JP3516738B2 - Resin composition - Google Patents

Resin composition

Info

Publication number
JP3516738B2
JP3516738B2 JP27706394A JP27706394A JP3516738B2 JP 3516738 B2 JP3516738 B2 JP 3516738B2 JP 27706394 A JP27706394 A JP 27706394A JP 27706394 A JP27706394 A JP 27706394A JP 3516738 B2 JP3516738 B2 JP 3516738B2
Authority
JP
Japan
Prior art keywords
resin
parts
refractive index
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27706394A
Other languages
Japanese (ja)
Other versions
JPH08113691A (en
Inventor
三夫 大谷
吉郎 鈴木
正博 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27706394A priority Critical patent/JP3516738B2/en
Publication of JPH08113691A publication Critical patent/JPH08113691A/en
Application granted granted Critical
Publication of JP3516738B2 publication Critical patent/JP3516738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、環境温度により透明性
が可逆的に変化し白化性を有する樹脂組成物に関する。 【0002】 【従来の技術】屈折率の温度依存性の若干異なる樹脂の
ブレンド物は公知であり、例えばメタクリル系、あるい
はスチレン系耐衝撃性樹脂等のブレンド物は、通常常温
でほぼ透明であり、100℃以上の温度になって初めて
白濁するが、20〜30℃の温度差ではその白濁の程度
は非常に少ない。また、上記以外のブレンド物の場合に
は通常互いの樹脂の相溶性が悪く、ブレンドしても良好
な透明性が得られる樹脂組成物は見出されていなかっ
た。 【0003】 【発明が解決しようとする課題】本発明は、環境温度に
より透明性が可逆的に変化し白化性を有する樹脂組成
物、さらに詳しくは、常温で良好な透明性を有するが4
0〜50℃で白化して不透明になる、あるいはこの逆で
40〜50℃では透明であるが常温で不透明になる等、
20〜30℃の温度差で透明性が可逆的に変化する樹脂
組成物を提供することを目的とする。 【0004】 【課題を解決するための手段】本発明者らは、環境温度
により透明性が可逆的に変化し白化性を有する樹脂組成
物に関し鋭意研究した結果、本発明を完成するに至っ
た。すなわち、本発明は、熱可塑性樹脂A10〜90重
量部と、架橋構造樹脂B90〜10重量部とからなり
架橋構造樹脂Bは多層構造体からなり、各内層が実質的
に架橋されており、各内層の重量の和が架橋構造樹脂B
の30重量%以上であって、かつその最外層は流動性を
有すると共に、熱可塑性樹脂Aとのブレンドにおいて良
好な相溶性と透明性を有し;熱可塑性樹脂Aの屈折率の
温度による傾きと、架橋構造樹脂Bの少なくとも一つの
内層における屈折率の温度による傾きとの差(ΔN)が
式(1)を満足することを特徴とする樹脂組成物に関す
る。 【0005】 【数2】 【0006】(ただし、NdAq ,NdAp は、熱可塑
性樹脂Aでの、それぞれq℃およびp℃における屈折率
であり、NdXq ,NdXp は、架橋構造樹脂Bの内層
Xでの、それぞれq℃およびp℃における屈折率を表わ
す。) 【0007】以下、本発明を詳細に説明する。一般に、
2種以上の樹脂をブレンドすることにより透明性を得る
ことが可能であるが、その条件としては次のとおりであ
る。 【0008】樹脂が2種類であるとすれば、(1)双方
の樹脂の屈折率は異なるが良好な相溶性を有し、双方の
樹脂がミクロ分散しているか、あるいは(2)双方の樹
脂の屈折率が等しいが互いに溶融せず、一方の樹脂が均
一樹脂層となり、他の樹脂にミクロ分散しており、さら
に良好な透明性を得るにはミクロ分散している樹脂の最
外層が均一樹脂層と良好な相溶性を有する場合である。 【0009】なお(1)の場合、温度が変化しても透明
性は保持されるが、(2)の場合は双方の樹脂の屈折率
が等しいことによって透明となるが故に、双方の樹脂に
おける屈折率の温度依存性が異なる場合、温度変化によ
り白化現象が生じることになる。 【0010】しかしながら、樹脂の屈折率の温度依存性
の差は小さく50℃以上の変化で初めて白化現象が生じ
るのが一般的であり、上記条件を満足し、かつ20〜3
0℃の違いで白化性を有する樹脂を見出すことは非常に
困難である。 【0011】本発明者らは、上記点に注目し、検討を重
ねた結果、上記条件を満足し、かつ20〜30℃の違い
で白化性を有する樹脂の特定な組合せを見出すととも
に、さらに本発明の目的を達成するためには、式(1)
を満足することが必要であることを見出した。 【0012】なお、ΔN値として好ましくはΔN≧1.
5×10-4/℃である。ΔN<1×10-4/℃の場合に
は20〜30℃の温度差で透明性の変化が非常に少なく
なり好ましくない。 【0013】なお、両屈折率の温度による傾きの差(Δ
N)が大きいということは、例えば25℃でブレンドし
ている双方の樹脂の屈折率が25℃で等しく良好な透明
性を有している樹脂が、50℃では双方の樹脂の屈折率
が大きく異なり、ミクロ分散している粒子の界面での光
の散乱が大きくなり、結果として強い白化現象が生じる
ことを意味する。 【0014】本発明における熱可塑性樹脂Aとしては、
式(1)を満足するものであれば特に限定されないが、
例えば芳香族ビニル単量体単位、および/またはメタク
リル酸アルキルエステル単量体単位からなるブロック単
位と、イソプレン重合体、ブタジエン重合体、イソプレ
ン−ブタジエン共重合体等の部分的もしくは完全に水素
化されたブロック単位とから構成されるブロック共重合
体であることが好ましい。 【0015】本発明の樹脂組成物において、熱可塑性樹
脂Aと架橋構造樹脂Bとの割合は前者が10〜90重量
部、後者が90〜10重量部であることが必要である。
熱可塑性樹脂の割合が10重量部より少ないと樹脂組成
物の流動性が悪くなり、従って成形性が低下するととも
に透明性の変化も少なくなり、またそれが90重量部よ
り多い場合には透明性の変化が著しく少なくなり好まし
くない。 【0016】本発明における架橋構造樹脂Bは2層以上
の多層構造体よりなり、乳化重合法により製造される。
そして、その各内層は実質的に架橋されており、かつ各
内層の重量の和が架橋構造樹脂Bの30重量%以上であ
る。さらにそれは熱可塑性樹脂Aに均一に分散するが、
溶融混合はしない。各内層の重量の和が30重量%未満
では、透明性の変化が少なくなる。また、その最外層は
流動性を有し、熱可塑性樹脂Aとのブレンドにおいて良
好な相溶性を有するものである。さらに熱可塑性樹脂A
と架橋構造樹脂Bとのブレンドにおいては必ずしも常温
で透明で無くても良いが、架橋構造樹脂Bの最外層を単
独で熱可塑性樹脂Aとブレンドした場合は、広い温度範
囲で良好な透明性を有するものが好ましい。 【0017】なお、架橋構造樹脂Bとして次のような具
体例が挙げられる。すなわち、その内層はメタクリル酸
メチル単位70〜99重量%、芳香族ビニル単量体単位
1〜30重量%、これらと共重合可能な他のエチレン性
不飽和単量体単位0〜20重量%、多官能架橋性単量体
単位および、または多官能グラフト単量体単位0.1〜
5重量%からなる共重合体であり、またその外層はメタ
クリル酸メチル単位70〜100重量%、アルキル基の
炭素数が1〜8である少なくとも1種のアクリル酸アル
キルエステル単位0〜20重量%、およびこれらと共重
合可能な他のエチレン性不飽和単量体単位0〜30重量
%からなるものであって、20℃クロロホルム中で測定
した固有粘度が0.10〜0.50dl/gである共重
合体であることが好ましい。 【0018】本発明の樹脂組成物におけるブレンド方法
としては、ペレット化、シート化あるいはフィルム化等
において押出し機内で溶融混合する方法が一般的である
が、特に限定されることはない。 【0019】また、本発明の樹脂組成物に対して通常用
いられている紫外線吸収剤、滑剤、染顔料等を必要に応
じて添加することができる。 【0020】本発明の樹脂組成物により得られた射出成
形品、シートおよびフィルムは、20〜30℃の温度差
で透明性の変化が非常に顕著であり、目的とする用途へ
の展開が可能である。 【0021】 【実施例】次に本発明を実施例により詳細に説明する
が、本発明はこれらによって限定されるものではない。
なお、各実施例における%、および部はそれぞれ重量
%、重量部を表す。 【0022】また各物性は次に示す方法により求めた。 (1)固有粘度:クロロホルム中に一定濃度のアクリル
系樹脂を溶解して、20℃にて自動粘度計(仏fica
社製)にて測定した。 (2)粒子径:電子顕微鏡で測定した。 (3)全光線透過率・ヘイズ:ASTM−D1003
(2mm厚) (4)屈折率:デジタル精密屈折計 KPR−20(カ
ルニュー光学工業製) なお本実施例に用いた熱可塑性樹脂A(以下、熱可塑性
樹脂を樹脂と略記する場合がある)、および架橋構造樹
脂Bは以下の方法により製造した。樹脂製造例での/は
共重合体組成、−はブロック重合体組成を示す。 【0023】樹脂(A−1)の製造 耐圧反応容器にシクロヘキサン500部およびS−ブチ
ルリチウム14部を仕込み、50℃に昇温した後スチレ
ン50部を連続滴下し、次いでイソプレン300部を連
続的に仕込み、その後にスチレン50部を連続的に仕込
んで10時間重合した。次いで反応系を水素で置換し、
ケイソウ土担持ニッケル触媒を8倍加えて15kg/c
2 の水素圧下、150℃で10時間反応させた。反応
生成物をシクロヘキサンで希釈して触媒を濾別し、濾液
を減圧下で濃縮乾燥して樹脂(A−1)を得た。NMR
によりスチレン−水添イソプレン−スチレンの3元ブロ
ック共重合体であることを確認し、スチレン含有率は2
5%であった。ヨウ素価による水添率は99%であっ
た。また、樹脂(A−1)の20℃での屈折率(Nd)
は1.500であり、屈折率の温度依存係数(ΔNd)
は−2.93×10-4/℃であった。 【0024】樹脂(A−2)の製造 樹脂(A−1)と同様の方法により、スチレン含有率5
0%、ヨウ素価による水添率97%のスチレン−水添イ
ソプレン/ブタジエン(60%/40%)−スチレンの
3元ブロック共重合体を得た。また、樹脂(A−2)の
20℃での屈折率(Nd)は1.530であり、屈折率
の温度依存係数(ΔNd)は−2.32×10-4/℃で
あった。 【0025】樹脂(A−3)の製造 樹脂(A−1)と同様の方法により、スチレン/メタク
リル酸メチル含有率15%/15%、ヨウ素価による水
添率93%のスチレン/メタクリル酸メチル−水添イソ
プレン−スチレン/メタクリル酸メチルの3元ブロック
共重合体を得た。また、樹脂(A−3)の20℃での屈
折率(Nd)は1.487であり、屈折率の温度依存係
数(ΔNd)は−2.60×10-4/℃であった。 【0026】樹脂(A−4)の製造 還流コンデンサ−付き反応容器に、懸濁分散剤を含むイ
オン交換水100部を仕込み、次いでメタクリル酸メチ
ル85部、アクリル酸メチル15部、ラウロイルパーオ
キサイド0.5部、n−オクチルメルカプタン0.7部
の混合液を仕込み、撹拌しながら窒素雰囲気下80℃で
2時間、次いで95℃で1時間重合して、固有粘度0.
31dl/gの樹脂ビーズを得た。得られた樹脂ビーズ
30部と樹脂(A−1)70部を均一溶融混合して樹脂
(A−4)を得た。樹脂(A−4)の20℃での屈折率
(Nd)は1.496であり、屈折率の温度依存係数
(ΔNd)は−2.28×10-4/℃であった。 【0027】樹脂(A−5)の製造 還流コンデンサー付き反応容器に、懸濁分散剤を含むイ
オン交換水100部を仕込み、次いでメタクリル酸メチ
ル95部、アクリル酸メチル5部、ラウロイルパーオキ
サイド0.4部、n−オクチルメルカプタン0.2部の
混合液を仕込み、撹拌しながら窒素雰囲気下80℃で2
時間、次いで95℃で1時間重合して、固有粘度0.5
4dl/gの樹脂(A−5)ビーズを得た。樹脂(A−
5)の20℃での屈折率(Nd)は1.490であり、
屈折率の温度依存係数(ΔNd)は−0.79×10-4
/℃であった。 【0028】架橋構造樹脂(B−1)の製造 還流コンデンサー付き反応容器にイオン交換水200
部、ジオクチルスルホコハク酸ナトリウム1部を仕込
み、窒素雰囲気下で撹拌しながら70℃に昇温後、メタ
クリル酸メチル60部、スチレン10部、メタクリル酸
アリル1部、1%過硫酸カリウム水溶液1部を仕込んで
60分間反応させて重合を完了し内層を形成した。次い
で1%過硫酸カリウム水溶液0.5部を仕込んだ後、メ
タクリル酸メチル25部、アクリル酸メチル5部、n−
オクチルメルカプタン0.24部からなる単量体混合物
を30分間かけて全量を連続滴下し、次いで60分間保
持して重合を完了させて外層を形成し、粒子径0.18
μmの二層構造樹脂ラテックスを得た。同一条件で外層
のみを重合して得られた樹脂の固有粘度は0.28dl
/gであった。また、内層の20℃での屈折率(Nd)
は1.500であり、屈折率の温度依存係数(ΔNd)
は−0.81×10-4/℃であった。得られたラテック
スを3%硫酸マグネシウム水溶液に添加して塩析凝固
し、水洗・乾燥して架橋構造樹脂(B−1)を得た。 【0029】架橋構造樹脂(B−2)の製造 還流コンデンサ−付き反応容器にイオン交換水200
部、ジオクチルスルホコハク酸ナトリウム1部を仕込
み、窒素雰囲気下で撹拌しながら70℃に昇温後、メタ
クリル酸メチル60部、スチレン10部、ジエチレング
リコールジメタクリレート1部、1%過硫酸カリウム水
溶液1部を仕込んで60分間反応させて重合し、粒子径
0.16μmの架橋樹脂ラテックスを得た。架橋樹脂層
の20℃での屈折率(Nd)は1.500であり、屈折
率の温度依存係数(ΔNd)は−0.81×10-4/℃
であった。 【0030】得られたラテックスを3%硫酸マグネシウ
ム水溶液に添加して塩析凝固し、水洗・乾燥して架橋構
造樹脂(B−2)を得た。 【0031】架橋構造樹脂(B−3)の製造 架橋構造樹脂(B−1)と同様の方法により、メタクリ
ル酸メチル30部、スチレン20部、1,3−ブチレン
グリコールジメタクリレート1.0部を重合してなる内
層と、メタクリル酸メチル45部、アクリル酸エチル5
部、n−オクチルメルカプタン0.3部を重合してなる
外層からなる、粒子径0.12μmの二層構造樹脂ラテ
ックスを得た。同一条件で外層のみを重合して得られた
樹脂の固有粘度は0.34dl/gであった。また、内
層の20℃での屈折率(Nd)は1.530であり、屈
折率の温度依存係数(ΔNd)は−0.95×10-4
℃であった。 【0032】得られたラテックスを3%硫酸マグネシウ
ム水溶液に添加して塩析凝固し、水洗・乾燥して架橋構
造樹脂(B−3)を得た。 【0033】架橋構造樹脂(B−4)の製造 架橋構造樹脂(B−1)と同様の方法により、メタクリ
ル酸メチル58部、アクリル酸メチル2部、メタクリル
酸アリル0.5部を重合してなる内層と、メタクリル酸
メチル39部、アクリル酸メチル1部、n−オクチルメ
ルカプタン0.3部を重合してなる外層からなる、粒子
径は0.23μmの二層構造樹脂ラテックスを得た。同
一条件で外層のみを重合して得られた樹脂の固有粘度は
0.29dl/gであった。また、内層の20℃での屈
折率(Nd)は1.489であり、屈折率の温度依存係
数(ΔNd)は−0.76×10-4/℃であった。 【0034】得られたラテックスを−20℃で凍結凝固
し、次いで80℃の温水中で融解後、水洗・乾燥して架
橋構造樹脂(B−4)を得た。 【0035】架橋構造樹脂(B−5)の製造 架橋構造樹脂(B−1)と類似の方法により、アクリル
酸ブチル50部、スチレン10部、メタクリル酸アリル
1部を重合してなる内層と、メタクリル酸メチル39
部、アクリル酸メチル1部、n−オクチルメルカプタン
0.3部を重合してなる外層からなる、粒子径0.08
μmの二層構造樹脂ラテックスを得た。同一条件で外層
のみを重合して得られた樹脂の固有粘度は0.48dl
/gであった。また、内層の20℃での屈折率(Nd)
は1.487であり、屈折率の温度依存係数(ΔNd)
は−1.42×10-4/℃であった。 【0036】得られたラテックスを−20℃で凍結凝固
し、次いで80℃の温水中で融解後、水洗・乾燥して架
橋構造樹脂(B−5)を得た。 【0037】実施例1〜7、比較例1〜2 樹脂Aと架橋構造樹脂Bをミキサーにて表1に示す組成
で混合し、窒素雰囲気下で密閉式ニーダー中に供給し、
230℃、100rpmの条件で5分間溶融混合した。
得られた混合物から熱プレス成形にて2mmの平板を成
形し、光学的性質を測定した。結果は表1のとおりであ
る。 【0038】 【表1】【0039】 【発明の効果】本発明の温度により白化性を有する樹脂
組成物は、20〜30℃の温度差で透明性の変化が非常
に顕著であり、この効果を生かし射出成形品、シートお
よびフィルムとしてカーポート、商店街のアーケードお
よび庇等のエクステリア、温室、車のサンバイザー等調
光を目的とした用途への展開が可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition having a whitening property in which transparency changes reversibly depending on environmental temperature. [0002] Blends of resins having slightly different temperature dependences of the refractive index are known. For example, a blend of a methacrylic or styrene-based impact-resistant resin is usually almost transparent at ordinary temperature. When the temperature reaches 100 ° C. or more, the degree of white turbidity is very small at a temperature difference of 20 to 30 ° C. In addition, in the case of blends other than those described above, the compatibility of the resins is usually poor, and no resin composition capable of obtaining good transparency even when blended has been found. [0003] The present invention relates to a resin composition having a whitening property in which the transparency is reversibly changed depending on the environmental temperature, and more specifically, a resin composition having good transparency at room temperature.
It becomes white and opaque at 0 to 50 ° C, or vice versa at 40 to 50 ° C, but becomes opaque at room temperature.
An object of the present invention is to provide a resin composition whose transparency reversibly changes at a temperature difference of 20 to 30 ° C. Means for Solving the Problems The present inventors have conducted intensive studies on a resin composition having a whitening property by reversibly changing the transparency depending on the environmental temperature. As a result, the present invention has been completed. . That is, the present invention comprises 10 to 90 parts by weight of a thermoplastic resin A and 90 to 10 parts by weight of a crosslinked structure resin B ;
The crosslinked structure resin B is composed of a multilayer structure, and each inner layer is substantially
And the sum of the weights of the inner layers is the cross-linked resin B
30% by weight or more, and the outermost layer has fluidity.
As well as good blending with thermoplastic resin A
It has good compatibility and transparency; the difference (ΔN) between the temperature-dependent gradient of the refractive index of the thermoplastic resin A and the temperature-dependent gradient of the refractive index of at least one inner layer of the crosslinked structure resin B is expressed by the formula (1). The present invention relates to a resin composition characterized by satisfying (1). [0005] (However, NdA q and NdA p are the refractive indexes of the thermoplastic resin A at q ° C. and p ° C., respectively, and NdX q and NdX p are the respective refractive indexes of the inner layer X of the crosslinked resin B. The refractive index is shown at q ° C. and p ° C.) The present invention will be described below in detail. In general,
Transparency can be obtained by blending two or more resins. The conditions are as follows. Assuming that there are two types of resins, (1) both resins have different refractive indices but have good compatibility, and both resins are micro-dispersed, or (2) both resins are micro-dispersed. The refractive indices are the same, but they do not melt with each other, one resin becomes a uniform resin layer and is micro-dispersed in the other resin, and in order to obtain better transparency, the outermost layer of the micro-dispersed resin is uniform This is the case where it has good compatibility with the resin layer. In the case of (1), the transparency is maintained even when the temperature changes, but in the case of (2), since the two resins are transparent due to the same refractive index, both resins are transparent. If the temperature dependence of the refractive index differs, whitening will occur due to a change in temperature. However, the difference in the temperature dependence of the refractive index of the resin is small, and a change of 50 ° C. or more generally causes the whitening phenomenon to occur, so that the above condition is satisfied and 20 to 3 is satisfied.
It is very difficult to find a resin having a whitening property at a difference of 0 ° C. The present inventors have paid attention to the above points, and as a result of repeated studies, have found a specific combination of resins that satisfy the above conditions and have a whitening property at a difference of 20 to 30 ° C. In order to achieve the object of the invention, the formula (1)
Was found to be necessary. The value of ΔN is preferably ΔN ≧ 1.
5 × 10 −4 / ° C. When ΔN <1 × 10 −4 / ° C., the change in transparency is very small at a temperature difference of 20 to 30 ° C., which is not preferable. The difference between the gradients of the refractive indices due to the temperature (Δ
The fact that N) is large means that, for example, a resin having a good transparency at 25 ° C. has a refractive index of both resins blended at 25 ° C., but has a large refractive index at 50 ° C. In contrast, it means that light scattering at the interface between the micro-dispersed particles is increased, resulting in a strong whitening phenomenon. The thermoplastic resin A in the present invention includes:
There is no particular limitation as long as the formula (1) is satisfied.
For example, a block unit composed of an aromatic vinyl monomer unit and / or a methacrylic acid alkyl ester monomer unit and a partially or completely hydrogenated isoprene polymer, butadiene polymer, isoprene-butadiene copolymer, etc. It is preferable that the block copolymer is composed of the following block units. In the resin composition of the present invention, the ratio of the thermoplastic resin A to the crosslinked structure resin B must be 10 to 90 parts by weight and the latter is 90 to 10 parts by weight.
When the proportion of the thermoplastic resin is less than 10 parts by weight, the fluidity of the resin composition is deteriorated, so that the moldability is reduced and the change in transparency is reduced, and when it is more than 90 parts by weight, the transparency is reduced. Change is remarkably reduced, which is not preferable. The crosslinked resin B of the present invention comprises a multilayer structure having two or more layers and is produced by an emulsion polymerization method.
Each of the inner layers is substantially crosslinked, and the sum of the weights of the respective inner layers is 30% by weight or more of the crosslinked resin B.
You. It is evenly dispersed in thermoplastic resin A,
No melt mixing. When the sum of the weights of the respective inner layers is less than 30% by weight, the change in transparency is small. Further, the outermost layer has a fluidity, and has good compatibility in a blend with a thermoplastic resin A. Furthermore, thermoplastic resin A
When blended with thermoplastic resin A alone, the outermost layer of crosslinked structure resin B does not necessarily have to be transparent at room temperature, but good transparency can be obtained over a wide temperature range. Are preferred. The following are specific examples of the crosslinked structure resin B. That is, the inner layer is composed of 70 to 99% by weight of methyl methacrylate units, 1 to 30% by weight of aromatic vinyl monomer units, 0 to 20% by weight of other ethylenically unsaturated monomer units copolymerizable therewith, Multifunctional crosslinkable monomer unit and / or polyfunctional graft monomer unit 0.1 to
5% by weight of a copolymer, and its outer layer is 70 to 100% by weight of methyl methacrylate units and 0 to 20% by weight of at least one alkyl acrylate unit having 1 to 8 carbon atoms in the alkyl group. And 0 to 30% by weight of other ethylenically unsaturated monomer units copolymerizable therewith, having an intrinsic viscosity of 0.10 to 0.50 dl / g measured in chloroform at 20 ° C. It is preferably a certain copolymer. The method of blending the resin composition of the present invention is generally a method of melting and mixing in an extruder in pelletizing, sheeting, film forming, etc., but is not particularly limited. Further, an ultraviolet absorber, a lubricant, a dye, and the like which are generally used for the resin composition of the present invention can be added as required. Injection molded articles, sheets and films obtained from the resin composition of the present invention have a very remarkable change in transparency at a temperature difference of 20 to 30 ° C., and can be developed for the intended use. It is. The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.
In addition,% and part in each Example represent% by weight and part by weight, respectively. Each physical property was determined by the following method. (1) Intrinsic viscosity: Dissolve a certain concentration of acrylic resin in chloroform, and at 20 ° C, use an automatic viscometer (fica, France)
Manufactured by the company). (2) Particle size: measured with an electron microscope. (3) Total light transmittance / haze: ASTM-D1003
(4 mm) (4) Refractive index: Digital precision refractometer KPR-20 (manufactured by Calnew Optical Co., Ltd.) The thermoplastic resin A used in this example (hereinafter, the thermoplastic resin may be abbreviated as resin), And the crosslinked structure resin B was produced by the following method. In the resin production examples, / indicates a copolymer composition and-indicates a block polymer composition. Production of Resin (A-1) 500 parts of cyclohexane and 14 parts of S-butyllithium were charged into a pressure-resistant reaction vessel, heated to 50 ° C., and 50 parts of styrene were continuously dropped, and then 300 parts of isoprene were continuously added. And then continuously charged with 50 parts of styrene and polymerized for 10 hours. The reaction system is then replaced with hydrogen,
Add diatomaceous earth-supported nickel catalyst 8 times and add 15kg / c
The reaction was carried out at 150 ° C. for 10 hours under a hydrogen pressure of m 2 . The reaction product was diluted with cyclohexane, the catalyst was separated by filtration, and the filtrate was concentrated and dried under reduced pressure to obtain a resin (A-1). NMR
As a result, it was confirmed that the copolymer was a styrene-hydrogenated isoprene-styrene ternary block copolymer.
5%. The hydrogenation rate based on the iodine value was 99%. Further, the refractive index (Nd) of the resin (A-1) at 20 ° C.
Is 1.500, and the temperature-dependent coefficient of refractive index (ΔNd)
Was -2.93 × 10 −4 / ° C. Production of Resin (A-2) A styrene content of 5 was prepared in the same manner as in the resin (A-1).
A styrene-hydrogenated isoprene / butadiene (60% / 40%)-styrene ternary block copolymer having a hydrogenation rate of 97% based on iodine value of 0% was obtained. The refractive index (Nd) at 20 ° C. of the resin (A-2) was 1.530, and the temperature dependence coefficient (ΔNd) of the refractive index was −2.32 × 10 −4 / ° C. Production of Resin (A-3) Styrene / methyl methacrylate having a styrene / methyl methacrylate content of 15% / 15% and a hydrogenation rate of 93% based on iodine value was prepared in the same manner as in the resin (A-1). -A hydrogenated isoprene-styrene / methyl methacrylate terpolymer was obtained. The refractive index (Nd) of the resin (A-3) at 20 ° C. was 1.487, and the temperature dependence coefficient (ΔNd) of the refractive index was -2.60 × 10 −4 / ° C. Preparation of Resin (A-4) A reaction vessel equipped with a reflux condenser was charged with 100 parts of ion-exchanged water containing a suspending and dispersing agent, and then 85 parts of methyl methacrylate, 15 parts of methyl acrylate, and 0 parts of lauroyl peroxide were added. A mixture of 0.5 part of n-octyl mercaptan and 0.7 part of n-octyl mercaptan was charged, and the mixture was polymerized with stirring in a nitrogen atmosphere at 80 ° C. for 2 hours and then at 95 ° C. for 1 hour to give an intrinsic viscosity of 0.5.
31 dl / g of resin beads were obtained. 30 parts of the obtained resin beads and 70 parts of the resin (A-1) were uniformly melt-mixed to obtain a resin (A-4). The refractive index (Nd) at 20 ° C. of the resin (A-4) was 1.496, and the temperature dependence coefficient (ΔNd) of the refractive index was −2.28 × 10 −4 / ° C. Production of Resin (A-5) A reaction vessel equipped with a reflux condenser was charged with 100 parts of ion-exchanged water containing a suspending and dispersing agent, and then 95 parts of methyl methacrylate, 5 parts of methyl acrylate and 0.5 part of lauroyl peroxide were added. 4 parts and a mixture of 0.2 parts of n-octyl mercaptan were charged, and stirred at 80 ° C. under nitrogen atmosphere at 80 ° C. for 2 hours.
Polymerization for 1 hour at 95 ° C. for 1 hour and an intrinsic viscosity of 0.5
4 dl / g resin (A-5) beads were obtained. Resin (A-
5) The refractive index (Nd) at 20 ° C. is 1.490;
The temperature dependence coefficient (ΔNd) of the refractive index is −0.79 × 10 −4
/ ° C. Production of Crosslinked Structure Resin (B-1) Ion-exchanged water 200 was placed in a reaction vessel equipped with a reflux condenser.
And 1 part of sodium dioctylsulfosuccinate. The mixture was heated to 70 ° C. while stirring under a nitrogen atmosphere, and then 60 parts of methyl methacrylate, 10 parts of styrene, 1 part of allyl methacrylate and 1 part of a 1% aqueous solution of potassium persulfate were added. The mixture was charged and reacted for 60 minutes to complete the polymerization to form an inner layer. Then, after charging 0.5 part of a 1% aqueous solution of potassium persulfate, 25 parts of methyl methacrylate, 5 parts of methyl acrylate, n-
A monomer mixture consisting of 0.24 parts of octyl mercaptan was continuously added dropwise over 30 minutes, and then maintained for 60 minutes to complete the polymerization to form an outer layer.
A μm double-layer resin latex was obtained. The intrinsic viscosity of the resin obtained by polymerizing only the outer layer under the same conditions is 0.28 dl
/ G. The refractive index of the inner layer at 20 ° C. (Nd)
Is 1.500, and the temperature-dependent coefficient of refractive index (ΔNd)
Was −0.81 × 10 −4 / ° C. The resulting latex was added to a 3% aqueous solution of magnesium sulfate, salted out and coagulated, washed with water and dried to obtain a crosslinked resin (B-1). Production of Crosslinked Structure Resin (B-2) Ion-exchanged water 200 was placed in a reaction vessel equipped with a reflux condenser.
And 1 part of sodium dioctylsulfosuccinate, and the mixture was heated to 70 ° C. while stirring under a nitrogen atmosphere. The mixture was charged and reacted for 60 minutes to polymerize, thereby obtaining a crosslinked resin latex having a particle diameter of 0.16 μm. The refractive index (Nd) at 20 ° C. of the crosslinked resin layer is 1.500, and the temperature dependence coefficient (ΔNd) of the refractive index is −0.81 × 10 −4 / ° C.
Met. The obtained latex was added to a 3% aqueous solution of magnesium sulfate, salted out and coagulated, washed with water and dried to obtain a crosslinked resin (B-2). Preparation of Crosslinked Structure Resin (B-3) In the same manner as in the crosslinked structure resin (B-1), 30 parts of methyl methacrylate, 20 parts of styrene, and 1.0 part of 1,3-butylene glycol dimethacrylate were added. Polymerized inner layer, 45 parts of methyl methacrylate, 5 parts of ethyl acrylate
And a two-layer resin latex having a particle diameter of 0.12 μm, comprising an outer layer obtained by polymerizing 0.3 parts of n-octyl mercaptan. The intrinsic viscosity of the resin obtained by polymerizing only the outer layer under the same conditions was 0.34 dl / g. The refractive index (Nd) of the inner layer at 20 ° C. is 1.530, and the temperature-dependent coefficient of refractive index (ΔNd) is −0.95 × 10 −4 /.
° C. The resulting latex was added to a 3% aqueous solution of magnesium sulfate, salted out and coagulated, washed with water and dried to obtain a crosslinked resin (B-3). Preparation of Crosslinked Structure Resin (B-4) In the same manner as for crosslinked structure resin (B-1), 58 parts of methyl methacrylate, 2 parts of methyl acrylate and 0.5 part of allyl methacrylate were polymerized. A two-layer resin latex having a particle diameter of 0.23 μm, comprising an inner layer and an outer layer obtained by polymerizing 39 parts of methyl methacrylate, 1 part of methyl acrylate, and 0.3 part of n-octylmercaptan, was obtained. The intrinsic viscosity of the resin obtained by polymerizing only the outer layer under the same conditions was 0.29 dl / g. The refractive index (Nd) at 20 ° C. of the inner layer was 1.489, and the temperature dependence coefficient (ΔNd) of the refractive index was −0.76 × 10 −4 / ° C. The obtained latex was freeze-coagulated at −20 ° C., melted in warm water at 80 ° C., washed with water and dried to obtain a crosslinked resin (B-4). Production of Crosslinked Structure Resin (B-5) An inner layer obtained by polymerizing 50 parts of butyl acrylate, 10 parts of styrene and 1 part of allyl methacrylate by a method similar to that of the crosslinked structure resin (B-1). Methyl methacrylate 39
Part, 1 part of methyl acrylate, and an outer layer formed by polymerizing 0.3 part of n-octyl mercaptan.
A μm double-layered resin latex was obtained. The intrinsic viscosity of the resin obtained by polymerizing only the outer layer under the same conditions is 0.48 dl.
/ G. The refractive index of the inner layer at 20 ° C. (Nd)
Is 1.487, and the temperature-dependent coefficient of refractive index (ΔNd)
Was -1.42 × 10 −4 / ° C. The obtained latex was freeze-coagulated at −20 ° C., then thawed in warm water at 80 ° C., washed with water and dried to obtain a crosslinked resin (B-5). Examples 1 to 7 and Comparative Examples 1 to 2 Resin A and crosslinked resin B were mixed in a mixer with the composition shown in Table 1 and fed into a closed kneader under a nitrogen atmosphere.
The mixture was melt-mixed at 230 ° C. and 100 rpm for 5 minutes.
A 2 mm flat plate was formed from the obtained mixture by hot press molding, and the optical properties were measured. The results are as shown in Table 1. [Table 1] The resin composition having a whitening property according to the temperature of the present invention has a very remarkable change in transparency at a temperature difference of 20 to 30 ° C. By taking advantage of this effect, injection molded articles and sheets are utilized. It can also be applied as a film to carports, shopping arcades and eaves, exteriors such as arcades, greenhouses, and sun visors for cars.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08L 51/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C08L 51/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 熱可塑性樹脂A10〜90重量部と、架
橋構造樹脂B90〜10重量部とからなり 架橋構造樹脂Bは多層構造体からなり、各内層が実質的
に架橋されており、各内層の重量の和が架橋構造樹脂B
の30重量%以上であって、かつその最外層は流動性を
有すると共に、熱可塑性樹脂Aとのブレンドにおいて良
好な相溶性と透明性を有し; 熱可塑性樹脂Aの屈折率の
温度による傾きと、架橋構造樹脂Bの少なくとも一つの
内層における屈折率の温度による傾きとの差(ΔN)が
式(1)を満足することを特徴とする樹脂組成物。 【数1】 (ただし、NdA,NdAは、熱可塑性樹脂Aで
の、それぞれq℃およびp℃における屈折率であり、N
dX,NdXは、架橋構造樹脂Bの内層Xでの、そ
れぞれq℃およびp℃における屈折率を表わす。)
(57) [Claims 1] A thermoplastic resin A is composed of 10 to 90 parts by weight and a crosslinked structure resin B is composed of 90 to 10 parts by weight ; the crosslinked structure resin B is composed of a multilayer structure, and each inner layer has Substantive
And the sum of the weights of the inner layers is the cross-linked resin B
30% by weight or more, and the outermost layer has fluidity.
As well as good blending with thermoplastic resin A
It has good compatibility and transparency; the difference (ΔN) between the temperature-dependent gradient of the refractive index of the thermoplastic resin A and the temperature-dependent gradient of the refractive index of at least one inner layer of the crosslinked structure resin B is expressed by the formula (1). A) a resin composition satisfying the above condition. (Equation 1) (However, NdA q and NdA p are the refractive indexes of the thermoplastic resin A at q ° C. and p ° C., respectively.
dX q and NdX p represent the refractive index of the inner layer X of the crosslinked resin B at q ° C. and p ° C., respectively. )
JP27706394A 1994-10-17 1994-10-17 Resin composition Expired - Lifetime JP3516738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27706394A JP3516738B2 (en) 1994-10-17 1994-10-17 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27706394A JP3516738B2 (en) 1994-10-17 1994-10-17 Resin composition

Publications (2)

Publication Number Publication Date
JPH08113691A JPH08113691A (en) 1996-05-07
JP3516738B2 true JP3516738B2 (en) 2004-04-05

Family

ID=17578273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27706394A Expired - Lifetime JP3516738B2 (en) 1994-10-17 1994-10-17 Resin composition

Country Status (1)

Country Link
JP (1) JP3516738B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123076A (en) * 1999-08-17 2001-05-08 Mitsui Chemicals Inc Transparent resin molding and use
JP4569940B2 (en) * 2001-06-20 2010-10-27 ヤンマー株式会社 Backhoe hydraulic circuit

Also Published As

Publication number Publication date
JPH08113691A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
EP0060042B1 (en) Multi-layer structure polymer composition
JPS6017406B2 (en) Manufacturing method of multilayer structure acrylic resin molding material
JPH059359A (en) Polymer composition
JPH0693056A (en) Modifier for making thermoplastic resin impact-resistant and thermoplastic molding material containing same
JP2021517929A (en) Thermoplastic resin composition
JP3516738B2 (en) Resin composition
JP3408581B2 (en) Light diffuser
WO2018019966A2 (en) A (meth)acrylic composition comprising particles, its method of preparation and its use as masterbatch
JPS58101140A (en) Acrylic resin composition having improved flow properties
JP3053239B2 (en) Low hygroscopic methacrylic resin composition
JP3215719B2 (en) Polymer composition
JP3933277B2 (en) Thermoplastic resin composition
JPS59122513A (en) Polymer having multi-layered structure
JP3859252B2 (en) Resin-made optical material and method for producing the same
JP3131479B2 (en) Methacrylic impact-resistant resin composition
CA1307365C (en) Compatible polymer blends
JP2796595B2 (en) Multilayer polymer and resin composition
JPS58104939A (en) Methacrylic resin composition
JPS6327516A (en) Highly weather-and impact-resistant acrylic resin granular composite material
JPS6030698B2 (en) acrylic resin composition
JP2957645B2 (en) Method for producing impact-resistant resin composition having excellent weather resistance
JP3310362B2 (en) Impact resistant resin composition
JPS62275147A (en) Impact-resistant methacrylate resin composition
JPH10219073A (en) Production of impact-resistant acrylic resin
JPH0551507A (en) Thermosetting acrylate composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 10

EXPY Cancellation because of completion of term