JP3514861B2 - Device for determining the position of side windows in houses - Google Patents

Device for determining the position of side windows in houses

Info

Publication number
JP3514861B2
JP3514861B2 JP03094695A JP3094695A JP3514861B2 JP 3514861 B2 JP3514861 B2 JP 3514861B2 JP 03094695 A JP03094695 A JP 03094695A JP 3094695 A JP3094695 A JP 3094695A JP 3514861 B2 JP3514861 B2 JP 3514861B2
Authority
JP
Japan
Prior art keywords
artificial
sky
window
building
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03094695A
Other languages
Japanese (ja)
Other versions
JPH08220979A (en
Inventor
昌昭 大門
由美子 上田
浩一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP03094695A priority Critical patent/JP3514861B2/en
Publication of JPH08220979A publication Critical patent/JPH08220979A/en
Application granted granted Critical
Publication of JP3514861B2 publication Critical patent/JP3514861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、隣接する建物の外壁や
地面に反射する昼光を考慮して住宅の側窓や部屋の配置
を決定する技術に関する。 【0002】 【従来の技術】従来、住宅等の建物の設計、施工をする
にあたり、室内の昼間の光環境を予測して窓の位置や部
屋の配置を決定するために、または、周囲の既存の建物
への影響を把握するために、天気、場所および日時を任
意に設定可能で、天空全面に配置して自動的に調光可能
とした複数の照射ユニットと、天空の一側において地平
から天空中央まで自動的に上下移動可能とした人工太陽
により構成し、前記照射ユニットと人工太陽を光源とす
る光を人工地面に配置した住宅模型に照射し、実際に住
宅を建てる前に、昼光照明の光源として窓から室内に入
射する光の状況を模擬実験して分析可能とし、室内の昼
間の光環境を予測して最適な光環境を確保できる窓の配
置位置や部屋の位置を決定可能とした人工天空装置は公
知のものであった。例えば、特開平4−121773号
の公報に記載の技術の如くである。 【0003】 【発明が解決しようとする課題】そして、前記従来技術
において、昼光照明の光源として窓から室内に入射する
光としては、実際には天空光と直射日光の他に、窓が相
対する地物に天空光と直射日光が反射されて窓に到達す
る光である反射光があるが、この地物反射光は、人工天
空装置を用いてシミュレーション可能で合ったにもかか
わらず、付加的光源として軽視され、検討の主対象とさ
れることはほとんどなかった。これは、実際に窓から見
える地物は、建物だけでも多種多様あり、さらに樹木や
草花、塀、物置等の付属物からなる多数のものの不規則
な配置にて構成されており、その輝度分布も天気、時間
等が要因となって常に変動し、非常に複雑であることに
より、昼光環境の再現実験が困難であること、また、そ
の計算法が煩雑で実用的でないこと等、技術的背景に起
因するものであり、照度計算等では、便宜上、屋外地物
の反射率は一様一定と見なしていた。 【0004】しかし、近頃の都市およびその近郊の住宅
は、隣棟間隔も小さく、狭小化し、高密度化した環境に
あり、昼間、天空光と直射日光だけで室内に十分な明る
さが得られる状況は非常に稀であり、電気照明に頼ると
ころが多い。そのため、電気エネルギーの有効利用を考
慮する等、現実的な立場で昼光照明を考えるならば、地
物反射光を過小評価せずに貴重な自然光源の一部と考
え、その特性を把握してより有効な活用手段を検討する
必要がある。また、住宅を取り巻く設定条件(天気、時
間、隣棟との間隔等)を変えて地物反射光を重視した昼
光環境を系統的に再現し、計測する実験は行っておら
ず、より実情に沿った昼光環境の再現実験を行うことが
できる手段が望まれている。そこで、本発明は、住宅に
関する採光実験や日影実験を行うことができる人工天空
装置において、住宅地の一角を想定した模型実験を行う
ことができるようにし、屋外地物の反射光の影響をも考
慮した昼光環境を予測して最適な光環境を確保できる位
置に窓を配置し、その部屋の位置も決定できる手段を提
供することを目的とする。 【0005】 【課題を解決するための手段】以上の課題を解決するた
めの手段として、本発明は、昼光環境を再現し、採光実
験を行うことができる人工天空装置であって、該人工天
空装置は天空ドームDの内側に、照射ユニット1と人工
太陽2が配設され、制御機器を介して照射ユニット1と
人工太陽2を遠隔制御操作可能に構成し、前記照射ユニ
ット1は天空ドームDのドーム部分の内側全面に複数配
設され、白色光を照射可能で設定した天空輝度となるよ
うに制御可能とされており、前記人工太陽2は駆動装置
12を介して地平位置から天空中央位置まで上下移動可
能に構成され、該人工天空装置の人工地面上に、住宅地
の一画を想定して一棟の自棟と多数の隣棟からなる住宅
模型を配置し、前記自棟の1階と2階の窓位置を想定し
た位置に窓面照度測定手段を設け、上面に水平面照度測
定手段を設け、前記測定手段を介して人工天空装置の照
射ユニットと人工太陽の人工地面および隣棟からの反射
光量を予測可能とし、住宅の側窓と部屋の位置を決定す
べく構成したものである。 【0006】 【作用】このように構成したことによって、住宅を設
計、施工する前に、地面および隣接の建物からの反射光
を貴重な光源として考慮した昼光環境を予測し、住宅の
窓の位置に到達する光の照度を把握でき、窓の位置や部
屋の配置を決定するにあたり、最適な光環境を確保でき
る窓の位置はどこか、また、各部屋の配置をどうすれば
よいかの判断を容易に行うことができる。 【0007】 【実施例】次に、本発明の実施例を説明する。図1は人
工天空装置の構成を示す側面図、図2は住宅模型の配置
状態を示す平面図、図3は住宅模型における照度測定位
置を示す側面図、図4は地面からの反射光の経路を示す
側面図、図5は隣棟外壁からの反射光の経路を示す側面
図、図6は人工天空装置による実験モードを示す図表、
図7は春分時刻における窓面昼光率の変化を表す図、図
8は春分時刻における窓面照度の変化を表す図、図9は
隣棟間隔における窓面昼光率の変化を表す図、図10は
地面反射率の影響を表す図、図11は隣棟外壁反射率の
影響を表す図、図12は自棟外壁反射率の影響を表す
図、図13は外壁と地面の反射率、窓の向き、設定日時
を変えた実験モードを示す図表、図14は設定日時にお
ける太陽位置を示す図表、図15は地面と外壁の反射率
による窓面照度への影響を表す図、図16は隣棟間隔に
よる違いを表す図、図17は窓向きによる違いを表す
図、図18は季節による違いを表す図である。 【0008】図1において、人工天空装置Aの構成につ
いて説明すると、人工天空装置Aは屋内に配設され、住
宅に関する採光実験や日影実験を行うことができるもの
であり、天空ドームDとその外に設けた制御計測室(図
示せず)にて構成されている。前記天空ドームDの内側
には照射ユニット1と人工太陽2が配設され、前記制御
計測室には制御関連機器が配置されており、該制御関連
機器を介して照射ユニット1や人工太陽2等を遠隔制御
操作できる構成とされている。前記照射ユニット1は天
空ドームDのドーム部分の内側全面に複数配設され、白
色光を照射可能で設定した天空輝度となるように制御可
能とされており、前記人工太陽2は駆動装置12を介し
て地平位置から天空中央位置まで上下移動可能とされて
いる。 【0009】また、前記天空ドームD内の下方の円周位
置には、青色、赤色、白色の光を発するスポットライト
11が配設されており、該スポットライト11によりラ
イトアップして青空、朝焼け、夕焼け、日中を演出し表
現可能としている。前記天空ドームD内の中央位置に
は、人工地面3が構成されている回転模型台10が配設
されており、前記人工地面3は午前と午後を作り出すた
めに回転駆動装置13にて地平線レベルで回転駆動さ
れ、上面に縮尺1/50の住宅模型M・Sを載置および
位置調節し易いようにシザースリンク機構14を介して
昇降可能に構成されている。また、前記住宅模型M・S
を載置した人工地面3は回転駆動装置13を介して任意
の方位に設定、変更可能に構成されている。 【0010】前記回転模型台10の人工地面3には、図
2・図3に示す如く、住宅模型M・Sが載置でき、該住
宅模型M・Sは、形状をすべて直方体とし、大きさを縦
L1×横L2×高さH=200mm×200mm×12
0mm(縮尺1/50)に寸法設定し、外壁の色が黒B
(反射率ρ1=4.4%、明度V=2.4)と白W(反
射率ρ2=75.4%、明度V=8.9)のものがあ
り、それに合わせて人工地面3の表面の色も黒B(反射
率ρ3=2.7%、明度V=1.8)と白W(反射率ρ
4=85.8%、明度V=9.3)に設定可能とし、低
反射率の黒Bと高反射率の白Wの2水準とし、配置個数
を住宅地の一角を想定し、窓面照度を測定する一体の自
棟Mとその周囲に配置する五体の隣棟S・S・・・の合
計六体としている。 【0011】前記自棟Mの側面部には、1階窓面照度を
測定するための1階照度センサー4と2階窓面照度を測
定するための2階照度センサー5、上面には全天空照度
を測定するための水平面照度センサー6が配設されてお
り、前記1階、2階照度センサー4・5の配置高さh1
・h2は実際の窓の高さに対応するように縮尺1/50
とし、h1=36mm、h2=90mmに寸法設定され
ている。前記自棟Mは(本実施例では)照度センサー4
・5が人工地面3の中心の鉛直線上に位置し、南向きと
なるように配置し、窓の設定方位が南面となるように配
置され、その東西側に一体ずつ、それらに向かい合うよ
うに南側に三体の合計五体の隣棟S・S・・・が配置さ
れ、それらの隣棟間隔dを模型高さH(120mm)を
基準として、1/2H(60mm)、3/2H(180
mm)、∞(隣棟なし)の4水準としている。 【0012】そして、前記人工天空装置Aの照射ユニッ
ト1および人工太陽2から照射され、自棟Mに到達する
光には、天空光と直射日光の他に、図4に示す如く、人
工地面3からの反射光と、図5に示す如く、隣棟S外壁
からの反射光があり、これら地物反射光を前記照度セン
サー4・5にて測定し、人工地面3および隣棟Sの反射
率によって、窓面昼光率と窓面照度がどのように変化す
るかをシミュレーションするにあたり、その設定条件
は、天空輝度分布(天気)を国際照明委員会(CIE)
の定める標準晴天空と標準曇天空とに設定可能とし、場
所を北緯35°、東経135°の日本代表地点に設定
し、季日時刻を春分、夏至、冬至の各日の日の出から正
午までの一時間毎の正時に設定可能としており、実施し
た実験モードを図6に示している。 【0013】前記実験モードにおいて、自棟Mに設けた
照度センサー4・5・6による測定値をもとに、窓面昼
光率(Dw)をDw=E’w/E’s(E’wは測定窓
面照度〔lx〕、E’sは測定全天空照度〔lx〕)の
式を用いて算出し、窓面照度(Ew)をEw=Es×D
w(Esは予め設定した水平面晴天空照度〔lx〕)の
式を用いて算出し、その結果を図7・図8・図9に示し
ている。晴天空時の窓面昼光率(Dw)の時間的な変化
をみると、全実験モードにわたって、ほぼ一定した値を
示しており、窓面照度(Ew)の日変動は、水平面晴天
空照度(Es)の日変動に起因することが分かる。 【0014】したがって、建物の南面の窓を通って室内
に入射する光束の量(側窓の採光能力)を比較するには
窓面昼光率(Dw)をみればよく、窓面昼光率(Dw)
は自棟M外壁、人工地面3、隣棟S外壁すべての反射率
(ρ1〜ρ4)の影響を受けており、いずれの反射率が
大きくなっても窓面昼光率(Dw)は大きくなる。ま
た、隣棟間隔dは大きいほど、受光位置は高いほど(1
階より2階の方が)、窓面昼光率(Dw)は大きくなる
傾向があり、曇天空においてもこの傾向に変化はないこ
とが分かる。 【0015】次に、図10・図11・図12において、
窓面昼光率(Dw)に及ぼす地面反射率の影響、隣棟外
壁反射率の影響、自棟外壁反射率の影響を各実験モード
間の結果について差および比をとって比較してみる。地
面反射率の影響は、自棟Mと隣棟Sの外壁条件が同じ実
験モード3)と1)、4)と2)、7)と5)、8)と6)について、春
分12時で人工地面3の表面を白Wとしたときと黒Bと
したときの窓面昼光率の差ΔDwを比較すると、いずれ
もΔDw(W−B)>0 で、地面反射率の高い方が窓面
昼光率(Dw)も高い。また、隣棟Sと自棟Mの外壁反
射率が高いほど、その影響が大きく、隣棟間隔dが大き
いほど、ΔDwが大となる。この影響は1階の方が2階
より顕著である。前記人工地面3が黒Bから白Wになる
ときの変化率3)/1)、4)/2)、7)/5)、8)/6)をみる
と、1階では隣棟間隔dに関係なく、窓面昼光率(D
w)が1.4〜1.8倍増加している。2階では隣棟間
隔dが大きいほど大となり、受光窓の位置による相違が
ある。 【0016】窓面昼光率(Dw)に及ぼす隣棟外壁反射
率の影響は、自棟Mと人工地面3の条件が同じ実験モー
ド2)と1)、4)と3)、6)と5)、8)と7)を同様に比較する
と、いずれもΔDw(=W−B)>0で、隣棟Sの外壁
反射率の高い方が窓面昼光率(Dw)も高い。人工地面
3の反射率が高い場合は、1階、2階とも隣棟間隔dが
小さいほどΔDwが大となる。人工地面3の反射率が低
い場合は、ΔDwはd=Hで凸となり、極値を持つ。ま
た、隣棟Sの外壁が黒Bから白Wになるときの変化率3)
/1)、4)/2)、7)/5)、8)/6)をみると、隣棟間隔dが
小さいほど窓面昼光率(Dw)の変化率が大きく、その
傾向は1階の方が2階より著しく大きい。 【0017】窓面昼光率(Dw)に及ぼす自棟外壁反射
率の影響は、自棟Mと隣棟Sの条件が同じ実験モード5)
と1)、6)と2)、7)と3)、8)と4)を同様に比較すると、人
工地面3と隣棟S外壁のいずれの反射率も高い場合は、
隣棟間隔dが小さいほどΔDwが大となり、自棟外壁反
射率の影響が明らかに認められる。しかし、両者ともの
反射率が低い場合は、まったく影響がない。また、自棟
Mの外壁が黒Bから白Wになるときの変化率5)/1)、6)
/2)、7)/3)、8)/4)をみても、同様の傾向があり、1
階でより顕著である。 【0018】また、住宅の室内の採光を検討する上で、
その空間にふさわしい窓の方位、位置、高さ、大きさ等
を考慮し、季節や時間帯も考慮する必要がある、そこ
で、図13・図14に示す、窓の向き、地面と隣棟外壁
の反射率(黒Bと白W)、設定日時を変えた実験モード
により窓面照度を測定し、その測定値から地面と外壁の
反射率による窓面照度への影響を図15に示している。
さらに、窓面照度の隣棟間隔dの違い、窓の向きの違い
(南窓と東窓)、季節による違い(春分、夏至、冬至)
による実験結果を図16、図17、図18に示してい
る。 【0019】以上の実験結果から、地面、隣棟外壁、自
棟外壁の反射率の違いが、窓面昼光率(Dw)、窓面照
度(Ew)にかなり大きな影響を与えることが確認で
き、また、隣棟間隔や窓位置の違いによる変化の特徴を
把握できることとなり、人工天空装置Aを用い、建物の
形状(直方体)、外壁と地面の色(白Wと黒Bで反射率
の違いを表す)を単純化した模型実験で地物反射光が影
響する割合について、おおよその上限、下限を把握でき
る。 【0020】このように人工天空装置Aを用いて住宅地
の一角を想定した模型実験を行うことにより、実際に住
宅を設計、施工する前に、住宅を取り巻く設定条件(天
気、時間、隣棟との間隔等)を変えて地物反射光を重視
した昼光環境を系統的に再現し、計測するシミュレーシ
ョンを行うことができるので、実際に評価するに値する
採光データを得て、屋外地物の反射光の影響をも考慮し
た昼光環境を予測し、窓を設けるにあたり、最適な光環
境を確保できる位置はどこがよいか、また、各部屋の配
置をどうすればよいかの判断を容易に行うことができ
る。 【0021】 【発明の効果】本発明は以上の如く構成したので、次の
ような効果を奏する。即ち、採光実験を行うことができ
る人工天空装置を用いて住宅地の一角を想定した模型実
験を行うことにより、設計段階において、従来の照度計
算よりも正確に室内照度を予測することができる。そし
て、実際に住宅を設計、施工する前に、地面および隣接
する建物からの反射光を重視した昼光環境を再現し、計
測することができ、窓の配置位置および部屋の配置位置
を決定する段階で室内の採光状態を予測できるので、最
適な光環境を確保できる窓の位置や各部屋の配置を簡単
に決定することができる。また、最適な光環境を確保で
きる位置に窓や部屋を配置することができるので、室内
の昼間の光環境において、昼光を積極的に利用し、電気
照明に頼ることなく十分な明るさを得ることができ、電
気エネルギーの消費を抑え、省エネルギー化を図ること
ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for determining the arrangement of side windows and rooms in a house in consideration of daylight reflected on the outer wall and ground of an adjacent building. . 2. Description of the Related Art Conventionally, in designing and constructing a building such as a house, in order to determine a position of a window or a room by estimating a daytime light environment in a room or to determine an arrangement of a room around the room. In order to understand the impact on buildings, the weather, location, date and time can be set arbitrarily, and multiple irradiation units that can be automatically dimmed by being arranged on the entire sky and one side of the sky from the horizon It consists of an artificial sun that can automatically move up and down to the center of the sky, irradiates the illumination unit and light using the artificial sun as a light source to a house model arranged on artificial ground, and before building a house, Simulates the situation of light entering a room from a window as a light source for lighting and makes it possible to analyze the situation, and predicts the daytime light environment in the room to determine the window arrangement position and room position that can secure the optimal light environment The known artificial sky device is known Was something. For example, as disclosed in Japanese Patent Application Laid-Open No. 4-121773. [0003] In the above-mentioned prior art, as light that enters the room from a window as a light source for daylight illumination, in addition to sky light and direct sunlight, the window is actually a relative light source. There is reflected light, which is the light that reaches the window after the sky light and direct sunlight are reflected on the feature that is reflected, but this reflected feature light is added even though it can be simulated using an artificial sky device and matched. It was neglected as a strategic light source and was rarely considered as the main subject of the study. This is because there are many types of features that can actually be seen through windows, and even the buildings themselves consist of irregular arrangements of a large number of accessories, such as trees, flowers, fences, and sheds. It also fluctuates constantly due to factors such as weather and time, and is extremely complicated, making it difficult to reproduce daylight environments, and its calculation method is complicated and impractical. For the sake of convenience, the reflectance of an outdoor feature was considered to be uniform and constant in illuminance calculation and the like. [0004] However, in recent cities and houses in the suburbs, the space between adjacent buildings is small, narrow, and in a high-density environment. In the daytime, sufficient indoor brightness can be obtained only by skylight and direct sunlight. The situation is very rare and often relies on electric lighting. Therefore, if daylighting is considered from a practical standpoint, such as by considering the effective use of electrical energy, the reflected light of a terrestrial object should be considered as a part of a valuable natural light source without underestimating and its characteristics should be understood. It is necessary to consider more effective utilization methods. Also, experiments were not conducted to systematically reproduce and measure daylight environments emphasizing terrestrial reflections by changing the setting conditions (weather, time, distance to neighboring buildings, etc.) surrounding the house. There is a demand for a means capable of performing a daylight environment reproduction experiment along the line. In view of the above, the present invention provides an artificial sky apparatus capable of performing a lighting experiment and a shading experiment on a house, so that a model experiment assuming a corner of a residential area can be performed, and the influence of reflected light from an outdoor feature is reduced. It is another object of the present invention to provide means for predicting a daylight environment in consideration of the above, arranging a window at a position where an optimum light environment can be secured, and determining a position of the room. [0005] As means for solving the above-mentioned problems, the present invention reproduces a daylight environment to realize daylighting.
An artificial sky device capable of performing an experiment.
The sky device has an illumination unit 1 and an artificial
The sun 2 is provided, and the irradiation unit 1
The artificial sun 2 is configured to be remotely controllable, and the irradiation unit
Units 1 are arranged on the entire inner surface of the dome part of the sky dome D.
It is possible to irradiate white light and it will have the set sky brightness.
The artificial sun 2 is driven by a driving device.
Can be moved up and down from the horizon position to the sky center position via 12
A residential area on the artificial ground of the artificial sky device.
House consisting of one building and many neighboring buildings
Place a model and assume the windows on the first and second floor of the building.
Window surface illuminance measurement means, and horizontal surface illuminance measurement
Setting means for illuminating the artificial sky device via the measuring means.
Of solar radiation unit and artificial sun from artificial ground and adjacent building
Predict the amount of light and determine the position of side windows and rooms in houses
It is configured in such a way. According to the above construction, before designing and constructing a house, a daylight environment in which reflected light from the ground and an adjacent building is considered as a precious light source, and a window of the house is predicted. In determining the position of the windows and the arrangement of the rooms, it is possible to grasp the illuminance of the light reaching the position, and to determine the position of the windows that can secure the optimal lighting environment and how to arrange the rooms. It can be done easily. Next, embodiments of the present invention will be described. 1 is a side view showing a configuration of an artificial sky device, FIG. 2 is a plan view showing an arrangement state of a house model, FIG. 3 is a side view showing an illuminance measurement position in the house model, and FIG. 4 is a path of reflected light from the ground. FIG. 5 is a side view showing the path of reflected light from the outer wall of the adjacent building, FIG. 6 is a chart showing an experimental mode using an artificial sky device,
FIG. 7 is a diagram illustrating a change in window daylight rate at the vernal equinox time, FIG. 8 is a diagram illustrating a change in window surface illuminance at the vernal equinox time, FIG. FIG. 10 is a diagram showing the effect of the ground reflectance, FIG. 11 is a diagram showing the effect of the adjacent building outer wall reflectance, FIG. 12 is a diagram showing the effect of the own building outer wall reflectance, FIG. 13 is the reflectance of the outer wall and the ground, FIG. 14 is a diagram showing the sun position at the set date and time, FIG. 15 is a diagram showing the influence of the reflectance of the ground and the outer wall on the window surface illuminance, and FIG. FIG. 17 is a diagram showing a difference between adjacent buildings, FIG. 17 is a diagram showing a difference between window directions, and FIG. 18 is a diagram showing a difference between seasons. Referring to FIG. 1, the structure of the artificial sky device A will be described. The artificial sky device A is installed indoors and can perform a lighting experiment and a shading experiment on a house. It is composed of a control measurement room (not shown) provided outside. An irradiation unit 1 and an artificial sun 2 are disposed inside the sky dome D, and control-related devices are disposed in the control and measurement room. The irradiation unit 1 and the artificial sun 2 are provided via the control-related devices. Can be remotely controlled. A plurality of irradiation units 1 are provided on the entire inner surface of the dome portion of the sky dome D, and can be irradiated with white light and can be controlled to have a set sky luminance. It can be moved up and down from the horizon position to the center of the sky via the camera. A spotlight 11 for emitting blue, red, and white light is disposed at a lower circumferential position in the sky dome D. The spotlight 11 illuminates the blue sky, , Sunset and daytime can be produced and expressed. At a central position in the sky dome D, a rotating model stand 10 on which an artificial ground 3 is configured is arranged. The artificial ground 3 is moved to a horizon level by a rotary driving device 13 to produce morning and afternoon. , And can be moved up and down via a scissors link mechanism 14 so as to easily place and adjust the position of a 1/50 scale house model MS on the upper surface. In addition, the house model MS
The artificial ground 3 on which is mounted can be set and changed to an arbitrary direction via the rotation driving device 13. As shown in FIGS. 2 and 3, a house model MS can be placed on the artificial ground 3 of the rotary model stand 10, and the house model MS has a rectangular parallelepiped shape and a size of Is L1 × L2 × H = 200mm × 200mm × 12
Set the dimensions to 0mm (scale 1/50) and the color of the outer wall is black B
(Reflectivity ρ1 = 4.4%, lightness V = 2.4) and white W (reflectivity ρ2 = 75.4%, lightness V = 8.9). Are black B (reflectance ρ3 = 2.7%, lightness V = 1.8) and white W (reflectance ρ
4 = 85.8%, lightness V = 9.3), two levels of black B with low reflectivity and white W with high reflectivity, the number of arrangements is assumed to be one corner of a residential area, and the window surface There are a total of six bodies, namely, an integral building M for measuring illuminance and five neighboring buildings S, S... The first floor illuminance sensor 4 for measuring the first floor window illuminance and the second floor illuminance sensor 5 for measuring the second floor window illuminance are provided on side surfaces of the own building M, and the whole sky is provided on the upper surface. A horizontal plane illuminance sensor 6 for measuring illuminance is provided, and the arrangement height h1 of the first and second floor illuminance sensors 4.5 is provided.
H2 is scaled 1/50 to correspond to the actual window height
H1 = 36 mm and h2 = 90 mm. The own building M is (in this embodiment) an illuminance sensor 4
・ 5 is located on the vertical line in the center of the artificial ground 3 and is oriented so as to face south, and the window is set so that the setting orientation of the window is facing south. .. Are arranged in a total of three bodies, and the distance d between adjacent buildings is HH (60 mm), 3 / 2H (180 mm) based on the model height H (120 mm).
mm) and ∞ (no adjacent building). Light radiated from the irradiation unit 1 and the artificial sun 2 of the artificial sky apparatus A and reaching the own building M includes not only sky light and direct sunlight but also artificial ground 3 as shown in FIG. And the reflected light from the outer wall of the adjacent building S, as shown in FIG. 5, and the reflected light of the terrestrial features is measured by the illuminance sensors 4 and 5, and the reflectance of the artificial ground 3 and the adjacent building S is measured. In simulating how the window daylight factor and window surface illuminance change according to the conditions, the setting conditions are the sky luminance distribution (weather) and the International Commission on Illumination (CIE).
Can be set to the standard clear sky and standard cloudy sky specified in, the location is set to the representative point of Japan at 35 ° N, 135 ° E, FIG. 6 shows the experimental mode that can be set at the hour on the hour. In the experimental mode, the window daylight ratio (Dw) is calculated as Dw = E'w / E's (E ') based on the measured values of the illuminance sensors 4, 5, and 6 provided in the own building M. w is calculated using the equation of the measurement window illuminance [lx], E's is the measurement whole sky illuminance [lx]), and the window illuminance (Ew) is calculated as Ew = Es × D.
w (Es is the preset horizontal plane clear sky illuminance [lx]) is calculated, and the results are shown in FIGS. 7, 8, and 9. Looking at the temporal change in the daylight ratio (Dw) of the window surface in clear sky, it shows a substantially constant value over all the experiment modes, and the daily fluctuation of the illuminance of the window surface (Ew) is the horizontal plane clear sky illuminance. It can be seen that (Es) is caused by daily fluctuation. Therefore, in order to compare the amount of luminous flux entering the room through the window on the south side of the building (lighting ability of the side window), the daylight ratio (Dw) of the window surface should be considered. (Dw)
Is affected by the reflectance (ρ1 to ρ4) of the outer wall of the own ridge M, the artificial ground 3, and the outer wall of the adjacent ridge S, and the daylight ratio (Dw) of the window surface increases regardless of the reflectance. . Also, as the adjacent building distance d is larger and the light receiving position is higher (1
It can be seen that the window daylight factor (Dw) tends to be larger on the second floor than on the first floor, and this tendency does not change even in a cloudy sky. Next, in FIG. 10, FIG. 11 and FIG.
The effects of the ground surface reflectance, the adjacent building outer wall reflectance, and the own building outer wall reflectance on the window daylight ratio (Dw) will be compared by taking differences and ratios for the results between the experimental modes. The effect of the ground reflectivity is as follows: For experiment modes 3) and 1), 4) and 2), 7) and 5), 8) and 6), where the outer wall conditions of own building M and adjacent building S are the same, Comparing the difference ΔDw between the daylight ratios of the window surface when the surface of the artificial ground 3 is set to white W and black B, the difference is ΔDw (WB)> 0, and the one with the higher ground reflectance is the window. The surface daylight ratio (Dw) is also high. In addition, the higher the outer wall reflectance of the adjacent building S and the own building M, the greater the effect, and the larger the adjacent building interval d, the larger ΔDw. This effect is more pronounced on the first floor than on the second floor. Looking at the rate of change 3) / 1), 4) / 2), 7) / 5), 8) / 6) when the artificial ground 3 changes from black B to white W, the adjacent building spacing d on the first floor Regardless of the window daylight ratio (D
w) is increased by a factor of 1.4 to 1.8. On the second floor, the distance between adjacent buildings becomes larger as the adjacent building distance d increases, and there is a difference depending on the position of the light receiving window. The influence of the reflectance of the outer wall of the adjacent building on the daylight ratio (Dw) of the window surface is as follows: the experimental modes 2), 1), 4), 3), 6) where the conditions of the own building M and the artificial ground 3 are the same. Comparing 5), 8) and 7) similarly, ΔDw (= WB)> 0, and the higher the outer wall reflectance of the adjacent building S, the higher the window surface daylight rate (Dw). When the reflectance of the artificial ground 3 is high, ΔDw increases as the adjacent building distance d decreases on both the first and second floors. When the reflectance of the artificial ground 3 is low, ΔDw becomes convex at d = H and has an extreme value. The rate of change when the outer wall of the adjacent building S changes from black B to white W 3)
Looking at / 1), 4) / 2), 7) / 5), and 8) / 6), the smaller the distance d between adjacent buildings, the larger the rate of change in the daylight ratio (Dw) of the window surface, and the tendency is 1 The floor is significantly larger than the second floor. The influence of the reflectivity of the outer wall of the own building on the daylight ratio (Dw) of the window surface is due to the experimental mode 5) in which the conditions of the own building M and the adjacent building S are the same.
Similarly, comparing 1), 6) and 2), 7) and 3), 8) and 4), if the reflectance of both the artificial ground 3 and the outer wall of the adjacent building S is high,
As the adjacent building distance d becomes smaller, ΔDw becomes larger, and the influence of the reflectance of the outer wall of the own building is clearly recognized. However, when both have low reflectance, there is no effect at all. Also, the change rate when the outer wall of own building M changes from black B to white W 5) / 1), 6)
/ 2), 7) / 3) and 8) / 4), there is a similar tendency.
More prominent on the floor. Further, when examining the indoor lighting of a house,
It is necessary to consider the orientation, position, height, size, etc. of the windows appropriate to the space, and also consider the season and time zone. Therefore, the orientation of the windows, the ground and the outer wall of the adjacent building as shown in Figs. 15 (black B and white W) and the window mode illuminance were measured in an experimental mode in which the set date and time were changed. FIG. 15 shows the influence of the reflectance of the ground and the outer wall on the window surface illuminance based on the measured values. .
In addition, differences in the illuminance of the window surface between adjacent buildings d, differences in the orientation of the windows (south windows and east windows), differences due to the seasons (spring equinox, summer solstice, winter solstice)
16, 17, and 18 show the results of the experiment. From the above experimental results, it can be confirmed that the difference in reflectance between the ground, the outer wall of the adjacent building, and the outer wall of the own building has a considerable effect on the window surface daylight ratio (Dw) and the window surface illuminance (Ew). In addition, the characteristics of the change due to the difference between the adjacent buildings and the position of the windows can be grasped. ) Can be used to determine the approximate upper and lower limits of the ratio of the reflected light from the features in a simplified model experiment. As described above, by conducting a model experiment assuming a corner of a residential area using the artificial sky apparatus A, before actually designing and constructing the house, the setting conditions (weather, time, adjacent building) surrounding the house are required. Can be simulated by systematically reproducing and measuring daylight environments emphasizing the reflected light of terrestrial objects by changing the distance between them. Predict the daylight environment that also takes into account the effects of reflected light, and easily determine where to place the optimal light environment and how to arrange each room when installing windows. be able to. As described above, the present invention has the following advantages. That is, by performing a model experiment assuming a corner of a residential area using an artificial sky device capable of performing a lighting experiment, it is possible to predict the indoor illuminance more accurately than in the conventional illuminance calculation at the design stage. Before actually designing and constructing a house, it is possible to reproduce and measure the daylight environment that emphasizes the reflected light from the ground and adjacent buildings, and determine the arrangement position of windows and the arrangement position of rooms. Since the indoor lighting state can be predicted at each stage, it is possible to easily determine the position of the window and the arrangement of each room that can ensure the optimal lighting environment. In addition, since windows and rooms can be placed in a position where an optimal lighting environment can be secured, in the indoor daytime lighting environment, daylight is actively used and sufficient brightness is obtained without relying on electric lighting. Thus, consumption of electric energy can be suppressed, and energy can be saved.

【図面の簡単な説明】 【図1】人工天空装置の構成を示す側面図である。 【図2】住宅模型の配置状態を示す平面図である。 【図3】住宅模型における照度測定位置を示す側面図で
ある。 【図4】地面からの反射光の経路を示す側面図である。 【図5】隣棟外壁からの反射光の経路を示す側面図であ
る。 【図6】人工天空装置による実験モードを示す図表であ
る。 【図7】春分時刻における窓面昼光率の変化を表す図で
ある。 【図8】春分時刻における窓面照度の変化を表す図であ
る。 【図9】隣棟間隔における窓面昼光率の変化を表す図で
ある。 【図10】地面反射率の影響を表す図である。 【図11】隣棟外壁反射率の影響を表す図である。 【図12】自棟外壁反射率の影響を表す図である。 【図13】外壁と地面の反射率、窓の向き、設定日時を
変えた実験モードを示す図表である。 【図14】設定日時における太陽位置を示す図表であ
る。 【図15】地面と外壁の反射率による窓面照度への影響
を表す図である。 【図16】隣棟間隔による違いを表す図である。 【図17】窓向きによる違いを表す図である。 【図18】季節による違いを表す図である。 【符号の説明】 1 照射ユニット 2 人工太陽 3 人工地面 4 1階照度センサー 5 2階照度センサー 6 水平面照度センサー A 人工天空装置 M 自棟 S 隣棟
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view showing a configuration of an artificial sky device. FIG. 2 is a plan view showing an arrangement state of a house model. FIG. 3 is a side view showing an illuminance measurement position in the house model. FIG. 4 is a side view showing the path of reflected light from the ground. FIG. 5 is a side view showing the path of reflected light from the outer wall of the adjacent building. FIG. 6 is a table showing an experiment mode using the artificial sky device. FIG. 7 is a diagram illustrating a change in the daylight rate of the window surface at the time of the vernal equinox. FIG. 8 is a diagram illustrating a change in illuminance of a window surface at a vernal equinox time. FIG. 9 is a diagram illustrating a change in the daylight ratio of the window surface in the interval between adjacent buildings. FIG. 10 is a diagram illustrating the influence of ground reflectance. FIG. 11 is a diagram showing the influence of the reflectance of the outer wall of the adjacent building. FIG. 12 is a diagram illustrating the influence of the own building outer wall reflectance. FIG. 13 is a table showing experiment modes in which the reflectance of the outer wall and the ground, the orientation of the window, and the set date and time are changed. FIG. 14 is a chart showing the sun position at a set date and time. FIG. 15 is a diagram illustrating the influence of the reflectance of the ground and the outer wall on the illuminance of the window surface. FIG. 16 is a diagram illustrating a difference depending on an interval between adjacent buildings. FIG. 17 is a diagram illustrating a difference depending on a window direction. FIG. 18 is a diagram illustrating a difference according to a season. [Description of Signs] 1 Irradiation unit 2 Artificial sun 3 Artificial ground 4 1st floor illuminance sensor 5 2nd floor illuminance sensor 6 Horizontal plane illuminance sensor A Artificial sky device M Own building S Adjacent building

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−121773(JP,A) 特公 昭53−7856(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G09B 9/00 G09B 25/04 G09B 27/00 E04H 1/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-121773 (JP, A) JP-B-53-7856 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) G09B 9/00 G09B 25/04 G09B 27/00 E04H 1/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 昼光環境を再現し、採光実験を行うこと
ができる人工天空装置であって、該人工天空装置は天空
ドームDの内側に、照射ユニット1と人工太陽2が配設
され、制御機器を介して照射ユニット1と人工太陽2を
遠隔制御操作可能に構成し、前記照射ユニット1は天空
ドームDのドーム部分の内側全面に複数配設され、白色
光を照射可能で設定した天空輝度となるように制御可能
とされており、前記人工太陽2は駆動装置12を介して
地平位置から天空中央位置まで上下移動可能に構成さ
れ、該人工天空装置の人工地面3上に、住宅地の一画を
想定して一棟の自棟と多数の隣棟からなる住宅模型を配
置し、前記自棟の1階と2階の窓位置を想定した位置に
窓面照度測定手段を設け、上面に水平面照度測定手段を
設け、前記測定手段を介して人工天空装置の照射ユニッ
トと人工太陽の人工地面および隣棟からの反射光量を予
測可能とし、住宅の側窓と部屋の位置を決定すべく構成
したことを特徴とする住宅の側窓位置の決定装置
(57) [Claims] [Claim 1] Reproducing a daylight environment and conducting a lighting experiment
An artificial sky device, the artificial sky device being
Irradiation unit 1 and artificial sun 2 are installed inside dome D
And the irradiation unit 1 and the artificial sun 2
The irradiation unit 1 is configured to be operable by remote control.
A plurality of dome D are arranged on the entire inner surface of the dome portion, and
Can be irradiated with light and can be controlled to the set sky brightness
The artificial sun 2 is driven via a driving device 12
It can be moved up and down from the horizon to the center of the sky.
And a portion of a residential area is placed on the artificial ground 3 of the artificial sky device.
Assuming a house model consisting of one building and many neighboring buildings
In a position assuming the windows on the first and second floors of the building.
A window surface illuminance measurement means is provided, and a horizontal plane illuminance measurement means is provided on the upper surface.
And an irradiation unit of the artificial sky device via the measuring means.
The amount of light reflected from the artificial ground of the
It can be measured and configured to determine the position of the side window and room in the house
An apparatus for determining a side window position of a house .
JP03094695A 1995-02-20 1995-02-20 Device for determining the position of side windows in houses Expired - Fee Related JP3514861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03094695A JP3514861B2 (en) 1995-02-20 1995-02-20 Device for determining the position of side windows in houses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03094695A JP3514861B2 (en) 1995-02-20 1995-02-20 Device for determining the position of side windows in houses

Publications (2)

Publication Number Publication Date
JPH08220979A JPH08220979A (en) 1996-08-30
JP3514861B2 true JP3514861B2 (en) 2004-03-31

Family

ID=12317849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03094695A Expired - Fee Related JP3514861B2 (en) 1995-02-20 1995-02-20 Device for determining the position of side windows in houses

Country Status (1)

Country Link
JP (1) JP3514861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930784B2 (en) * 2001-01-08 2005-08-16 Board Of Trustees Of Southern Illinois University Apparatus and method for showing contour lines in modeling
JP5405816B2 (en) * 2008-12-26 2014-02-05 大和ハウス工業株式会社 How to determine the daylight rate when there are obstacles that interfere with daylight

Also Published As

Publication number Publication date
JPH08220979A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
Li et al. An analysis of measured and simulated daylight illuminance and lighting savings in a daylit corridor
Kim et al. Advanced external shading device to maximize visual and view performance
Lee et al. The effect of venetian blinds on daylight photoelectric control performance
To et al. Potential energy saving for a side-lit room using daylight-linked fluorescent lamp installations
Ranasinghe et al. A study of photosensor configuration and performance in a daylighted classroom space
JP2001176679A (en) Artificial window device
JP3514861B2 (en) Device for determining the position of side windows in houses
Fernandes et al. Lighting and visual comfort performance of commercially available tubular daylight devices
JP3514862B2 (en) Lighting change estimation device for houses
Zaky et al. Daylight and artificial lighting integration in achieving lighting uniformity in educational building
Araji et al. Paradigm in sustainability and environmental design: lighting utilization contributing to surplus-energy office buildings
JP2001167607A (en) Artificial window apparatus
JP2856876B2 (en) Sky brightness distribution simulation device
Lee et al. Technology Assessments of High Performance Envelope with Optimized Lighting, Solar Control, and Daylighting
Navvab Scale model photometry techniques under simulated sky conditions
JP2856870B2 (en) Artificial sky device
JPH10340607A (en) Residence lighting planning method
McGuire A system for optimizing interior daylight distribution using reflective Venetian blinds with independent blind angle control
Joshi et al. Relationship of shading devices and its effects on daylight in Commercial buildings in Pune
Eckerlin et al. A new daylighting strategy for a middle school in North Carolina
Manning An experimental evaluation and comparison of four daylighting strategies for schools in North Carolina
Paroncini et al. Study of the shading systems for a southward bioclimatic building facade
Kutlu et al. Daylight analysis and lighting energy management for schools in hot-temperate climates
Zhang et al. Workplane illuminance estimation for robust daylight harvesting lighting control
Whitehead et al. Using core sunlighting to improve illumination quality and increase energy efficiency of commercial buildings

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040114

LAPS Cancellation because of no payment of annual fees