the propagation time difference axial stress and the propagation time ratio axial stress are different in the calculation method, they should be originally the same because they are measured for the same object. It is assumed that these do not match because the stress field when the above functions are obtained and the stress field when the actual measurement is performed are different, that is, the equivalent stress length or the ratio thereof is different. Below, the axial stress is calculated. The calculation of the axial stress will be described later in detail.

【0023】前述の送受信制御部18、伝播時間算出部
24と演算部28は、実際には、コンピュータに備えら
れた所定のプログラムに基づき作動するCPU(中央処
理装置)30である。また、前記のプログラムは、コン
ピュータの内部メモリに記憶することも、CD−ROM
(コンパクトディスク−読出し専用メモリ)32やFD
(フレキシブルディスク)などの外部記録媒体に記憶す
ることもできる。前記のような外部記録媒体に記憶する
場合、記憶された情報を読み出すためのCD−ROMド
ライブ34などが備えられている。
The transmission / reception control unit 18, the propagation time calculation unit 24, and the calculation unit 28 described above are actually a CPU (central processing unit) 30 that operates based on a predetermined program included in the computer. The above-mentioned program may be stored in an internal memory of a computer or may be stored in a CD-ROM.
(Compact disk-read-only memory) 32 and FD
It can also be stored in an external recording medium such as a (flexible disk). When stored in the above-mentioned external recording medium, a CD-ROM drive 34 for reading the stored information is provided.

【0024】次に、軸力の算出方法について詳述する。
図2には、軸力Fが負荷されて軸方向に伸びるボルト1
4のモデルが示されている。ボルト14は、頭部40
と、これに続く軸部42と、さらに先端に、周囲にねじ
が切られているねじ部44を有している。ねじ部44に
は部品12がねじ結合している。ボルト14内の応力場
は、実際には一様なものではない。すなわち、ボルト頭
部40と軸部42の接合点付近のように軸径が急激に変
化する部分、特に頭部40においては、複雑な変形が生
じ、応力場も複雑なものとなる。また、部品12とねじ
結合している部分は、先端に行くほど軸応力が小さくな
る。このような複雑な応力場を、本実施形態において
は、一様な応力場、すなわち等価応力長さLeと等価断
面積Aeの円柱部分に一様な軸応力のみが作用する応力
場が形成されているとして取り扱う。なお、等価応力長
さは、実際に加えられた軸力によるボルトの伸びと、前
記の一様な応力場によるボルト伸びが一致するように定
められた前記円柱部分の長さのことである。また、以
後、ボルト長さLに対する等価応力長さLeである等価
応力長さ比をβ、軸力Fを等価断面積Aeで割った値を
平均軸応力σ、すなわち、
Next, the method of calculating the axial force will be described in detail.
FIG. 2 shows a bolt 1 that is axially loaded and extends axially.
Four models are shown. The bolt 14 has a head 40
And a shaft portion 42 following the shaft portion 42, and a threaded portion 44 that is threaded around the shaft portion 42. The component 12 is screwed to the screw portion 44. The stress field within the bolt 14 is not actually uniform. That is, in the portion where the shaft diameter changes abruptly, such as in the vicinity of the joint between the bolt head 40 and the shaft 42, particularly in the head 40, complicated deformation occurs and the stress field also becomes complicated. Further, the axial stress of the portion that is screwed to the component 12 becomes smaller toward the tip. In the present embodiment, such a complicated stress field is formed as a uniform stress field, that is, a stress field in which only a uniform axial stress acts on a cylindrical portion having an equivalent stress length Le and an equivalent cross-sectional area Ae. Treat it as The equivalent stress length is the length of the cylindrical portion determined so that the elongation of the bolt due to the actually applied axial force and the elongation of the bolt due to the uniform stress field match. Further, hereinafter, the value obtained by dividing the equivalent stress length ratio, which is the equivalent stress length Le with respect to the bolt length L, by β and the axial force F by the equivalent cross-sectional area Ae, is the average axial stress σ, that is,

【数2】 β=Le/L ・・・(1) σ=F/Ae ・・・(2) として説明する。[Equation 2] β = Le / L (1) σ = F / Ae (2) As described below.

【0025】音速は、音の伝達媒体の応力により変化す
ることが知られており、応力σにおける横波・縦波の各
々の音速VS,VLは、応力が0(無負荷)のときの縦波
・横波の音速VS0,VL0、音弾性係数αS,αLを用い
て、
It is known that the speed of sound changes depending on the stress of the sound transmission medium, and the sonic speeds V S and VL of the transverse and longitudinal waves at the stress σ are the values when the stress is 0 (no load). Using longitudinal / transverse wave sound velocities V S0 and V L0 and sound elastic coefficients α S and α L ,

【数3】 VS=VS0(1−αSσ) ・・・(3) VL=VL0(1−αLσ) ・・・(4) と表せる。なお、以後、横波と縦波との式の形態が同一
であるときには、添え字「S」,「L」を省略して説明す
る。
(3) V S = V S0 (1-α S σ) (3) V L = V L0 (1-α L σ) (4) Note that, hereinafter, when the equations of the transverse wave and the longitudinal wave are the same, the subscripts " S " and " L " will be omitted.

【0026】また、ボルトの等価応力長さの微少部分d
xは、軸方向の応力が負荷された伸びるために、この部
分の音波伝播時間は、
Also, a minute portion d of the equivalent stress length of the bolt
Since x is an elongation that is loaded with an axial stress, the sound wave propagation time of this portion is

【数4】 と表される。以上より、ボルト全長を超音波が往復する
時間は、応力を受けていない部分(L−Le)の伝播時
間を合わせて、
[Equation 4] Is expressed as From the above, the time it takes for the ultrasonic waves to reciprocate over the entire length of the bolt is calculated by combining the propagation time of the unstressed part (L-Le)

【数5】 と表される。さらに、軸力が負荷されたことによる変
化、すなわち軸力負荷前後の音波の伝播時間の差ΔT
は、
[Equation 5] Is expressed as Furthermore, the change due to the axial force being applied, that is, the difference ΔT in the propagation time of the sound wave before and after the axial force is applied.
Is

【数6】 で表される。式(6),(7)から、本モデルにおいて
は等価応力長さ比βと、伝播時間Tおよび伝播時間ΔT
とは線形な関係にあることがわかる。
[Equation 6] It is represented by. From equations (6) and (7), in this model, the equivalent stress length ratio β, the propagation time T and the propagation time ΔT
It can be seen that has a linear relationship with.

【0027】まず、実際に軸力を測定するボルトと同種
のボルトにおいて、軸応力と、軸応力が加わる前後の音
波の伝播時間の差との関係を求める。軸応力σの複数の
値について伝播時間差ΔTを求め、横軸に軸応力σ、縦
軸に伝播時間差ΔTを採ったグラフに表し、近似線を求
めれば、図3(a)の実線のグラフを得ることができ
る。この実線で表される関数が伝播時間差−軸応力関数
である。
First, in a bolt of the same type as the bolt for actually measuring the axial force, the relationship between the axial stress and the difference in sound wave propagation time before and after the axial stress is applied is determined. The propagation time difference ΔT is obtained for a plurality of values of the axial stress σ, and the graph is shown by taking the axial stress σ on the horizontal axis and the propagation time difference ΔT on the vertical axis. If an approximate line is obtained, the solid line graph of FIG. Obtainable. The function represented by this solid line is the propagation time difference-axial stress function.

【0028】また、実際に軸力を測定するボルトと同種
のボルトにおいて、軸応力と、軸応力が加えられたとき
の音波の横波と縦波の伝播時間の比との関係を求める。
軸応力σの複数の値について伝播時間比TS/TLを求
め、横軸に軸応力σ、縦軸に伝播時間比TS/TLを採っ
たグラフに表し、近似線を求めれば、図3(b)の実線
のグラフを得ることができる。この実線で表される関数
が伝播時間比−軸応力関数である。
Further, in a bolt of the same type as the bolt for actually measuring the axial force, the relationship between the axial stress and the ratio of the propagation time of the transverse wave to the longitudinal wave of the sound wave when the axial stress is applied is obtained.
If the propagation time ratio T S / T L is calculated for a plurality of values of the axial stress σ, the horizontal axis represents the axial stress σ, and the vertical axis represents the propagation time ratio T S / T L. The solid line graph of FIG. 3B can be obtained. The function represented by this solid line is the propagation time ratio-axial stress function.

【0029】次に、測定対象のボルト14に対し、軸力
をかけない状態すなわち無負荷の状態で、超音波の送受
信を行い、伝播時間の測定を行う。この伝播時間によ
り、図3(a),(b)のグラフを作成したときのボル
トの長さと、測定対象のボルト14の長さの差が分か
る。次に、このボルト14を締め付け、軸力がかかった
状態、すなわち負荷状態で超音波の送受信を行い伝播時
間の測定を行う。ボルト締め付け前後の伝播時間の差Δ
Mと図3(a)の伝播時間差−軸応力関数から軸応力
(伝播時間差軸応力)σDを算出する。また、ボルト締
め付け後の音波の横波と縦波の伝播時間の比TS/T
Lと、図3(b)の伝播時間比−軸応力関数から軸応力
(伝播時間比軸応力)σRを算出する。なお、このと
き、ボルトの長さの個体差による誤差の影響を排除する
ため、無負荷状態の伝播時間から補正を行っている。
Next, ultrasonic waves are transmitted and received to measure the propagation time in a state where no axial force is applied to the bolt 14 to be measured, that is, in a state of no load. From this propagation time, the difference between the length of the bolt when the graphs of FIGS. 3A and 3B are created and the length of the bolt 14 to be measured can be known. Next, the bolt 14 is tightened, ultrasonic waves are transmitted / received under a state where an axial force is applied, that is, a load state, and the propagation time is measured. Difference in propagation time before and after bolt tightening Δ
The axial stress (transmission time difference axial stress) σ D is calculated from T M and the propagation time difference-axial stress function of FIG. In addition, the ratio of the propagation time of the transverse wave and the longitudinal wave of the sound wave after tightening the bolt T S / T
The axial stress (propagation time ratio axial stress) σ R is calculated from L and the propagation time ratio-axial stress function of FIG. At this time, in order to eliminate the influence of the error due to the individual difference in the length of the bolt, the correction is performed from the propagation time in the unloaded state.

【0030】前述したように、このふたつの軸応力
σD,σRは、測定の方法が異なるのみで、測定対象は同
一であるから、本来一致するはずである。これらが一致
しないのは、図3(a),(b)を作成したときの応力
場と実際の測定の際の応力場が一致しない、すなわち等
価応力長さLe、または等価応力長さ比βが等しくない
ためであると考えられる。等価応力長さ比βが変化する
と、前述のように、式(6),(7)から伝播時間およ
び伝播時間差は線形に変化する。よって、伝播時間差−
軸応力関数と伝播時間比−軸応力関数は、図3(a),
(b)に示す破線のように変化する。よって、等価応力
長さ比βの、伝播時間差−軸応力関数、伝播時間比−軸
応力関数を求めたときの値に対する変化率を仮定すれ
ば、その仮定の等価応力長さ比β’に対する軸応力(修
正伝播時間差軸応力σD’,修正伝播時間比軸応力
σR’)を算出できる。このふたつの修正軸応力σD’,
σR’の差Δσ(=σR’−σD’)は、図3(c)に示
されるように等価応力長さ比β’に対して極小値ΔσM
を有する。この極小値ΔσMは理想的には0、すなわち
σD’=σR’となると考えられるが、現実には他の誤差
要因が存在し、0とはならない。したがって、二つの修
正軸応力σD’,σR’の相加平均を採って、これをその
ときの軸応力σとして算出する。
As described above, the two axial stresses σ D and σ R should originally be the same because the measurement objects are the same but the measurement methods are different. These do not match because the stress field when creating FIGS. 3A and 3B does not match the stress field at the time of actual measurement, that is, the equivalent stress length Le or the equivalent stress length ratio β. Is considered to be not equal. When the equivalent stress length ratio β changes, as described above, the propagation time and the propagation time difference change linearly from the equations (6) and (7). Therefore, the propagation time difference −
The axial stress function and the propagation time ratio-axial stress function are shown in FIG.
It changes like the broken line shown in (b). Therefore, assuming the rate of change of the equivalent stress length ratio β with respect to the values when the propagation time difference-axis stress function and the propagation time ratio-axis stress function are calculated, the axis for the hypothesized equivalent stress length ratio β ' The stress (corrected propagation time difference axis stress σ D ', modified propagation time ratio axis stress σ R ') can be calculated. These two modified axial stress σ D ',
sigma R 'difference Δσ (= σ R' -σ D ') are equivalent stress length ratio β as shown in FIG. 3 (c)' minimum values for .DELTA..sigma M
Have. It is considered that this minimum value Δσ M is ideally 0, that is, σ D '= σ R ', but in reality, there are other error factors and it does not become 0. Thus, two modified shaft stress σ D ', σ R' taking the arithmetic mean of the calculated this as axial stress sigma at that time.

【0031】図4には、本実施形態の軸力測定方法の流
れを示すチャートが示されている。準備として、あらか
じめ測定対象となるボルトと同種のボルトにて測定され
た、締め付け前後における伝播時間差と軸応力の関係を
示す伝播時間差−軸応力関数をメモリに記憶する。ま
た、締め付け後の音波の横波と縦波の伝播時間の比と軸
応力の関係を示す伝播時間比−軸応力関数をメモリに記
憶する。これらの関数が、図3(a),(b)における
実線である。
FIG. 4 is a chart showing the flow of the axial force measuring method of this embodiment. As a preparation, a memory stores a propagation time difference-axial stress function, which is measured in advance with a bolt of the same kind as the bolt to be measured and which shows the relationship between the propagation time difference before and after tightening and the axial stress. In addition, a propagation time ratio-axial stress function indicating the relationship between the axial stress and the ratio of the propagation time of the transverse wave and the longitudinal wave of the tightened sound wave is stored in the memory. These functions are the solid lines in FIGS. 3 (a) and 3 (b).

【0032】次に、実際の測定対象となるボルトに対
し、無負荷の状態で、音波の送受信を行い、伝播時間の
測定を行う(S100)。また、ボルトを締め付け負荷
状態で音波の送受信を行う(S102)。これらの測定
値に基づき、ボルト締め付け前後の伝播時間の差Δ
M、およびボルト締め付け後の横波と縦波の伝播時間
比TS/TLを算出する(S104,S106)。伝播時
間差ΔTMと、伝播時間差−軸応力関数から軸応力σD
算出し、さらに等価応力長さβを変更して、修正伝播時
間差軸応力σD’を算出する(S108)。等価応力長
さβを変更することによって伝播時間差−軸応力関数
は、図3(a)の破線のような関数となり、伝播時間差
ΔTMが同じでも、等価応力長さβの値によって軸応力
が違った値をとる。また、伝播時間比TS/TLと、伝播
時間比−軸応力関数から軸応力σRを算出し、さらに等
価応力長さβを変更して、修正伝播時間比軸応力σR
を算出する(S110)。等価応力長さβを変更するこ
とによって伝播時間比−軸応力関数は、図3(b)の破
線のような関数となり、伝播時間比TS/TLが同じで
も、等価応力長さβの値によって軸応力が違った値をと
る。
Next, sound waves are transmitted and received with no load applied to the bolt to be actually measured, and the propagation time is measured (S100). Further, the sound waves are transmitted / received in a loaded state with the bolts tightened (S102). Based on these measurements, the difference in propagation time before and after bolt tightening Δ
T M and the propagation time ratio T S / T L of the transverse wave and the longitudinal wave after tightening the bolt are calculated (S104, S106). The axial stress σ D is calculated from the propagation time difference ΔT M and the propagation time difference-axial stress function, and the equivalent stress length β is changed to calculate the corrected propagation time difference axial stress σ D ′ (S108). By changing the equivalent stress length β, the propagation time difference-axial stress function becomes a function as shown by the broken line in FIG. 3A, and even if the propagation time difference ΔT M is the same, the axial stress depends on the value of the equivalent stress length β. Takes different values. Further, the axial stress σ R is calculated from the propagation time ratio T S / TL and the propagation time ratio-axial stress function, and the equivalent stress length β is changed to modify the modified propagation time ratio axial stress σ R '
Is calculated (S110). By changing the equivalent stress length β, the propagation time ratio-axial stress function becomes a function as shown by the broken line in FIG. 3B, and even if the propagation time ratios T S / T L are the same, the equivalent stress length β The axial stress varies depending on the value.

【0033】そして、異なる方法によって求められた二
つの軸応力σD’,σR’の差Δσが最小になるように、
ステップS108,S110における等価応力長さβを
変更して、軸応力の差Δσが最小になるときの二つの軸
応力σD’,σR’の相加平均をそのときの軸応力σとし
て算出する(S112)。
Then, the difference Δσ between the two axial stresses σ D 'and σ R ' determined by different methods is minimized.
By changing the equivalent stress length β in steps S108 and S110, the arithmetic mean of the two axial stresses σ D ′ and σ R ′ when the difference Δσ in axial stress is minimized is calculated as the axial stress σ at that time. (S112).

【0034】図5は、本実施形態の測定方法の効果を表
す図である。横軸は、等価応力長さβの変更率を示し、
縦軸は、歪み測定などにより求められた実際の軸応力に
対する算出された軸応力の誤差率を示している。図中三
角(△)は、等価応力長さの変更を行う補正をせずに算
出されたデータであり、実線がこれらのデータの近似線
である。また、図中黒まる(●)は、本実施形態の測定
方法に従い、等価応力長さを変更して求めたデータであ
り、一点鎖線はこれらのデータの近似線である。この結
果から、等価応力長さβが実際の測定において変化して
も、これの影響が小さくなっていることが分かる。
FIG. 5 is a diagram showing the effect of the measuring method of this embodiment. The horizontal axis shows the change rate of the equivalent stress length β,
The vertical axis represents the error rate of the calculated axial stress with respect to the actual axial stress obtained by strain measurement or the like. The triangles (Δ) in the figure are data calculated without correction for changing the equivalent stress length, and the solid line is an approximate line of these data. Further, the black circles (●) in the figure are data obtained by changing the equivalent stress length according to the measuring method of the present embodiment, and the alternate long and short dash line is an approximate line of these data. From this result, it can be seen that even if the equivalent stress length β changes in the actual measurement, the effect thereof is small.

【0035】なお、本実施形態においては、ボルト締め
付け時の軸応力を測定する場合を例にあげて説明した
が、他の部品の軸応力を測定する場合にも適用できる。
また、本実施形態においては、音波の、ボルト全長を往
復する伝播時間を測定した。すなわち音波を送信する点
と受信する点が同一の点となる場合について説明した
が、ボルトの一端から他端までの伝播時間を測定しても
よく、部品の形状などにより、測定しやすい2点間を採
ることができる。
In this embodiment, the case where the axial stress at the time of tightening the bolt is measured has been described as an example, but it can be applied to the case where the axial stress of other parts is measured.
Further, in the present embodiment, the propagation time of the sound wave traveling back and forth over the entire length of the bolt was measured. That is, the case where the point of transmitting the sound wave and the point of receiving the sound wave are the same point has been described, but the propagation time from one end of the bolt to the other end may be measured, and the two points that are easy to measure depending on the shape of parts You can take time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施形態の測定装置の概要構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing a schematic configuration of a measuring apparatus of this embodiment.

【図2】 ボルトのモデルを示す図である。FIG. 2 is a diagram showing a model of a bolt.

【図3】 本実施形態の測定方法を説明するための図で
ある。
FIG. 3 is a diagram for explaining the measuring method of the present embodiment.

【図4】 本実施形態の測定方法を示すフローチャート
である。
FIG. 4 is a flowchart showing a measuring method of the present embodiment.

【図5】 本実施形態の測定により測定された軸応力の
データを示す図である。
FIG. 5 is a diagram showing axial stress data measured by the measurement of the present embodiment.

【符号の説明】[Explanation of symbols]

14 (六角)ボルト、16 超音波探触子(送信手
段、受信手段)、18送受信制御部、20 送信回路
(送信手段)、22 受信回路(受信手段)、24 伝
播時間算出部(伝播時間測定手段)、26 メモリ(記
憶手段)、28演算部(演算手段)、32 CD−RO
M(記録媒体)、34 CD−ROMドライブ、β 等
価応力長さ比(=Le/L)、σ 軸応力、σD 伝播時
間差軸応力、σD’ 修正伝播時間差軸応力、σR 伝播
時間比軸応力、σR’ 修正伝播時間比軸応力。
14 (hexagonal) bolt, 16 ultrasonic probe (transmission means, reception means), 18 transmission / reception control section, 20 transmission circuit (transmission means), 22 reception circuit (reception means), 24 propagation time calculation section (transmission time measurement) Means), 26 memory (storage means), 28 operation unit (operation means), 32 CD-RO
M (recording medium), 34 CD-ROM drive, β equivalent stress length ratio (= Le / L), σ axis stress, σ D propagation time difference axis stress, σ D 'corrected propagation time difference axis stress, σ R propagation time ratio Axial stress, σ R 'Modified propagation time ratio axial stress.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 部品の軸方向に加わる軸応力を、当該部
品中を伝わる音波の、当該部品の所定の点の間の伝播時
間に基づき測定する軸応力測定方法であって、 測定対象となる部品と同種の部品にて、軸応力と、軸応
力が加わる前後の音波の横波または縦波の伝播時間の差
との関係を示す伝播時間差−軸応力関数を求めるステッ
プと、 測定対象となる部品の同種の部品にて、軸応力と、軸応
力が加わったときの音波の横波と縦波の伝播時間の比と
の関係を示す伝播時間比−軸応力関数を求めるステップ
と、 測定対象部品に実際に軸応力が加えられる前後の音波の
横波または縦波の伝播時間の差から、前記伝播時間差−
軸応力関数に基づき伝播時間差軸応力を算出するステッ
プと、 測定対象部品に実際に軸応力が加えられたときの音波の
横波と縦波の伝播時間の比から、前記伝播時間比−軸応
力関数に基づき伝播時間比軸応力を算出するステップ
と、 前記伝播時間差軸応力に基づき、部品の軸方向長さに対
する等価応力長さの比である等価応力長さ比を変更した
ときの軸応力である修正伝播時間差軸応力を算出するス
テップと、 前記伝播時間比軸応力に基づき、等価応力長さ比を変更
したときの軸応力である修正伝播時間比軸応力を算出す
るステップと、 前記修正伝播時間差軸応力を算出するステップと前記修
正伝播時間比軸応力を算出するステップにおいて、等価
軸応力長さ比を順次変更し、前記修正伝播時間差軸応力
と前記修正伝播時間比軸応力の差が実質的に最小となる
ときの、これらの修正された軸応力に基づき実際の軸応
力を算出するステップと、を有する軸応力測定方法。
1. A method for measuring an axial stress applied in the axial direction of a component based on a propagation time of a sound wave propagating through the component between predetermined points of the component, which is a measurement target. In the same type of parts, the step of obtaining the propagation time difference-axial stress function that shows the relationship between the axial stress and the difference in the propagation time of the transverse or longitudinal waves of the acoustic wave before and after the axial stress is applied, and the part to be measured In the same type of parts, the step of obtaining the propagation time ratio-axial stress function, which shows the relationship between the axial stress and the ratio of the propagation time of the transverse wave and the longitudinal wave of the sound wave when the axial stress is applied, From the difference in the propagation time of the transverse or longitudinal waves of the acoustic wave before and after the axial stress is actually applied, the propagation time difference −
Propagation time difference based on the axial stress function The step of calculating the axial stress, and the ratio of the propagation time of the transverse wave and the longitudinal wave of the acoustic wave when the axial stress is actually applied to the measurement target component, the propagation time ratio-the axial stress function And a step of calculating the propagation time ratio axial stress based on the above, based on the propagation time difference axial stress, is the axial stress when changing the equivalent stress length ratio which is the ratio of the equivalent stress length to the axial length of the component A step of calculating a modified propagation time difference axial stress, a step of calculating a modified propagation time ratio axial stress that is an axial stress when the equivalent stress length ratio is changed based on the propagation time ratio axial stress, and the modified propagation time difference In the step of calculating the axial stress and the step of calculating the modified propagation time ratio axial stress, the equivalent axial stress length ratio is sequentially changed, and the difference between the modified propagation time difference axial stress and the modified propagation time ratio axial stress is Calculating the actual axial stress based on these modified axial stresses when substantially minimized.
【請求項2】 部品の軸方向に加わる軸応力を、当該部
品中を伝わる音波の、当該部品の所定の点の間の伝播時
間に基づき測定する軸応力測定装置であって、 前記部品に対し音波を送信する送信手段と、 前記送信された音波を前記部品より、音波の横波と縦波
を分離して受信する受信手段と、 音波が送信されてから受信されるまでの伝播時間を測定
する伝播時間測定手段と、 測定対象となる部品と同種の部品における諸関数を記憶
する記憶手段であって、当該記憶手段は、 軸応力と、軸応力が加わる前後の音波の横波または縦波
の伝播時間の差との関係を示す伝播時間差−軸応力関数
と、 軸応力と、軸応力が加わったときの音波の横波と縦波の
伝播時間の比との関係を示す伝播時間比−軸応力関数
と、 部品の軸方向長さに対する等価応力長さの比である等価
応力長さ比と音波の横波および縦波の伝播時間差の関係
である伝播時間差関数と、を記憶する記憶手段と、 測定対象部品の軸応力を算出する演算手段であって、当
該演算手段は、 測定対象部品に実際に軸応力が加えられる前後の音波の
横波または縦波の伝播時間の差から、前記伝播時間差−
軸応力関数に基づき伝播時間差軸応力を算出し、 測定対象部品に実際に軸応力が加えられたときの音波の
横波と縦波の伝播時間の比から、前記伝播時間比−軸応
力関数に基づき伝播時間比軸応力を算出し、 前記伝播時間差軸応力と前記伝播時間差関数に基づき、
等価応力長さ比を変更したときの軸応力である修正伝播
時間差軸応力を算出し、 前記伝播時間比軸応力と前記伝播時間差関数に基づき、
等価応力長さ比を変更したときの軸応力である修正伝播
時間比軸応力を算出し、 前記修正伝播時間差軸応力および前記修正伝播時間比軸
応力の算出において、等価軸応力長さ比を順次変更し、
前記修正伝播時間差軸応力と前記修正伝播時間比軸応力
の差が実質的に最小となるときの、これらの修正された
軸応力に基づき実際の軸応力を算出する演算手段と、を
有する軸応力算出装置。
2. An axial stress measuring device for measuring axial stress applied in the axial direction of a component based on a propagation time of a sound wave propagating through the component between predetermined points of the component, wherein Transmitting means for transmitting a sound wave, receiving means for receiving the transmitted sound wave by separating the transverse and longitudinal waves of the sound wave from the component, and measuring the propagation time from the transmission of the sound wave to the reception Propagation time measurement means and storage means for storing various functions in the same kind of parts as the measurement target parts, wherein the storage means are the axial stress and the propagation of transverse or longitudinal waves of acoustic waves before and after the axial stress is applied. Propagation time difference-Axial stress function that shows the relationship with time difference, and Propagation time ratio-Axial stress function that shows the relationship between axial stress and the ratio of the propagation time of transverse wave and longitudinal wave of sound wave when axial stress is applied And the equivalent stress for the axial length of the part A storage means for storing the equivalent stress length ratio, which is the ratio of the thickness, and the propagation time difference function, which is the relationship between the propagation time differences of the transverse and longitudinal waves of sound waves, and a calculation means for calculating the axial stress of the measurement target component. The calculation means calculates the propagation time difference from the difference in the propagation time of the transverse wave or longitudinal wave of the acoustic wave before and after the axial stress is actually applied to the measurement target component.
Propagation time difference based on the axial stress function Calculate the axial stress, and from the ratio of the propagation time of the transverse wave and the longitudinal wave of the acoustic wave when the axial stress is actually applied to the measurement target component, based on the propagation time ratio-axial stress function Calculate the propagation time ratio axial stress, based on the propagation time difference axial stress and the propagation time difference function,
Calculate the modified propagation time difference axial stress is the axial stress when the equivalent stress length ratio is changed, based on the propagation time ratio axial stress and the propagation time difference function,
Calculate the modified propagation time ratio axial stress which is the axial stress when the equivalent stress length ratio is changed, and in the calculation of the modified propagation time difference axial stress and the modified propagation time ratio axial stress, the equivalent axial stress length ratio is sequentially change,
And a calculation means for calculating an actual axial stress based on these modified axial stresses when the difference between the modified propagation time difference axial stresses and the modified propagation time ratio axial stresses is substantially minimized. Calculator.
【請求項3】 部品に加わる軸応力と、前記軸応力が加
わる前後の部品の所定点間の音波の横波または縦波の伝
播時間の差との関係を示す伝播時間差−軸応力関数をメ
モリから読み込む手順と、 軸応力と、軸応力が加わったときの音波の横波と縦波の
伝播時間の比との関係を示す伝播時間比−軸応力関数を
メモリから読み込む手順と、 部品の軸方向長さに対する等価応力長さの比である等価
応力長さ比と音波の横波および縦波の伝播時間差の関係
である伝播時間差関数を読み込む手順と、 測定対象部品に実際に軸応力が加えられる前後の音波の
横波または縦波の伝播時間の差から、前記伝播時間差−
軸応力関数に基づき伝播時間差軸応力を算出する手順
と、 測定対象部品に実際に軸応力が加えられたときの音波の
横波と縦波の伝播時間の比から、前記伝播時間比−軸応
力関数に基づき伝播時間比軸応力を算出する手順と、 前記伝播時間差軸応力と前記伝播時間差関数に基づき、
等価応力長さ比を変更したときの軸応力である修正伝播
時間差軸応力を算出する手順と、 前記伝播時間比軸応力と前記伝播時間差関数に基づき、
等価応力長さ比を変更したときの軸応力である修正伝播
時間比軸応力を算出する手順と、 前記修正伝播時間差軸応力および前記修正伝播時間比軸
応力の算出において、等価軸応力長さ比を順次変更し、
前記修正伝播時間差軸応力と前記修正伝播時間比軸応力
の差が実質的に最小となるときの、これらの修正された
軸応力に基づき実際の軸応力を算出する手順と、をコン
ピュータに実行させるためのプログラムを記録したコン
ピュータ読み取り可能な記録媒体。
3. A propagation time difference-axial stress function indicating the relationship between the axial stress applied to a part and the difference in the propagation time of a transverse wave or a longitudinal wave of a sound wave between predetermined points of the part before and after the axial stress is applied from a memory. The procedure to read, the procedure to read the axial stress and the ratio of the propagation time of the transverse wave to the longitudinal wave of the sound wave when the axial stress is applied-the procedure to read the axial stress function from the memory, and the axial length of the part Of the equivalent stress length ratio, which is the ratio of the equivalent stress length to the length, and the procedure for reading the propagation time difference function, which is the relationship between the propagation time difference between the transverse and longitudinal waves of a sound wave, and From the difference in the propagation time of the transverse or longitudinal waves of the sound wave, the propagation time difference −
Propagation time difference based on the axial stress function Procedure to calculate the axial stress, and the ratio of the propagation time of the transverse wave and the longitudinal wave of the acoustic wave when the axial stress is actually applied to the measurement target component, the propagation time ratio-axial stress function Based on the procedure to calculate the propagation time ratio axial stress, based on the propagation time difference axial stress and the propagation time difference function,
Based on the procedure of calculating a modified propagation time difference axial stress that is the axial stress when the equivalent stress length ratio is changed, based on the propagation time ratio axial stress and the propagation time difference function,
A procedure for calculating a modified propagation time ratio axial stress that is an axial stress when the equivalent stress length ratio is changed, and an equivalent axial stress length ratio in calculating the modified propagation time difference axial stress and the modified propagation time ratio axial stress. Sequentially changed,
Causing the computer to execute a procedure of calculating an actual axial stress based on the corrected propagation time difference axial stress and the corrected propagation time ratio axial stress when the difference between the corrected propagation time difference axial stress is substantially minimum. A computer-readable recording medium in which a program for recording is recorded.
JP33671497A 1997-12-08 1997-12-08 Axial stress measurement method and axial stress measurement device Expired - Fee Related JP3518296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33671497A JP3518296B2 (en) 1997-12-08 1997-12-08 Axial stress measurement method and axial stress measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33671497A JP3518296B2 (en) 1997-12-08 1997-12-08 Axial stress measurement method and axial stress measurement device

Publications (2)

Publication Number Publication Date
JPH11166870A JPH11166870A (en) 1999-06-22
JP3518296B2 true JP3518296B2 (en) 2004-04-12

Family

ID=18302040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33671497A Expired - Fee Related JP3518296B2 (en) 1997-12-08 1997-12-08 Axial stress measurement method and axial stress measurement device

Country Status (1)

Country Link
JP (1) JP3518296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111611706B (en) * 2020-05-18 2023-05-05 河南九域恩湃电力技术有限公司 Screw joint pretightening force estimating method and computer readable medium storing screw joint pretightening force estimating program
CN115855350B (en) * 2022-11-25 2023-06-09 哈尔滨工业大学 Bolt axial force measuring method based on combination of primary trailing wave and transverse wave

Also Published As

Publication number Publication date
JPH11166870A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
JP2009268622A5 (en)
CN106643939A (en) Method for calculating ultrasonic transmission time through ultrasonic flowmeter
EP2850406B1 (en) Transducer acceleration compensation using a delay to match phase characteristics
KR20200129937A (en) Apparatus and method for measuring the axial force of bolt
JP3518296B2 (en) Axial stress measurement method and axial stress measurement device
EP3850324A1 (en) Assembly and method for measuring strain in a washer
CN107576964B (en) Echo time measuring method of linear frequency conversion signal
JP3551013B2 (en) Axial force measuring method and axial force measuring device
CN111426288B (en) Multi-strain gauge combined measurement method and system thereof
JP2001304992A (en) Method and apparatus for diagnosing stress of ground anchor
JP4088342B2 (en) Method for determining the axial load of an elongated member
CN114636504B (en) Method for detecting axial stress of bolts of train braking system
JPH063384B2 (en) Ultrasonic flow meter
JPH09288022A (en) Axial stress measuring instrument for bolt
JP2004157141A (en) Axial tension measuring method and instrument
JP2001116733A (en) Ultrasonic sensor and material-measuring apparatus
JP2711208B2 (en) Measurement method of sound velocity in tissue
JPH10300565A (en) Method and device for measuring surface wave sound velocity
JP2004226413A (en) Axial force measuring method and device
JP3125491B2 (en) Ultrasonic axial force measuring method and device
JPH1096673A (en) Apparatus for measuring axial stress of bolt
CN211452527U (en) Ultrasonic liquid level meter
JP3276204B2 (en) Low temperature measurement system for elasticity, internal wear and sound velocity
JPH05164631A (en) Method and apparatus for measuring stress
JPH08170933A (en) Method and device for measuring axial force of bolt and measuring jig therefore

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees