JP3514086B2 - Combustion control device for diesel engine - Google Patents

Combustion control device for diesel engine

Info

Publication number
JP3514086B2
JP3514086B2 JP26637597A JP26637597A JP3514086B2 JP 3514086 B2 JP3514086 B2 JP 3514086B2 JP 26637597 A JP26637597 A JP 26637597A JP 26637597 A JP26637597 A JP 26637597A JP 3514086 B2 JP3514086 B2 JP 3514086B2
Authority
JP
Japan
Prior art keywords
injection
combustion
period
diesel engine
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26637597A
Other languages
Japanese (ja)
Other versions
JPH11107821A (en
Inventor
修二 木村
弘志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26637597A priority Critical patent/JP3514086B2/en
Publication of JPH11107821A publication Critical patent/JPH11107821A/en
Application granted granted Critical
Publication of JP3514086B2 publication Critical patent/JP3514086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はディーゼルエンジ
ンの燃焼制御装置に関する。
TECHNICAL FIELD The present invention relates to a combustion control device for a diesel engine.

【0002】[0002]

【従来の技術】EGRにより酸素濃度を低減し、かつ噴
射開始時期を圧縮上死点後にまで遅延するとともに、燃
焼室内のガス流動制御と、着火遅れ期間中に燃料噴射を
終了することとにより予混合気を形成する、いわゆる
予混合燃焼を行わせるものが提案されている(特開平
8−86251号公報参照)。
2. Description of the Related Art The oxygen concentration is reduced by EGR, the injection start timing is delayed until after compression top dead center, the gas flow is controlled in the combustion chamber, and the fuel injection is ended during the ignition delay period. Forming a mixture, so-called low
Which causes the temperature premixed combustion has been proposed (see Japanese Patent Laid-Open No. 8-86251).

【0003】[0003]

【発明が解決しようとする課題】ところで、高負荷域で
も上記の予混合燃焼を行わせることができないかと、高
負荷時に大量EGRを行ったところ、大量の高温のEG
Rガスによって吸気温度が上昇するため、着火遅れ期間
が噴射期間よりも短くなり、このため、低温予混合燃焼
とならず、スモークが増大したり、燃費が悪化すること
がわかった。つまり、低温予混合燃焼では、着火開始ま
でに酸素の周りにできるだけ燃料を分散させておくこと
を狙いとしているため、低温予混合燃焼の実現には、ガ
ス流動制御による燃料の分散促進のほか、着火遅れ期間
中に燃料噴射を終了することが最大の条件となることが
最新の実験により判明したのである。
By the way, when a large amount of EGR was carried out at the time of high load as to whether the above premixed combustion could be performed even in a high load region, a large amount of high temperature EG was found.
It was found that since the intake temperature rises due to the R gas, the ignition delay period becomes shorter than the injection period, so that low temperature premix combustion does not occur, smoke increases, and fuel consumption deteriorates. In other words, in low-temperature premixed combustion, the aim is to disperse fuel as much as possible around oxygen before ignition starts, so in order to realize low-temperature premixed combustion, in addition to promoting fuel dispersion through gas flow control, The latest experiment has revealed that the most important condition is to finish the fuel injection during the ignition delay period.

【0004】そこで本発明は、高負荷域でも着火遅れ期
間中に燃料噴射を終了させるため大量のEGRを行うこ
となどにより酸素濃度を所定値にまで小さくするととも
に、噴射期間を着火遅れ期間と同じかそれよりも短縮す
るように制御することにより、低温予混合燃焼が可能な
領域を高負荷域にまで拡大することを目的とする。
Therefore, according to the present invention, the oxygen concentration is reduced to a predetermined value by performing a large amount of EGR in order to end the fuel injection during the ignition delay period even in the high load region, and the injection period is the same as the ignition delay period. The purpose is to extend the region where low temperature premixed combustion is possible to the high load region by controlling so as to be shorter than that.

【0005】[0005]

【課題を解決するための手段】第1の発明は、酸素濃度
を低減し、かつ噴射開始時期を圧縮上死点後にまで遅延
するとともに、燃焼室内のガス流動制御と、着火遅れ期
間中に燃料噴射を終了することとにより予混合気を形成
し、低温予混合燃焼を行わせるデーゼルエンジンの燃
焼制御装置において、高負荷域において前記酸素濃度を
所定値未満にまで小さくしかつ前記噴射開始時期より前
記燃料噴射の終了時期までの期間である噴射期間が前記
着火遅れ期間と同じかまたは短くなるように噴射期間を
制御することにより着火遅れ期間中に燃料噴射を終了さ
せる。
A first aspect of the invention is to reduce the oxygen concentration, delay the injection start timing until after compression top dead center, control the gas flow in the combustion chamber, and fuel during the ignition delay period. by the ending the injection to form the premixed air-fuel mixture, the combustion control apparatus for de I over diesel engine to perform a low-temperature premixed combustion, the oxygen concentration of less vital the injection start timing to less than a predetermined value in the high load region The fuel injection is terminated during the ignition delay period by controlling the injection period so that the injection period, which is a period until the end timing of the fuel injection, is the same as or shorter than the ignition delay period.

【0006】第2の発明では、第1の発明において負荷
が増すほど前記噴射期間を短くする。
In the second invention, the injection period is shortened as the load increases in the first invention.

【0007】第3の発明では、第1または第2の発明に
おいて噴射圧により前記噴射期間を制御する。
In a third invention, the injection period is controlled by the injection pressure in the first or second invention.

【0008】第4の発明では、第3の発明において酸素
濃度が前記所定値以上となったときまたは噴射期間が着
火遅れ期間より長くなったとき、前記噴射圧を低下させ
る。
According to a fourth aspect of the present invention, the injection pressure is reduced when the oxygen concentration exceeds the predetermined value or when the injection period becomes longer than the ignition delay period in the third aspect.

【0009】第5の発明では、第1または第2の発明に
おいて噴孔面積または噴孔数を制御可能なノズルを備え
ている場合に、そのノズルの噴孔径または噴孔数により
前記噴射期間を制御する。
According to a fifth aspect of the present invention, in the case where a nozzle capable of controlling the injection hole area or the number of injection holes is provided in the first or second invention, the injection period is determined by the injection hole diameter or the number of injection holes of the nozzle. Control.

【0010】第6の発明では、第1または第2の発明に
おいて一気筒当たり複数のノズルを備え、噴射を担当す
るノズルの数を制御可能である場合に、噴射を担当する
ノズルの数により前記噴射期間を制御する。
According to a sixth aspect of the invention, in the first or second aspect of the invention, a plurality of nozzles per cylinder is provided, and when the number of nozzles in charge of injection can be controlled, the number of nozzles in charge of injection can be used to control the number of nozzles. Control the injection period.

【0011】第7の発明では、第1から第6までのいず
れか一つの発明においてEGR率を大きくすることによ
り前記酸素濃度を小さくする。
In a seventh aspect of the invention, the oxygen concentration is reduced by increasing the EGR rate in any one of the first to sixth aspects.

【0012】[0012]

【発明の効果】第1の発明により、高負荷域にまで低温
予混合燃焼が可能になると、低温予混合燃焼では燃焼温
度が低く抑えられ、初期の燃焼速度が抑制されることか
ら、従来より燃焼騒音が低くなるとともに、酸素濃度の
低下によりNOxも大きく低減する。この結果、実験結
果によれば低温予混合燃焼が可能となった運転域の全体
で比較してみると、燃焼騒音、NOxとも従来より半分
以下にすることができた。
According to the first aspect of the present invention, when the low temperature premixed combustion can be performed even in the high load range, the combustion temperature can be kept low in the low temperature premixed combustion and the initial combustion speed can be suppressed. Therefore, the combustion noise becomes lower than before, and NOx is greatly reduced due to the decrease in oxygen concentration. As a result, according to the experimental results, the combustion noise and NOx could be reduced to less than half of the conventional values when compared in the entire operating range where low-temperature premixed combustion became possible.

【0013】負荷がさらに高くなり、低温予混合燃焼が
不可能な領域になってまで噴射圧を高くしていると、燃
焼騒音が大きくなるのであるが、第4の発明では、低温
予混合燃焼が不可能な領域になったとき噴射圧を下げる
ので、燃焼騒音の悪化を防止できる。
[0013] load further increases, the have a higher injection pressure to become impossible low temperature premix combustion region, although the combustion noise increases, in the fourth invention, the low temperature <br / > Injection pressure is reduced when premixed combustion is not possible, so combustion noise can be prevented from deteriorating.

【0014】[0014]

【発明の実施の形態】図1に低温予混合燃焼を行わせる
ための構成を示すと、この構成そのものは特開平8−8
6251号公報などにより公知である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a structure for performing low temperature premixed combustion, and this structure itself is disclosed in JP-A-8-8.
It is known from, for example, Japanese Patent No. 6251.

【0015】NOxの生成は燃焼温度に大きく依存し、
その低減には燃焼温度の低温化が有効である。低温予混
合燃焼では、EGRによる酸素濃度の低減で、低温燃焼
を実現するため、排気通路2と吸気通路3とを結ぶEG
R通路4に、負圧制御弁5からの制御負圧に応動するダ
イヤフラム式のEGR弁6を備えている。
The production of NOx largely depends on the combustion temperature,
Lowering the combustion temperature is effective in reducing this. In the low-temperature premixed combustion, the EGR connecting the exhaust passage 2 and the intake passage 3 is performed in order to realize the low-temperature combustion by reducing the oxygen concentration by EGR.
The R passage 4 is provided with a diaphragm type EGR valve 6 that responds to the control negative pressure from the negative pressure control valve 5.

【0016】負圧制御弁5は、コントロールユニット4
1からのデューティ制御信号により駆動されるもので、
これによって運転条件に応じた所定のEGR率を得るよ
うにしている。たとえば、図3に示したように、低回転
低負荷域でEGR率を最大の100パーセントとし、回
転数、負荷が高くなるに従い、EGR率を減少させる。
高負荷側では排気温度が上昇するため、多量のEGRガ
スを還流すると、吸気温度の上昇によってNOx低減の
効果が減少したり、噴射燃料の着火遅れ期間が短くなっ
て予混合燃焼が実現できなくなる等のため、EGR率を
段階的に減少させているわけである。
The negative pressure control valve 5 is a control unit 4
It is driven by the duty control signal from 1.
Thereby, a predetermined EGR rate according to the operating condition is obtained. For example, as shown in FIG. 3, the EGR rate is set to a maximum of 100% in the low rotation and low load range, and the EGR rate is decreased as the rotation speed and the load increase.
Since the exhaust temperature rises on the high load side, if a large amount of EGR gas is recirculated, the effect of reducing NOx is reduced due to the rise in intake air temperature, or the ignition delay period of the injected fuel is shortened and premixed combustion cannot be realized. Therefore, the EGR rate is gradually reduced.

【0017】EGR通路4の途中には、EGRガスの冷
却装置7を備える。これは、EGR通路4の周りに形成
されエンジン冷却水の一部が循環されるウォータジャケ
ット8と、冷却水の導入口7aに設けられ冷却水の循環
量を調整可能な流量制御弁9とからなり、コントロール
ユニット41からの指令により、制御弁9を介して循環
量を増やすほどEGRガスの冷却度が増す。
A cooling device 7 for EGR gas is provided in the EGR passage 4. This is composed of a water jacket 8 formed around the EGR passage 4 in which a part of the engine cooling water is circulated, and a flow rate control valve 9 provided in the cooling water inlet 7a and capable of adjusting the circulation amount of the cooling water. Therefore, according to the command from the control unit 41, the cooling degree of the EGR gas increases as the circulation amount increases via the control valve 9.

【0018】燃焼促進のため吸気ポート近傍の吸気通路
に所定の切欠を有するスワールバルブ(図示しない)を
備える。コントロールユニット41により、このスワー
ルバルブが低回転低負荷域で閉じられると、燃焼室に吸
入される吸気の流速が高まり燃焼室にスワールが生成さ
れる。
A swirl valve (not shown) having a predetermined notch is provided in the intake passage near the intake port for promoting combustion. When the swirl valve is closed by the control unit 41 in the low rotation and low load region, the flow velocity of the intake air sucked into the combustion chamber increases and swirl is generated in the combustion chamber.

【0019】燃焼室は大径トロイダル燃焼室(図示しな
い)である。これは、ピストンキャビティ部の入口を絞
らずピストンの冠面から底部まで円筒状に形成したもの
で、その底部中央には、圧縮行程後期にピストンキャビ
ティの外部から旋回しながら流れ込むスワールに抵抗を
与えないように、さらに空気と燃料の混合を良好にする
ため、円錐部が形成されている。この入口を絞らない円
筒状のピストンキャビティにより、前述のスワールバル
ブ等によって生成されたスワールは、燃焼過程でピスト
ンが下降していくのに伴い、ピストンキャビティ内から
キャビティ外に拡散され、キャビティ外でもスワールが
持続される。
The combustion chamber is a large diameter toroidal combustion chamber (not shown). This is a cylindrical shape from the crown to the bottom of the piston without restricting the inlet of the piston cavity, and at the center of the bottom, resistance is given to the swirl that flows from the outside of the piston cavity while swirling from the outside of the compression stroke. A cone is formed so as to further improve the mixing of air and fuel. With this cylindrical piston cavity that does not throttle the inlet, the swirl generated by the swirl valve described above diffuses from the inside of the piston cavity to the outside of the cavity as the piston descends during the combustion process. The swirl is sustained.

【0020】エンジンにはコモンレール式の燃料噴射装
置10を備える。コモンレール式の燃料噴射装置10の
構成も公知(第13回内燃機関シンポジウム講演論文集
第73頁〜第77頁参照)であり、図2により概説す
る。
The engine is equipped with a common rail type fuel injection device 10. The configuration of the common rail type fuel injection device 10 is also publicly known (see Proceedings of the 13th Internal Combustion Engine Symposium, pp. 73 to 77), and will be outlined with reference to FIG.

【0021】この燃料噴射装置10は、主に燃料タンク
11、燃料供給通路12、サプライポンプ14、コモン
レール(蓄圧室)16、気筒毎に設けられるノズル17
からなり、サプライポンプ14により加圧された燃料は
燃料供給通路15を介して蓄圧室16にいったん蓄えら
れたあと、蓄圧室16の高圧燃料が気筒数分のノズル1
7に分配される。
This fuel injection device 10 mainly comprises a fuel tank 11, a fuel supply passage 12, a supply pump 14, a common rail (accumulation chamber) 16, and a nozzle 17 provided for each cylinder.
After the fuel pressurized by the supply pump 14 is temporarily stored in the pressure accumulating chamber 16 through the fuel supply passage 15, the high pressure fuel in the pressure accumulating chamber 16 has the same number of nozzles 1 as the number of cylinders.
It is divided into seven.

【0022】ノズル17は、針弁18、ノズル室19、
ノズル室19への燃料供給通路20、リテーナ21、油
圧ピストン22、針弁18を閉弁方向(図で下方)に付
勢するリターンスプリング23、油圧ピストン22への
燃料供給通路24、この通路24に介装される三方弁
(電磁弁)25などからなり、ノズル内の通路20と2
4が連通して油圧ピストン22上部とノズル室19にと
もに高圧燃料が導かれる三方弁25のOFF時(ポート
AとBが連通、ポートBとCが遮断)には、油圧ピスト
ン22の受圧面積が針弁18の受圧面積より大きいこと
から、針弁18が着座状態にあるが、三方弁25がON
状態(ポートAとBが遮断、ポートBとCが連通)にな
ると、油圧ピストン22上部の燃料が戻し通路28を介
して燃料タンク11に戻され、油圧ピストン22に作用
する燃料圧力が低下する。これによって針弁18が上昇
してノズル先端の噴孔より燃料が噴射される。三方弁2
5をふたたびOFF状態に戻せば、油圧ピストン22に
蓄圧室16の高圧燃料が導びかれて燃料噴射が終了す
る。つまり、三方弁25のOFFからONへの切換時期
により燃料の噴射開始時期が、またON時間により燃料
噴射量が調整され、蓄圧室16の圧力が同じであれば、
ON時間が長くなるほど燃料噴射量が多くなる。26は
逆止弁、27はオリフィスである。
The nozzle 17 includes a needle valve 18, a nozzle chamber 19,
Fuel supply passage 20 to nozzle chamber 19, retainer 21, hydraulic piston 22, return spring 23 for urging needle valve 18 in the valve closing direction (downward in the figure), fuel supply passage 24 to hydraulic piston 22, this passage 24 A three-way valve (solenoid valve) 25, etc. installed in the nozzle
When the three-way valve 25 in which the high pressure fuel is guided to both the upper portion of the hydraulic piston 22 and the nozzle chamber 19 is OFF (ports A and B communicate, ports B and C are cut off), the pressure receiving area of the hydraulic piston 22 is Is larger than the pressure receiving area of the needle valve 18, the needle valve 18 is in the seated state, but the three-way valve 25 is ON.
When the state (ports A and B are cut off, ports B and C are in communication), the fuel above the hydraulic piston 22 is returned to the fuel tank 11 via the return passage 28, and the fuel pressure acting on the hydraulic piston 22 is reduced. . As a result, the needle valve 18 rises and fuel is injected from the injection hole at the tip of the nozzle. Three-way valve 2
When 5 is returned to the OFF state again, the high pressure fuel in the pressure accumulating chamber 16 is guided to the hydraulic piston 22 and the fuel injection ends. That is, if the fuel injection start timing is adjusted by the switching timing of the three-way valve 25 from ON to OFF and the fuel injection amount is adjusted by the ON time, and the pressure in the pressure accumulating chamber 16 is the same,
The fuel injection amount increases as the ON time increases. Reference numeral 26 is a check valve, and 27 is an orifice.

【0023】この燃料噴射装置10にはさらに、蓄圧室
圧力を調整するため、サプライポンプ14から吐出され
た燃料を戻す通路13に圧力調整弁31を備える。この
調整弁31は通路13の流路を開閉するもので、蓄圧室
16への燃料吐出量を調整することにより蓄圧室圧力を
調整する。蓄圧室16の燃料圧力(噴射圧)によって燃
料噴射率が変化し、蓄圧室16の燃料圧力が高くなるほ
ど燃料噴射率が高くなる。
The fuel injection device 10 is further provided with a pressure adjusting valve 31 in the passage 13 for returning the fuel discharged from the supply pump 14 in order to adjust the pressure of the pressure accumulating chamber. The adjusting valve 31 opens and closes the flow path of the passage 13, and adjusts the pressure of the pressure accumulating chamber by adjusting the amount of fuel discharged to the pressure accumulating chamber 16. The fuel injection rate changes depending on the fuel pressure (injection pressure) in the pressure accumulating chamber 16, and the higher the fuel pressure in the pressure accumulating chamber 16, the higher the fuel injection rate.

【0024】アクセル開度センサ33、エンジン回転数
とクランク角度を検出するセンサ34、気筒判別のため
のセンサ35、水温センサ36からの信号が入力される
コントロールユニット41では、エンジン回転数とアク
セル開度に応じて目標燃料噴射量と蓄圧室16の目標圧
力を演算し、圧力センサ32により検出される蓄圧室圧
力がこの目標圧力と一致するように圧力調整弁31を介
して蓄圧室16の燃料圧力をフィードバック制御する。
In the control unit 41 to which signals from the accelerator opening sensor 33, the sensor 34 for detecting the engine speed and the crank angle, the sensor 35 for cylinder discrimination, and the water temperature sensor 36 are input, the engine speed and the accelerator opening are set. The target fuel injection amount and the target pressure of the pressure accumulating chamber 16 are calculated according to the degree, and the fuel of the pressure accumulating chamber 16 is adjusted via the pressure adjusting valve 31 so that the pressure accumulating chamber pressure detected by the pressure sensor 32 matches the target pressure. Feedback control the pressure.

【0025】また、演算した目標燃料噴射量に対応して
三方弁25のON時間を制御するほか、三方弁25のO
Nへの切換時期を制御することで、運転条件に応じた所
定の噴射開始時期を得るようにしている。たとえば、図
4に示したように、高EGR率の低回転低負荷側で噴射
燃料の着火遅れ期間が長くなるように燃料の噴射時期
(噴射開始時期)をピストン上死点(TDC)にまで遅
延している。この遅延により、着火時期の燃焼室内の温
度を低温状態にし、予混合燃焼比率を増大させることに
より、高EGR率域でのスモークの発生を抑える。これ
に対して、回転数、負荷が高くなるにしたがい、噴射時
期を進めている。これは、着火遅れの時間が一定であっ
ても、着火遅れクランク角度(着火遅れの時間をクラン
ク角度に換算した値)がエンジン回転数の増加に比例し
て大きくなり、低EGR率時に所定の着火時期を得るた
めに、噴射時期を進めるのである。
Further, the ON time of the three-way valve 25 is controlled in accordance with the calculated target fuel injection amount, and the O of the three-way valve 25 is controlled.
By controlling the switching timing to N, the predetermined injection start timing according to the operating conditions is obtained. For example, as shown in FIG. 4, the fuel injection timing (injection start timing) is extended to the piston top dead center (TDC) so that the ignition delay period of the injected fuel becomes longer on the low rotation and low load side of the high EGR rate. It's delayed. Due to this delay, the temperature in the combustion chamber at the ignition timing is set to a low temperature state and the premixed combustion ratio is increased, thereby suppressing the occurrence of smoke in the high EGR rate region. On the other hand, the injection timing is advanced as the rotation speed and the load increase. This is because even if the ignition delay time is constant, the ignition delay crank angle (a value obtained by converting the ignition delay time into a crank angle) increases in proportion to the increase in the engine speed, and at a low EGR rate, The injection timing is advanced in order to obtain the ignition timing.

【0026】図1に戻り、EGR通路4の開口部下流の
排気通路2にターボ過給機を備える。これは、排気ター
ビン52のスクロール入口に、ステップモータ54によ
り駆動される可変ベーン53を設けたもので、コントロ
ールユニット41により、可変ベーン53は低回転域か
ら所定の過給圧が得られるように、低回転側では排気タ
ービン52に導入される排気の流速を高めるベーン角度
(傾動状態)に、高回転側では排気を抵抗なく排気ター
ビン52に導入させるベーン角度(全開状態)に制御す
る。また、所定の条件にあるときは、可変ベーン53
は、過給圧を下げるベーン角度に制御される。
Returning to FIG. 1, a turbocharger is provided in the exhaust passage 2 downstream of the opening of the EGR passage 4. This is provided with a variable vane 53 driven by a step motor 54 at the scroll inlet of the exhaust turbine 52, so that the control unit 41 allows the variable vane 53 to obtain a predetermined boost pressure from a low rotation range. The low rotation side controls the vane angle (tilt state) that increases the flow velocity of the exhaust gas introduced into the exhaust turbine 52, and the high rotation side controls the vane angle (fully open state) that allows the exhaust gas to be introduced into the exhaust turbine 52 without resistance. Further, when the predetermined condition is met, the variable vane 53
Are controlled at vane angles that reduce the boost pressure.

【0027】さて、高負荷域でも予混合燃焼を行わせる
ことができないかと、高負荷時に大量EGRを行ったと
ころ、大量の高温のEGRガスによって吸気温度が上昇
するため、着火遅れ期間が噴射期間よりも短くなり、こ
のため低温予混合燃焼とならず、スモークが増大した
り、燃費が悪化することがわかった。つまり、低温予混
合燃焼では、着火開始までに酸素の周りにできるだけ燃
料を分散させておくことを狙いとしているため、低温予
混合燃焼の実現には、ガス流動制御による燃料の分散促
進のほか、着火遅れ期間中に燃料噴射を終了することが
最大の条件となることが最新の実験により判明した。
Now, whether premixed combustion can be carried out even in a high load region, and when a large amount of EGR is carried out at a high load, the intake temperature rises due to a large amount of high temperature EGR gas, so the ignition delay period is the injection period. It was found that the temperature was shorter than that of the above, and therefore, low temperature premix combustion was not performed, smoke was increased, and fuel consumption was deteriorated. In other words, in low-temperature premixed combustion, the aim is to disperse fuel as much as possible around oxygen before ignition starts, so in order to realize low-temperature premixed combustion, in addition to promoting fuel dispersion through gas flow control, The latest experiment has revealed that the most important condition is to finish the fuel injection during the ignition delay period.

【0028】言い換えると、高負荷域において酸素濃度
を18パーセント未満にまで小さくしかつ噴射期間が着
火遅れ期間と同じかまたは短くなるように噴射期間を制
御すると、高負荷域にまで低温予混合燃焼を行わせるこ
とが可能となることがわかったのである。
In other words, when the oxygen concentration is reduced to less than 18% in the high load region and the injection period is controlled so that the injection period is the same as or shorter than the ignition delay period, the low temperature premixed combustion reaches the high load region. It was found that it would be possible to do.

【0029】これを図5で説明すると、図5において
A、B、CはEGR領域で、AよりもB、BよりもCの
ほうが負荷が増大する。つまり、負荷が増大するほどE
GRガス温度が上昇し、着火遅れ期間が短くなっていく
ので、この着火遅れ期間の短縮に合わせて、噴射圧を高
める(同時に三方弁25による噴射終了時期を早める)
ことにより、噴射期間が着火遅れ期間と同じかそれとも
短くなるように制御する(図6の最下段参照)。なお、
図6において横軸にとったA、B、C、D、Eが図5の
A、B、C、D、Eに対応する。
This will be explained with reference to FIG. 5. In FIG. 5, A, B, and C are in the EGR region, and the load of B is higher than that of A and C is higher than that of B. That is, as the load increases, E
Since the GR gas temperature rises and the ignition delay period becomes shorter, the injection pressure is increased in accordance with the shortening of the ignition delay period (at the same time, the injection end timing by the three-way valve 25 is advanced).
As a result, the injection period is controlled to be the same as or shorter than the ignition delay period (see the bottom of FIG. 6). In addition,
A, B, C, D, and E on the horizontal axis in FIG. 6 correspond to A, B, C, D, and E in FIG.

【0030】この結果、Cの負荷時にまで、従来に比べ
て燃焼騒音とNOxをともに低減できることになった
(図6の最上段と第2段目参照)。このことは、図5に
示したように、低温予混合燃焼域が従来よりも高負荷側
に拡大することを意味するのである。
As a result, it is possible to reduce both the combustion noise and NOx compared to the conventional case until the load C (see the uppermost stage and the second stage in FIG. 6). This means that, as shown in FIG. 5, the low temperature premixed combustion region is expanded to the high load side as compared with the conventional case.

【0031】このようにして、本発明では高負荷域にま
で低温予混合燃焼を可能にすることで、低温予混合燃焼
では燃焼温度が低く抑えられ、初期の燃焼速度が抑制さ
れることから、従来より燃焼騒音が低くなるとともに、
大量のEGRによりNOxも大きく低減することになっ
た。本発明による低温予混合燃焼域の全体で比較してみ
ると、図7に示したように、燃焼騒音、NOxとも従来
より半分以下になったのである(実験結果)。なお、P
M(スモーク)についてはあまり変化がみられていない
(図7においてPMの減少分はEGRの差に相当す
る)。
As described above, according to the present invention, by enabling the low temperature premixed combustion even in the high load region, the combustion temperature can be suppressed low in the low temperature premixed combustion, and the initial combustion speed can be suppressed. Combustion noise is lower than before,
Due to the large amount of EGR, NOx was also greatly reduced. Comparing the entire low-temperature premixed combustion region according to the present invention, as shown in FIG. 7, both combustion noise and NOx were reduced to less than half of the conventional values (experimental results). Note that P
M (smoke) does not change so much (the decrease in PM in FIG. 7 corresponds to the difference in EGR).

【0032】一方、図6において、Dは全負荷に近くE
GRをカットする領域であるが、このDでも、aのよう
に噴射圧をCと同じに高くしていると、燃焼騒音、NO
xとも大きくなるので、Dの負荷では噴射圧を黒丸で示
したようにCでの値よりもいったん大きく下げること
で、燃焼騒音、NOxの悪化を防止している。
On the other hand, in FIG. 6, D is close to the full load and E
Although it is a region where GR is cut, even in this D, if the injection pressure is as high as C as in a, combustion noise and NO
Since x also becomes large, the injection pressure is once lowered to a value larger than that at C at the load of D as indicated by a black circle, thereby preventing deterioration of combustion noise and NOx.

【0033】なお、本発明ほどの燃焼騒音の低下がみら
れない従来例においても、C、D、Eと負荷が増すにつ
れて燃焼騒音が小さくなっているのは(図6最上段参
照)、過給圧による効果である。
Even in the conventional example in which the combustion noise does not decrease as much as in the present invention, the combustion noise becomes smaller as the loads C, D, and E increase (see the uppermost stage in FIG. 6). This is the effect of pressure supply.

【0034】図8のフローチャートは、コントロールユ
ニットにより行われる酸素濃度と噴射圧の制御内容を具
体化したもので、一定時間毎に実行する。
The flow chart of FIG. 8 embodies the control contents of the oxygen concentration and the injection pressure performed by the control unit, and is executed at regular intervals.

【0035】ステップ1ではEGR領域で酸素濃度を1
8パーセント以下にするEGR率Qegrを回転数と負荷
から算出する。図3において酸素濃度を18パーセント
以下にするEGR領域は、EGR率が40パーセント以
上の領域のことである。
In step 1, the oxygen concentration is set to 1 in the EGR region.
The EGR rate Qegr to be 8% or less is calculated from the rotation speed and the load. The EGR region where the oxygen concentration is 18% or less in FIG. 3 is a region where the EGR rate is 40% or more.

【0036】ここで、EGR領域は従来と同じに低温
予混合燃焼が可能な領域とこの領域よりも高負荷側に
あり本発明により低温予混合燃焼が可能となった領域と
を含むものである(図5参照)。ただし、簡単のため、
EGR領域と予混合燃焼域(との両方の領域)とが
一致するものとして説明する。
Here, the EGR region includes a region where low temperature premixed combustion is possible as in the conventional case and a region which is on a higher load side than this region and where low temperature premixed combustion is possible according to the present invention (Fig. 5). However, for simplicity,
The description will be made assuming that the EGR region and the premixed combustion region (both regions thereof) match.

【0037】酸素濃度の上限値である18パーセント
は、実験に用いたエンジンに最適な値であって、エンジ
ンが相違すれば異なる値になることはいうまでもない。
The upper limit value of 18% of the oxygen concentration is the optimum value for the engine used in the experiment, and it goes without saying that the value will be different if the engine is different.

【0038】ステップ2では回転数と負荷から、たとえ
ば図9に示すマップを検索すること等により噴射圧Pを
算出する。
In step 2, the injection pressure P is calculated from the rotational speed and the load, for example, by searching the map shown in FIG.

【0039】ここで、負荷に対する噴射圧Pの値は図6
最下段でもみたように、EGR領域において負荷が大き
くなるほど高くなり、さらに負荷が大きくなってEGR
カット領域に移ると、いったん低くなり、全負荷時にふ
たたび高くなる値である。
Here, the value of the injection pressure P with respect to the load is shown in FIG.
As seen in the bottom row, the higher the load in the EGR region, the higher the load, and the higher the load becomes.
In the cut region, the value decreases once and then increases again at full load.

【0040】このようにして求めた噴射圧Pと上記のE
GR率Qegrをステップ3において所定のアドレスに格
納して、今回の処理を終了する。
The injection pressure P thus obtained and the above E
The GR rate Qegr is stored in a predetermined address in step 3, and this processing is ended.

【0041】実施形態では、噴射圧制御の容易なコモン
レール式燃料噴射装置を用い、噴射圧により噴射期間を
制御する場合で説明したが、これに限られない。たとえ
ば、噴孔面積(噴孔径)または噴孔数を制御可能なノズ
ルを備えている場合に(1996年10月発行の自動車
技術会学術講演会前刷集964「噴孔面積可変機構を持
つ直噴用ディーゼル燃料噴射ノズルの特性」参照)、そ
のノズルの噴孔面積または噴孔数により噴射期間を制御
したり、一気筒当たり複数のノズルを備え、噴射を担当
するノズルの数を制御可能である場合に、噴射を担当す
るノズルの数により噴射期間を制御してもかまわない。
In the embodiment, the common rail type fuel injection device whose injection pressure is easily controlled is used and the injection period is controlled by the injection pressure. However, the present invention is not limited to this. For example, in the case where a nozzle capable of controlling the nozzle area (nozzle diameter) or the number of nozzle holes is provided (preprint 964, Automotive Engineering Society Academic Lecture, published in October 1996, “Direct nozzle area variable mechanism”). Characteristics of injection diesel fuel injection nozzle "), the injection period can be controlled by the injection hole area or the number of injection holes of that nozzle, and the number of nozzles in charge of injection can be controlled by providing multiple nozzles per cylinder. In some cases, the injection period may be controlled by the number of nozzles in charge of injection.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態の制御システム図である。FIG. 1 is a control system diagram of a first embodiment.

【図2】コモンレール式燃料噴射装置の概略構成図であ
る。
FIG. 2 is a schematic configuration diagram of a common rail fuel injection device.

【図3】基本EGR率の特性図である。FIG. 3 is a characteristic diagram of a basic EGR rate.

【図4】基本噴射開始時期の特性図である。FIG. 4 is a characteristic diagram of basic injection start timing.

【図5】第1実施形態の低温予混合燃焼域を示す領域図
である。
FIG. 5 is a region diagram showing a low temperature premixed combustion region of the first embodiment.

【図6】負荷に対する燃焼騒音、NOx、スモーク、噴
射圧の各特性図である。
FIG. 6 is a characteristic diagram of combustion noise, NOx, smoke, and injection pressure with respect to load.

【図7】第1実施形態の低温予混合燃焼域の全体で従来
例と比較したときのNOx、PM、燃焼騒音の各特性図
である。
FIG. 7 is a characteristic diagram of NOx, PM, and combustion noise when compared with a conventional example in the entire low temperature premixed combustion region of the first embodiment.

【図8】第1実施形態のEGR率と噴射圧の設定を説明
するためのフローチャートである。
FIG. 8 is a flowchart for explaining setting of an EGR rate and an injection pressure according to the first embodiment.

【図9】噴射圧の特性図である。FIG. 9 is a characteristic diagram of injection pressure.

【符号の説明】[Explanation of symbols]

4 EGR通路 6 EGR弁 8 EGRガス冷却装置 10 コモンレール式燃料噴射装置 33 アクセル開度センサ 34 クランク角センサ 41 コントロールユニット 4 EGR passage 6 EGR valve 8 EGR gas cooling device 10 Common rail fuel injection system 33 Accelerator position sensor 34 Crank angle sensor 41 Control unit

フロントページの続き (51)Int.Cl.7 識別記号 FI F02M 25/07 F02M 25/07 A 550 550R 61/14 310 61/14 310U 61/18 330 61/18 330C (56)参考文献 特開 平8−218920(JP,A) 特開 平8−296469(JP,A) 特開 平8−246935(JP,A) 特開 平6−272636(JP,A) 特開 平7−4287(JP,A) 特開 平8−86251(JP,A) 実開 平5−36069(JP,U) (58)調査した分野(Int.Cl.7,DB名) F02D 41/04 385 F02D 41/38 F02D 43/00 301 F02D 45/00 310 F02M 25/07 F02M 25/07 550 F02M 61/14 310 F02M 61/18 330 Continuation of front page (51) Int.Cl. 7 Identification code FI F02M 25/07 F02M 25/07 A 550 550R 61/14 310 61/14 310U 61/18 330 61/18 330C (56) References 8-218920 (JP, A) JP-A-8-296469 (JP, A) JP-A-8-246935 (JP, A) JP-A-6-272636 (JP, A) JP-A-7-4287 (JP, A) A) Japanese Unexamined Patent Publication No. 8-86251 (JP, A) Actual Development No. 5-36069 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F02D 41/04 385 F02D 41/38 F02D 43/00 301 F02D 45/00 310 F02M 25/07 F02M 25/07 550 F02M 61/14 310 F02M 61/18 330

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素濃度を低減し、かつ噴射開始時期を圧
縮上死点後にまで遅延するとともに、燃焼室内のガス流
動制御と、着火遅れ期間中に燃料噴射を終了することと
により予混合気を形成し、低温予混合燃焼を行わせるデ
ーゼルエンジンの燃焼制御装置において、 高負荷域において前記酸素濃度を所定値未満にまで小さ
くしかつ前記噴射開始時期より前記燃料噴射の終了時期
までの期間である噴射期間が前記着火遅れ期間と同じか
または短くなるように噴射期間を制御することにより着
火遅れ期間中に燃料噴射を終了させることを特徴とする
ーゼルエンジンの燃焼制御装置。
1. A premixed mixture by reducing the oxygen concentration, delaying the injection start timing until after compression top dead center, controlling the gas flow in the combustion chamber, and ending the fuel injection during the ignition delay period. To form low temperature premixed combustion.
The combustion control apparatus of I over diesel engine, or the same as the oxygen concentration period in which the injection period is the ignition delay period until end timing of the fuel injected from the small vital the injection start timing to less than a predetermined value in the high load region or combustion control apparatus <br/> de I over diesel engine, characterized in that to terminate the fuel injection during the ignition delay time by controlling the injection period to be shorter.
【請求項2】負荷が増すほど前記噴射期間を短くするこ
とを特徴とする請求項1に記載のディーゼルエンジンの
燃焼制御装置。
2. The combustion control device for a diesel engine according to claim 1, wherein the injection period is shortened as the load increases.
【請求項3】噴射圧により前記噴射期間を制御すること
を特徴とする請求項1または2に記載のディーゼルエン
ジンの燃焼制御装置。
3. The combustion control device for a diesel engine according to claim 1, wherein the injection period is controlled by the injection pressure.
【請求項4】酸素濃度が前記所定値以上となったときま
たは噴射期間が着火遅れ期間より長くなったとき、前記
噴射圧を低下させることを特徴とする請求項3に記載の
ディーゼルエンジンの燃焼制御装置。
4. The combustion of a diesel engine according to claim 3, wherein the injection pressure is reduced when the oxygen concentration exceeds the predetermined value or when the injection period is longer than the ignition delay period. Control device.
【請求項5】噴孔面積または噴孔数を制御可能なノズル
を備えている場合に、そのノズルの噴孔径または噴孔数
により前記噴射期間を制御することを特徴とする請求項
1または2に記載のディーゼルエンジンの燃焼制御装
置。
5. The injection period is controlled by the nozzle diameter or the number of nozzles of the nozzle when the nozzle is capable of controlling the nozzle area or the number of nozzles. A combustion control device for a diesel engine according to 1.
【請求項6】一気筒当たり複数のノズルを備え、噴射を
担当するノズルの数を制御可能である場合に、噴射を担
当するノズルの数により前記噴射期間を制御することを
特徴とする請求項1または2に記載のディーゼルエンジ
ンの燃焼制御装置。
6. A plurality of nozzles per cylinder are provided, and when the number of nozzles in charge of injection can be controlled, the injection period is controlled by the number of nozzles in charge of injection. 1. The combustion control device for a diesel engine according to 1 or 2.
【請求項7】EGR率を大きくすることにより前記酸素
濃度を小さくすることを特徴とする請求項1から6まで
のいずれか一つに記載のディーゼルエンジンの燃焼制御
装置。
7. The combustion control device for a diesel engine according to any one of claims 1 to 6, wherein the oxygen concentration is reduced by increasing the EGR rate.
JP26637597A 1997-09-30 1997-09-30 Combustion control device for diesel engine Expired - Fee Related JP3514086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26637597A JP3514086B2 (en) 1997-09-30 1997-09-30 Combustion control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26637597A JP3514086B2 (en) 1997-09-30 1997-09-30 Combustion control device for diesel engine

Publications (2)

Publication Number Publication Date
JPH11107821A JPH11107821A (en) 1999-04-20
JP3514086B2 true JP3514086B2 (en) 2004-03-31

Family

ID=17430074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26637597A Expired - Fee Related JP3514086B2 (en) 1997-09-30 1997-09-30 Combustion control device for diesel engine

Country Status (1)

Country Link
JP (1) JP3514086B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606112B2 (en) * 1999-06-17 2005-01-05 日産自動車株式会社 Diesel engine control device
US6360541B2 (en) * 2000-03-03 2002-03-26 Honeywell International, Inc. Intelligent electric actuator for control of a turbocharger with an integrated exhaust gas recirculation valve
US6598584B2 (en) * 2001-02-23 2003-07-29 Clean Air Partners, Inc. Gas-fueled, compression ignition engine with maximized pilot ignition intensity
JP2003097317A (en) * 2001-09-26 2003-04-03 Hitachi Ltd Method for controlling ignition timing of premixed compression-ignition engine
JPWO2008081803A1 (en) 2006-12-28 2010-04-30 株式会社小松製作所 EGR valve device
JP4868289B2 (en) * 2007-06-06 2012-02-01 トヨタ自動車株式会社 Diesel engine combustion control system

Also Published As

Publication number Publication date
JPH11107821A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP3622446B2 (en) Diesel engine combustion control system
JP3633343B2 (en) Diesel engine control device
US8770174B2 (en) Method and device for controlling diesel engine
US5740775A (en) Diesel engine
US6412469B1 (en) Fuel injection control system for diesel engine
US8667952B2 (en) Method and device for controlling diesel engine with forced induction system
CN102933825B (en) For the diesel motor of automobile, control gear and controlling method
US6161519A (en) Combustion control device for diesel engine
JP3893967B2 (en) Diesel engine control device
KR20060051868A (en) Engine
JP3514086B2 (en) Combustion control device for diesel engine
JP2000352326A (en) Control unit for diesel engine
JP3572435B2 (en) Control unit for diesel engine
EP0477046B1 (en) Direct injection diesel engine
JP4196900B2 (en) Combustion switching control system for compression ignition internal combustion engine
JP4525373B2 (en) Combustion switching control system for compression ignition internal combustion engine
JP3678042B2 (en) Diesel engine combustion control system
JP6960370B2 (en) Internal combustion engine fuel injection control device
JP2010007584A (en) Fuel injection control device
JP3362317B2 (en) Fuel injection control device for internal combustion engine
JP4419855B2 (en) Combustion switching control system for compression ignition internal combustion engine
JP3546768B2 (en) Control unit for diesel engine
JP2003106180A (en) ?spark ignition type direct injection engine with supercharger
WO2014011326A1 (en) System and method of controlling combustion in an engine
JPH10148128A (en) Direct injection type diesel engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees