JP3514096B2 - Surface polishing method for vapor phase synthesized diamond thin film - Google Patents

Surface polishing method for vapor phase synthesized diamond thin film

Info

Publication number
JP3514096B2
JP3514096B2 JP920198A JP920198A JP3514096B2 JP 3514096 B2 JP3514096 B2 JP 3514096B2 JP 920198 A JP920198 A JP 920198A JP 920198 A JP920198 A JP 920198A JP 3514096 B2 JP3514096 B2 JP 3514096B2
Authority
JP
Japan
Prior art keywords
thin film
diamond thin
polishing
polishing liquid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP920198A
Other languages
Japanese (ja)
Other versions
JPH11207603A (en
Inventor
美紀 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP920198A priority Critical patent/JP3514096B2/en
Publication of JPH11207603A publication Critical patent/JPH11207603A/en
Application granted granted Critical
Publication of JP3514096B2 publication Critical patent/JP3514096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、気相合成ダイヤ
モンド薄膜(以下、ダイヤ薄膜と云う)の表面に平滑性
のすぐれた研磨面を形成する方法に関するものである。 【0002】 【従来の技術】従来、例えば、X線リソグラフィー技術
による半導体集積回路の形成に用いられるX線マスク
が、 (a)厚さ:380μm程度のSiウエハー(基板)の
上面に、周知の気相合成法によりX線透過率の非常によ
いダイヤ薄膜を1〜3μmの厚さに形成し、 (b)上記ダイヤ薄膜の表面を所定の表面粗さに研磨
し、 (c)ついで、上記Siウエハーの中央部を弗硝酸など
のエッチング溶液を用いて下方から溶解除去してSi枠
体とすることによりダイヤ薄膜で構成されたメンブレン
膜を形成し、 (d)上記メンブレン膜の上に、可視光の透過率がよ
く、かつ荷電粒子による帯電を防止できる、例えば酸化
インジウムスズなどからなる下地膜、W−Ti合金(T
i:1〜2%含有)のX線吸収体、エッチングマスクと
なる金属Cr膜、およびレジスト膜をスパッタリング法
やスピンコート法を用いて順次形成し、 (e)引き続いて、上記レジスト膜に電子ビームを走査
させて半導体集積回路のパターンを形成し、 (f)塩素と酸素の混合ガスを用い、上記パターンをエ
ッチングマスクとして上記金属Cr膜をエッチングし、 (g)つぎに、上記Si枠体を約−50℃の氷点下に冷
却した状態で、これの底部より上記X線吸収体に低温エ
ッチングを施して、これに半導体集積回路のパターンを
形成し、 (h)最終的に上記金属Cr膜を除去する、 以上(a)〜(h)の主要工程により製造されることは
良く知られるところである。また、上記X線マスクの
(b)工程におけるダイヤ薄膜表面の研磨方法として
は、一般に例えば軽油や白灯油などの鉱油からなる溶媒
中に3μm程度の平均粒径を有するダイヤモンド粉末を
0.1〜3重量%の割合で分散含有させてなる研磨液を
用い、前記ダイヤ薄膜の表面を銅製や錫製の軟質の定盤
表面に加圧当接し、前記軟質定盤の露出表面部に前記研
磨液を散布して、前記定盤のダイヤ薄膜との当接面にダ
イヤモンド粉末がつき刺さった状態を確保しながら、前
記定盤および/または前記ダイヤ薄膜を、例えば相互水
平回転などの相互平面移動させることにより研磨する方
法が知られている。 【0003】 【発明が解決しようとする課題】一方、近年、半導体装
置は益々高集積化の傾向にあり、これに伴い、上記X線
マスクのメンブレン膜を構成するダイヤ薄膜を透過する
X線には、これに偏位があると、この偏位が照射される
集積回路の位置ずれとなって現れることから、偏位のな
いことが要求されるが、このX線偏位は前記ダイヤ薄膜
の表面研磨面における平滑性に著しく影響され、平滑性
の低いものはX線偏位が大きく、このため前記ダイヤ薄
膜にはより一段の平滑性が要求されることになるが、上
記の従来研磨方法では、ダイヤ薄膜の研磨面をRms
(自乗平均面粗さ)で高々30nm程度の面粗さにしか
平滑化することができず、この程度の面粗さの研磨面で
は半導体集積回路の更なる高集積化には十分満足に対応
することができないのが現状である。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、ダイヤ薄膜の表面研磨面の平滑
性のより一層の向上を図るべく研究を行った結果、研磨
液として、15〜100nmの平均粒径を有する酸化チ
タン(以下、TiO2 で示す)粉末が5〜15重量%の
割合で分散分布し、かつ1〜100cPの粘度および
9.5〜11のpHを有する水溶液を用い、平面表面が
軟質発泡ポリウレタンまたはフェルト製不織布で構成さ
れた定盤を前記研磨液内に浸漬保持し、前記定盤の平面
表面に気相合成ダイヤ薄膜の表面を加圧当接し、前記定
盤および/または前記薄膜を相互平面移動させることに
より前記ダイヤ薄膜の表面を研磨すると、前記ダイヤ薄
膜の研磨面は、一段と平滑化し、上記の従来研磨方法で
はRmsで高々30nmの面粗さしか得られなかったも
のが、同じくRmsで0.5〜3.3nmの面粗さをも
つようになるという研究結果を得たのである。 【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、研磨液として、水溶液中に15
〜100nmの平均粒径を有する酸化チタン粉末が5〜
15重量%の割合で分散分布し、かつ1〜100cPの
粘度および9.5〜11のpHを有する研磨液を用い、
平面表面が軟質発泡ポリウレタンまたはフェルト製不織
布で構成された定盤を前記研磨液内に浸漬保持し、前記
定盤の平面表面に気相合成ダイヤ薄膜の表面を加圧当接
し、前記定盤および/または前記薄膜を相互平面移動さ
せることにより前記ダイヤ薄膜の表面に平滑性のすぐれ
た研磨面を形成する方法に特徴を有するものである。 【0006】つぎに、この発明の方法において、研磨液
のTiO2 粉末の平均粒径および分散割合、並びに研磨
液の粘度およびpHを上記の通りに限定した理由を説明
する。 (a)TiO2 粉末の平均粒径 TiO2 粉末の粒径が微細なほど平滑性の高い研磨面が
得られるが、その平均粒径が15nm未満になると研磨
効率が低下し、所定の研磨面を得るのに長時間を要し、
実用的でなく、一方、その平均粒径が100nmを越え
ると、Rms:3.3nmより平滑な面粗さの研磨面を
得ることは困難になることから、その平均粒径を15〜
100nmと定めた。 【0007】(b)TiO2 粉末の分散割合 その割合が5重量%未満では、水溶液中のTiO2 粉末
の分散濃度が低く、所定の研磨面を得るのに長持間を必
要とし、実用的でなく、一方、その割合が15重量%を
越えると、粉末相互に凝集が起こり易くなり、凝集した
TiO2 粉末の存在によって平滑性が損なわれるように
なることから、その割合を5〜15重量%と定めた。 【0008】なお、上記のTiO2 粉末としては、以下
に示す気相合成法や液相合成法で製造されたものを用い
るのが望ましい。 (a)気相合成法によるTiO2 粉末の製造 気相合成法としては「塩素法」と呼ばれる方法で製造す
るのがよく、この方法は、具体的には高純度の四塩化チ
タンを炉内で1000℃に余熱してガス化させ、ついで
これを酸素と水素の燃焼炎中に流し、 反応式:TiCl4 +2H2 +O2→TiO2 +4HC
l によってTiO2 粉末を製造する方法であり、この場合
TiO2 粉末の粒径は、燃焼炎中の酸素と水素の割合や
燃焼炎の温度を制御することにより調整することができ
る。 (b)液相合成法によるTiO2 粉末の製造 液相合成法としては「アルコキシド法」と呼ばれる方法
で製造するのがよく、この方法は、具体的にはプロパノ
ールとベンゼンを混合し、これに塩化チタンを加えなが
ら撹拌し、さらに撹拌を続けながら乾燥させたアンモニ
アガスを徐々に導入し、これを塩化アンモニウムの新た
な生成反応が見られなくなるまで続けた後、この反応に
よって生成した塩化アンモニウムを濾過してTi(OC
374 のベンゼン溶液とし、この溶液を10tor
rの雰囲気中、温度:70℃で蒸留してベンゼンを除去
し、この結果得られたTi(OC374 を90℃に
保持した蒸留水中で、 反応式:Ti(OC374 +4H2 O→Ti(O
H)4 +4C37 OH、 にしたがって加水分解し、この反応液を1日放置した
後、濾過してTi(OH)4 粉末を取りだし、この粉末
を蒸留水で十分洗浄し、遠心分離器にかけた後、10t
orrの雰囲気中、温度:75℃に75時間保持の条件
で乾燥して、 反応式:Ti(OH)4 →(乾燥)→TiO2 +2H2
O、 にしたがってTiO2 を製造する方法である。 【0009】(c)研磨液の粘度 研磨液の粘度は研磨効率に影響を及ぼすものであり、か
つその粘度は、これが低い場合は、例えばエチレングリ
コールで、また高い場合は、例えばエチレングリコール
とグリセリンなどで調整されるが、その粘度が1cP未
満になると、研磨効率が急激に低下し、一方、その粘度
が100cPを越えると、TiO2 粉末が研磨面に滞留
する時間が長くなって平滑化を抑制するように作用する
ことから、その粘度を1〜100cP、望ましくは10
〜30cPと定めた。 【0010】(d)研磨液のpH 研磨液中のTiO2 粉末の分散性はpH値によって変化
するが、pH値が9.5未満でも、また同11を越えて
も前記TiO2 粉末の分散性に低下傾向が現れ、分散性
の低下した研磨液では平滑性のすぐれた研磨面を形成す
ることが困難になり、したがってTiO2 粉末を研磨液
中に均一に分散させるためには、研磨液のpH値を、通
常KOHや、さらにNH4 OHおよびNaOHなどで調
整して9.5〜11とする必要がある。 【0011】 【発明の実施の形態】つぎに、この発明の方法を実施例
により具体的に説明する。まず、半径:100mm×厚
さ:1mmの寸法をもったSiウエハー(基板):16
枚の上面に、それぞれ周知の気相合成法であるマイクロ
ウェーブ法にて厚さ:3μmのダイヤ薄膜を形成した。
これらのダイヤ薄膜はいずれもRms:65〜70nm
の面粗さをもつものであった。 【0012】また、超純水にKOHを混合してそれぞれ
pHを調整し、これにそれぞれ表1に示される平均粒径
をもったTiO2 粉末を同じく表1に示される割合で分
散含有させ、粘度は、これが低い場合はエチレングリコ
ールで、また高い場合は、エチレングリコールとグリセ
リンで調整して、それぞれ表1に示される粘度およびp
Hの研磨液を調整した。 【0013】ついで、平面直径:300mm×厚さ:1
2mmの寸法を有し、表面にフェルト製不織布からなる
研磨パットを張った定盤を上記研磨液内に水平に浸漬保
持し、この定盤の研磨液中に浸漬した状態にある上面の
研磨パット面に、前記Siウエハーのダイヤ薄膜のそれ
ぞれの表面を当接させて載置し、前記Siウエハーに油
圧シリンダーにてホルダーを介して圧力を付加し、この
ような状態で表1に示される研磨条件で、前記定盤およ
び前記Siウエハーを相互に回転させることによりダイ
ヤ薄膜表面の研磨を行なう本発明法1〜5を実施し、研
磨面の面粗さ(Rms)を測定した。この測定結果も表
1に示した。 【0014】さらに、比較の目的で、それぞれ表2に示
される平均粒径をもったダイヤモンド粉末を同じく表2
に示される割合で白灯油に分散含有させて研磨液を調製
した。ついで、水平に保持した平面直径:300mm×
厚さ:10mmの寸法を有するアルミナ製定盤の上面
に、上記Siウエハーのダイヤ薄膜のそれぞれの表面を
当接させて載置し、前記Siウエハーに油圧シリンダー
にてホルダーを介して圧力を付加し、前記定盤上面に前
記研磨液を噴霧しながら、同じく表2に示される研磨条
件で、前記定盤および/または前記Siウエハーを相互
に回転させることによりダイヤ薄膜表面の研磨を行なう
従来法1〜3を行ない、同じく研磨面の面粗さ(Rm
s)を測定した。この測定結果も表2に示した。 【0015】 【表1】【0016】 【表2】 【0017】 【発明の効果】表1、2に示される結果から、本発明法
1〜5によれば、ダイヤ薄膜の表面にRms:0.7〜
3.3nmの面粗さの研磨面を形成することができ、こ
の研磨面は従来法1〜3で得られるRms:39〜45
nmの面粗さに比して著しくすぐれた平滑性をもつこと
が明らかである。上述のように、この発明の方法によれ
ば、ダイヤ薄膜の表面に平滑性のすぐれた研磨面を形成
することができ、この結果の研磨面は、例えば上記X線
マスクのメンブレン膜として用いた場合には、X線透過
に際して半導体集積回路の偏位を著しく低減することが
可能になるので、半導体装置の高集積化に十分満足に対
応することができ、さらにダイヤ薄膜を、切削工具や耐
摩耗工具の硬質被覆層、並びに高エネルギー電磁波装置
の窓材や、弾性波素子、冷陰極、および高温半導体など
の電子デバイス装置の構成材などとして適用した場合に
も、その研磨面を上記の通りRmsで0.7〜8.7n
mの平滑な面粗さにすることができ、この結果としてこ
れら装置の性能が向上するようになるなど工業上有用な
効果がもたらされるのである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a polished surface having excellent smoothness on the surface of a vapor-phase synthetic diamond thin film (hereinafter referred to as a diamond thin film). It is. 2. Description of the Related Art Conventionally, for example, an X-ray mask used for forming a semiconductor integrated circuit by the X-ray lithography technique comprises: (a) a known method on a top surface of a Si wafer (substrate) having a thickness of about 380 μm; A diamond thin film having a very good X-ray transmittance is formed to a thickness of 1 to 3 μm by a gas phase synthesis method, (b) the surface of the diamond thin film is polished to a predetermined surface roughness, and (c) The central portion of the Si wafer is dissolved and removed from below using an etching solution such as hydrofluoric nitric acid to form a Si frame, thereby forming a membrane film composed of a diamond thin film. (D) On the membrane film, A base film made of, for example, indium tin oxide or the like, which has a high visible light transmittance and can prevent charging by charged particles, a W-Ti alloy (T
i: 1 to 2%), an X-ray absorber, a metal Cr film serving as an etching mask, and a resist film are sequentially formed by using a sputtering method or a spin coating method. Forming a pattern of the semiconductor integrated circuit by scanning the beam; (f) etching the metal Cr film using a mixed gas of chlorine and oxygen, using the pattern as an etching mask; (g) subsequently forming the Si frame Is cooled to about −50 ° C. below the freezing point, and the X-ray absorber is subjected to low-temperature etching from the bottom thereof to form a semiconductor integrated circuit pattern thereon. (H) Finally, the metal Cr film is formed. It is well known that it is manufactured by the above main steps (a) to (h). The method of polishing the diamond thin film surface in the step (b) of the X-ray mask generally includes, for example, a method in which a diamond powder having an average particle size of about 3 μm is dissolved in a solvent composed of mineral oil such as light oil or white kerosene in a range of 0.1 to 0.1 μm. Using a polishing liquid dispersed and contained at a ratio of 3% by weight, the surface of the diamond thin film is brought into pressure contact with the surface of a soft platen made of copper or tin, and the polishing liquid is brought into contact with the exposed surface of the soft platen. And moving the platen and / or the diamond thin film in a plane such as horizontal rotation, for example, while ensuring that diamond powder adheres to the contact surface of the platen with the diamond thin film. Thus, a polishing method is known. On the other hand, in recent years, semiconductor devices have been becoming more and more highly integrated, and as a result, X-rays transmitted through a diamond thin film forming a membrane film of the X-ray mask have been developed. It is required that there is no deviation because this deviation appears as a displacement of the integrated circuit to be irradiated, but this X-ray deviation is required for the diamond thin film. The surface polishing surface is significantly affected by the smoothness, and the one having low smoothness has a large X-ray deviation, so that the diamond thin film requires a higher level of smoothness. Then, the polishing surface of the diamond thin film is set to Rms
It can only be smoothed to a surface roughness of at most about 30 nm in (root mean square surface roughness), and a polished surface with such a surface roughness can sufficiently cope with higher integration of a semiconductor integrated circuit. It is not possible at present. [0004] Accordingly, the present inventors have proposed:
From the above-mentioned viewpoints, as a result of research for further improving the smoothness of the polished surface of the diamond thin film, titanium oxide having an average particle diameter of 15 to 100 nm (hereinafter, TiO 2) was used as a polishing liquid. The powder is dispersed and distributed at a rate of 5 to 15% by weight, and has an aqueous solution having a viscosity of 1 to 100 cP and a pH of 9.5 to 11, and has a flat surface made of a soft foamed polyurethane or a nonwoven fabric made of felt. The platen is immersed and held in the polishing liquid, the surface of the vapor-phase synthetic diamond thin film is pressed against the flat surface of the platen, and the platen and / or the thin film are moved with respect to each other. When the surface of the thin film is polished, the polished surface of the diamond thin film is further smoothed, and a surface roughness of only 30 nm at most in Rms can be obtained by the above conventional polishing method. Than we were obtained the results of a study that will have a surface roughness of 0.5~3.3Nm. [0005] The present invention has been made based on the above research results, and is used as a polishing liquid in an aqueous solution.
Titanium oxide powder having an average particle size of ~ 100 nm
Using a polishing liquid having a dispersion of 15% by weight and having a viscosity of 1 to 100 cP and a pH of 9.5 to 11,
A platen whose flat surface is made of soft foamed polyurethane or nonwoven fabric made of felt is immersed and held in the polishing liquid, and the surface of the vapor-phase synthetic diamond thin film is pressed against the flat surface of the platen, and the platen and And / or a method of forming a polished surface with excellent smoothness on the surface of the diamond thin film by moving the thin films mutually in a plane. Next, the reason why the average particle size and the dispersion ratio of the TiO 2 powder of the polishing liquid, and the viscosity and pH of the polishing liquid are limited as described above in the method of the present invention will be described. (A) an average particle size TiO 2 high polished surface grain size smoothness finer particles of the powder of the TiO 2 powder is obtained, and decrease the polishing efficiency and the average particle size is less than 15 nm, predetermined polishing surface Takes a long time to get
On the other hand, if the average particle diameter exceeds 100 nm, it is difficult to obtain a polished surface having a surface roughness smoother than Rms: 3.3 nm.
It was determined to be 100 nm. (B) Dispersion ratio of TiO 2 powder When the ratio is less than 5% by weight, the dispersion concentration of the TiO 2 powder in the aqueous solution is low, and a long polishing time is required to obtain a predetermined polished surface. On the other hand, if the proportion exceeds 15% by weight, the powders tend to agglomerate with each other, and the smoothness is impaired by the presence of the agglomerated TiO 2 powder. It was decided. It is desirable to use the TiO 2 powder produced by the following gas phase synthesis method or liquid phase synthesis method. (A) Production of TiO 2 powder by vapor phase synthesis As a vapor phase synthesis method, it is preferable to produce by a method called “chlorine method”. And gasification by preheating to 1000 ° C., and then flowing this into a combustion flame of oxygen and hydrogen, the reaction formula: TiCl 4 + 2H 2 + O 2 → TiO 2 + 4HC
The method of producing a TiO 2 powder by l, in this case TiO 2 powder having a particle size can be adjusted by controlling the temperature of the oxygen and hydrogen ratio and combustion flame in the combustion flame. (B) Production of TiO 2 powder by liquid phase synthesis As a liquid phase synthesis method, it is preferable to produce by a method called “alkoxide method”. Specifically, this method is to mix propanol and benzene, The mixture was stirred while adding titanium chloride, and gradually dried ammonia gas was gradually introduced while continuing the stirring, and this was continued until a new reaction for forming ammonium chloride was not observed. Filter and filter Ti (OC
3 H 7 ) 4 as a benzene solution, and this solution was
The benzene was removed by distillation at a temperature of 70 ° C. in an atmosphere of r, and the resulting Ti (OC 3 H 7 ) 4 was reacted in distilled water maintained at 90 ° C. to obtain a reaction formula: Ti (OC 3 H 7). ) 4 + 4H 2 O → Ti (O
H) 4 + 4C 3 H 7 OH, the reaction solution was left to stand for 1 day, filtered to remove Ti (OH) 4 powder, and the powder was sufficiently washed with distilled water and centrifuged. 10t
In an atmosphere of orr, drying was performed under the condition of maintaining the temperature at 75 ° C. for 75 hours. Reaction formula: Ti (OH) 4 → (dry) → TiO 2 + 2H 2
This is a method for producing TiO 2 according to O, (C) Viscosity of the polishing liquid The viscosity of the polishing liquid affects the polishing efficiency, and the viscosity is, for example, ethylene glycol when the viscosity is low, and ethylene glycol and glycerin when the viscosity is high. When the viscosity is less than 1 cP, the polishing efficiency is sharply reduced. On the other hand, when the viscosity is more than 100 cP, the time for which the TiO 2 powder stays on the polished surface becomes longer, and the smoothing is performed. Since it acts so as to suppress the viscosity, its viscosity is 1 to 100 cP, preferably 10 to 100 cP.
3030 cP. (D) pH of the polishing liquid The dispersibility of the TiO 2 powder in the polishing liquid changes depending on the pH value. However, even if the pH value is less than 9.5 or exceeds 11, the TiO 2 powder is dispersed. The polishing liquid has a tendency to decrease, and it is difficult to form a polished surface having excellent smoothness with a polishing liquid having reduced dispersibility. Therefore, in order to uniformly disperse the TiO 2 powder in the polishing liquid, it is necessary to use a polishing liquid. Is usually adjusted to 9.5 to 11 by adjusting the pH value with KOH or further with NH 4 OH and NaOH. Next, the method of the present invention will be specifically described with reference to examples. First, a Si wafer (substrate) having a dimension of radius: 100 mm × thickness: 1 mm: 16
A diamond thin film having a thickness of 3 μm was formed on the upper surface of each of the sheets by a microwave method, which is a well-known gas phase synthesis method.
Each of these diamond thin films has an Rms of 65 to 70 nm.
Surface roughness. Further, KOH is mixed with ultrapure water to adjust the pH, and TiO 2 powder having an average particle size shown in Table 1 is dispersed and contained therein in the same proportion as shown in Table 1, respectively. The viscosity was adjusted with ethylene glycol when it was low, and with ethylene glycol and glycerin when it was high, to give the viscosity and p shown in Table 1, respectively.
The H polishing liquid was prepared. Next, a plane diameter: 300 mm × thickness: 1
A polishing plate having a size of 2 mm and having a polishing pad made of a nonwoven fabric made of felt on the surface is horizontally immersed and held in the polishing liquid, and the polishing pad on the upper surface in a state of being immersed in the polishing liquid of the platen The surface of each of the diamond thin films of the Si wafer is placed on the surface thereof in contact with each other, pressure is applied to the Si wafer by a hydraulic cylinder via a holder, and the polishing shown in Table 1 is performed in such a state. Under the conditions, the methods 1 to 5 of the present invention for polishing the diamond thin film surface by rotating the surface plate and the Si wafer to each other were performed, and the surface roughness (Rms) of the polished surface was measured. The measurement results are also shown in Table 1. Further, for comparison purposes, a diamond powder having an average particle size shown in Table 2 was also used in Table 2.
Was dispersed and contained in white kerosene at the ratio shown in Table 1 to prepare a polishing liquid. Then, the plane diameter held horizontally: 300 mm x
Thickness: Each surface of the diamond thin film of the Si wafer is placed on the upper surface of an alumina platen having a dimension of 10 mm in contact with the surface of the diamond thin film, and pressure is applied to the Si wafer by a hydraulic cylinder via a holder. Conventional method 1 in which the surface of the diamond thin film is polished by rotating the surface and / or the Si wafer with each other under the same polishing conditions as shown in Table 2 while spraying the polishing liquid on the upper surface of the surface. To 3 and the surface roughness of the polished surface (Rm
s) was measured. The measurement results are also shown in Table 2. [Table 1] [Table 2] According to the results shown in Tables 1 and 2, according to the methods 1 to 5 of the present invention, Rms: 0.7 to
A polished surface with a surface roughness of 3.3 nm can be formed, and this polished surface is obtained by Rms: 39 to 45 obtained by conventional methods 1 to 3.
It is evident that the surface has significantly better smoothness than the surface roughness of nm. As described above, according to the method of the present invention, a polished surface having excellent smoothness can be formed on the surface of the diamond thin film, and the resulting polished surface is used, for example, as a membrane film of the X-ray mask. In this case, the deviation of the semiconductor integrated circuit during the transmission of X-rays can be significantly reduced, so that it is possible to sufficiently cope with the high integration of the semiconductor device. Hard coating layer of wear tool, and window material of high energy electromagnetic wave device, elastic wave element, cold cathode, even when applied as a component material of electronic device such as high-temperature semiconductor, the polished surface as described above 0.7-8.7n in Rms
m can be obtained, and as a result, industrially useful effects such as improvement in the performance of these devices can be brought about.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B24B 37/00 B24B 1/00 H01L 21/027 H01L 21/304 622 C09K 3/14 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B24B 37/00 B24B 1/00 H01L 21/027 H01L 21/304 622 C09K 3/14

Claims (1)

(57)【特許請求の範囲】 【請求項1】 研磨液として、水溶液中に15〜100
nmの平均粒径を有する酸化チタン粉末が5〜15重量
%の割合で分散分布し、かつ1〜100cPの粘度およ
び9.5〜11のpHを有する研磨液を用い、平面表面
が軟質発泡ポリウレタンまたはフェルト製不織布で構成
された定盤を前記研磨液内に浸漬保持し、前記定盤の平
面表面に気相合成ダイヤモンド薄膜の表面を加圧当接
し、前記定盤および/または前記薄膜を相互平面移動さ
せることを特徴とする気相合成ダイヤモンド薄膜の表面
研磨方法。
(57) [Claims 1] As a polishing liquid, 15 to 100 in an aqueous solution.
a foamed polyurethane having a flat surface with a polishing liquid having a titanium oxide powder having an average particle diameter of 5 nm dispersed and distributed at a ratio of 5 to 15% by weight and having a viscosity of 1 to 100 cP and a pH of 9.5 to 11; Alternatively, a platen made of a nonwoven fabric made of felt is immersed and held in the polishing liquid, and the surface of the vapor-phase synthetic diamond thin film is pressed against the flat surface of the platen, so that the platen and / or the thin film are A method for polishing a surface of a vapor-phase synthetic diamond thin film, wherein the surface is moved in a plane.
JP920198A 1998-01-21 1998-01-21 Surface polishing method for vapor phase synthesized diamond thin film Expired - Fee Related JP3514096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP920198A JP3514096B2 (en) 1998-01-21 1998-01-21 Surface polishing method for vapor phase synthesized diamond thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP920198A JP3514096B2 (en) 1998-01-21 1998-01-21 Surface polishing method for vapor phase synthesized diamond thin film

Publications (2)

Publication Number Publication Date
JPH11207603A JPH11207603A (en) 1999-08-03
JP3514096B2 true JP3514096B2 (en) 2004-03-31

Family

ID=11713882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP920198A Expired - Fee Related JP3514096B2 (en) 1998-01-21 1998-01-21 Surface polishing method for vapor phase synthesized diamond thin film

Country Status (1)

Country Link
JP (1) JP3514096B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020213A1 (en) * 2004-04-22 2005-11-24 Kerr-Mcgee Pigments Gmbh Composition for chemical mechanical polishing (CMP)
US9259818B2 (en) * 2012-11-06 2016-02-16 Sinmat, Inc. Smooth diamond surfaces and CMP method for forming

Also Published As

Publication number Publication date
JPH11207603A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP0874036B1 (en) Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices.
CN1230486C (en) Cerium oxide slurry, and method of mfg. substrate
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
WO1993022103A1 (en) Compositions and methods for polishing and planarizing surfaces
Kim et al. Effects of trivalent lanthanide (La and Nd) doped ceria abrasives on chemical mechanical polishing
US6565767B2 (en) Polymer particles and polishing material containing them
TW593652B (en) Metal oxide powder for high precision polishing and method of preparation thereof
Dong et al. Preparation of non-spherical silica composite abrasives by lanthanum ion-induced effect and its chemical–mechanical polishing properties on sapphire substrates
CN111040640A (en) Composite abrasive chemical mechanical polishing slurry for silicon wafer substrate and preparation method thereof
US20070102664A1 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
WO2017219499A1 (en) Method for preparing aluminium oxide polishing solution
JP3514091B2 (en) Surface polishing method for vapor phase synthesized diamond thin film
Gao et al. Electro-chemical mechanical polishing of 4H-SiC for scratch-free surfaces with less oxide layer at high efficiency
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP2004203638A (en) Peanut-like twin colloidal silica particle, and production method therefor
JP2015086102A (en) Production method of silica particle, and polishing agent including the silica particle
JP3514096B2 (en) Surface polishing method for vapor phase synthesized diamond thin film
TWI378159B (en)
US20070101659A1 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
JP4062977B2 (en) Abrasive and substrate polishing method
KR102580719B1 (en) Abrasive for synthetic quartz glass substrate, manufacturing method thereof, and polishing method for synthetic quartz glass substrate
EP2092034A1 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
KR20210003755A (en) Polishing agent for synthetic quartz glass substrates, manufacturing method thereof, and polishing method for synthetic quartz glass substrates
CN114560468A (en) Silicon dioxide for chemical mechanical polishing and preparation method and application thereof
JP2001093866A (en) Oxide single-crystal wafer processing/polishing composition and method of polishing the oxide single- crystal wafer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees