JP3513645B2 - Narrowband signal detection method - Google Patents

Narrowband signal detection method

Info

Publication number
JP3513645B2
JP3513645B2 JP27136098A JP27136098A JP3513645B2 JP 3513645 B2 JP3513645 B2 JP 3513645B2 JP 27136098 A JP27136098 A JP 27136098A JP 27136098 A JP27136098 A JP 27136098A JP 3513645 B2 JP3513645 B2 JP 3513645B2
Authority
JP
Japan
Prior art keywords
signal
frequency
frequency bin
detection
log
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27136098A
Other languages
Japanese (ja)
Other versions
JP2000097977A (en
Inventor
正人 山下
岳志 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP27136098A priority Critical patent/JP3513645B2/en
Publication of JP2000097977A publication Critical patent/JP2000097977A/en
Application granted granted Critical
Publication of JP3513645B2 publication Critical patent/JP3513645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To make arbitrarily settable the transition probability by calculating a route certainly and a detecting certainty by a specific formula at each sampling time and for every frequency pin, and judging that a narrow band signal has come if the detecting certainly exceeds a threshold value. SOLUTION: A value ν of maximum certainly γ (ν, m, k) at each sampling time (k) and for every frequency pin (m) is ν0. The γ (ν0, m, k) is stored is Γ(m, k), and Λ (m, k) is calculated from Λ (m, k) = log P (X(m, k)) + Λ(ν0, k-1). The Γ (m, k) is a route certainty, and the Λ(m, k) is a detecting certainty. After the above process is finished for all sampling times (k) and the pins (m), the maximum value Λ (m0, k) of the certainty Λ (m, k) is obtained, compared with a preset threshold value. If it exceeds it, information of detecting a narrow band signal in the pin m0 is output. Thus, any transition probability is used, a signal detection judgement can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、音波等の入力信号
に周波数分析を行なうことにより得られる、入力信号強
度の周波数空間上の分布を用いて、狭帯域信号の到来を
検出する、狭帯域信号検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a narrow band signal for detecting the arrival of a narrow band signal by using a frequency space distribution of the input signal intensity obtained by performing frequency analysis on an input signal such as a sound wave. The present invention relates to a signal detection method.

【0002】[0002]

【従来の技術】従来、この種の狭帯域信号検出方法とし
て以下の文献に記載されているものがあった。 “Detection and Estimation of Frequency-Random Sig
nals”R.D.Short and J.P.Toomey,IEEE Transactions o
n Information Theory,Vol.IT-28,No.6,Nov.1982 次に、従来の狭帯域信号検出方法の動作について説明す
る。図4は、従来の狭帯域信号検出方法の動作を示すフ
ローチャートであり、入力音響信号に対して、所定のサ
ンプル時刻k=1,2,...,Kごとに周波数分析を
施して得られる周波数ビンm=1,2,...,Mにお
ける信号強度X(m,k)に基づいて、最大事後確率法
によって周波数遷移経路を推定したうえで狭帯域信号の
検出を判定するものである。
2. Description of the Related Art Conventionally, as a narrow band signal detecting method of this kind, there has been one described in the following documents. “Detection and Estimation of Frequency-Random Sig
nals ”RD Short and JPToomey, IEEE Transactions o
n Information Theory, Vol. IT-28, No. 6, Nov. 1982 Next, the operation of the conventional narrow band signal detection method will be described. FIG. 4 is a flow chart showing the operation of the conventional narrow band signal detection method, and for the input acoustic signal, predetermined sampling times k = 1, 2 ,. . . , K, the frequency bins m = 1, 2 ,. . . , M, a narrow band signal is detected after estimating the frequency transition path by the maximum posterior probability method based on the signal strength X (m, k).

【0003】まず、信号強度分布 X(m,k)(m=
1,2,...,M;k=1,2,...,K)を入力
し(S100)、各サンプル時刻k,各周波数ビンmに
対して、また1サンプル時刻前の各νに対して、以下の
(1)式に示すγ(ν,m,k)を算出する(S10
1,S102,S103,S104,S105)。この
γは、点(m,k)を通過する狭帯域信号が存在するな
らば、1サンプル時刻前に点(ν,k−1)を通った確
率を表わす指標である。
First, the signal intensity distribution X (m, k) (m =
1, 2 ,. . . , M; k = 1, 2 ,. . . , K) is input (S100), and for each sample time k, each frequency bin m, and for each ν one sample time before, γ (ν, m, k shown in the following equation (1). ) Is calculated (S10
1, S102, S103, S104, S105). This γ is an index representing the probability of passing through the point (ν, k−1) one sample time before, if a narrow band signal passing through the point (m, k) exists.

【0004】この確信度は「点(ν,k−1)と点
(m,k)を通る狭帯域信号が存在する」ことの確から
しさを示す。 γ(ν,m,k):= log P(X(m,k))+log a(m|ν)+Γ(ν,k−1)……(1)
The certainty factor indicates the certainty of "there is a narrow band signal passing through the point (ν, k-1) and the point (m, k)". γ (ν, m, k): = log P (X (m, k)) + log a (m | ν) + Γ (ν, k−1) (1)

【0005】ただし、P(X(m,k))は信号が存在
する場合と存在しない場合の尤度比である。 P(X(m,k))= p1 (X(m,k))/p0 (X(m,k))……(2) ただし、p0 (X(m,k))は、信号が存在しないと
きに観測値X(m,k)が従う確率密度分布、p1 (X
(m,k))は、信号が存在するときに観測値X(m,
k)が従う確率密度分布である。
However, P (X (m, k)) is a likelihood ratio when a signal exists and when it does not exist. P (X (m, k)) = p 1 (X (m, k)) / p 0 (X (m, k)) (2) where p 0 (X (m, k)) is Probability density distribution that the observed value X (m, k) follows when there is no signal, p 1 (X
(M, k)) is the observed value X (m,
k) is the probability density distribution followed.

【0006】また、a(m|ν)は、あるサンプル時刻
に周波数ビンνに相当する周波数を持っていた狭帯域信
号が、1サンプル時刻後に周波数ビンmに遷移する確率
を表している。また、従来例においては通常、1サンプ
ル時刻で信号は、たかだか1周波数ビンまでしか遷移し
ないと仮定し、かつνからν−1,ν,ν+1に遷移す
る確率は一様であるとしている。すなわち、 の条件を使用している。
Further, a (m | ν) represents the probability that a narrow band signal having a frequency corresponding to the frequency bin ν at a certain sample time will transit to the frequency bin m after one sample time. Further, in the conventional example, it is usually assumed that the signal transits at most one frequency bin at one sample time, and that the probability of transiting from ν to ν-1, ν, ν + 1 is uniform. That is, The condition is used.

【0007】そして、γ(ν,m,k)を最大にするν
を選択してこれをν0 とする(S106)。これは、も
し点(m,k)を通る狭帯域信号がもし存在するなら
ば、その過去の経路は点(ν0 ,k−1)を通った確率
がもっとも高いことを意味する。そして、選択された経
路に対応する確信度γ(ν0 ,m,k)を、Γ(m,
k)に格納する(S107)。
Ν which maximizes γ (ν, m, k)
Is selected as ν 0 (S106). This means that if there is a narrowband signal passing through the point (m, k), its past path has the highest probability of passing through the point (ν 0 , k−1). Then, the certainty factor γ (ν 0 , m, k) corresponding to the selected route is set to Γ (m,
It is stored in k) (S107).

【0008】そして、以上の処理をすべてのサンプル時
刻k,周波数ビンmについて終了した後(S108,S
109)、Γ(m,K)の最大値Γ(m0 ,K)を求
め、所定の閾値Tと比較し、もし、Γ(m0 ,K)が閾
値Tを超えていれば、周波数ビンm0 に狭帯域信号が検
出されたという情報を出力する(S110,S111,
S112)。
After the above processing is completed for all sample times k and frequency bins m (S108, S
109), the maximum value Γ (m 0 , K) of Γ (m, K) is calculated and compared with a predetermined threshold value T. If Γ (m 0 , K) exceeds the threshold value T, the frequency bin Information that a narrow band signal is detected is output to m 0 (S110, S111,
S112).

【0009】また、S106,S107においてどの経
路が選択されたかを記録しておくことにして、点
(m0 ,K)から経路を逆にたどることによって、各サ
ンプル時刻において該狭帯域信号がたどってきた周波数
ビン{m1 ,m2 ,...,mK-1 ,mK (=m0 )}を出
力するようにしている。
Further, by recording which route is selected in S106 and S107 and tracing the route in reverse from the point (m 0 , K), the narrow band signal is traced at each sample time. The frequency bins {m 1 , m 2 , ..., M K-1 , m K (= m 0 )} are output.

【0010】[0010]

【発明が解決しようとする課題】従来の狭帯域信号検出
方法における信号を検出する手法のひとつに、Neyman P
earson法がある。これは尤度比が所定の閾値を超えた場
合に信号が存在すると判定するもので、上述の従来例の
動作に当てはめれば以下の(4)式に示した指標λを閾
値と比べる方法である。 λ=Σk=1,2,...,K {log P(X(mk ,k))}……(4) そして、Neyman Pearson法は誤警報確率を一定にしたと
きの検出能力が優れているという利点を持つため、多く
の応用例で用いられている。
Neyman P is one of the methods for detecting a signal in the conventional narrow band signal detection method.
There is an earson method. This is to determine that a signal is present when the likelihood ratio exceeds a predetermined threshold value, and if applied to the operation of the above-mentioned conventional example, a method of comparing the index λ shown in the following equation (4) with the threshold value is used. is there. λ = Σ k = 1,2, ..., K {log P (X (m k , k))} (4) And the Neyman Pearson method has a detection capability when the false alarm probability is constant. It is used in many applications because it has the advantage of being excellent.

【0011】さて、従来例において、信号が存在するか
否かを判定するための指標Γ(m,K)は、以下の
(5)式のように表わすことができる。 Γ(m,K):=Σk=1,2,...,K {=log P(X(mk ,k)) +log a(mk |mk-1 )}……(5) ここで、もし遷移確率a(mk |mk-1 )が常に一定値
であれば、Γ(m,K)はバイアスを除いて上記λに等
しいことになり、従って、Γ(m,K)が閾値を超える
ことをもって信号を検出することは、Neyman Pearson法
を用いていることと等価である。
In the conventional example, the index Γ (m, K) for determining whether or not a signal exists can be expressed by the following equation (5). Γ (m, K): = Σ k = 1,2, ..., K {= log P (X (m k , k)) + log a (m k | m k-1 )} (5) Here, if the transition probability a (m k | m k-1 ) is always a constant value, Γ (m, K) will be equal to the above λ without bias, and thus Γ (m, K). The signal is detected when () exceeds the threshold, which is equivalent to using the Neyman Pearson method.

【0012】ただし、これは遷移確率が一定値でない場
合には成り立たないため、ここにNeyman Pearson法に従
う限り遷移確率を一様にせざるを得ないという制約が生
まれる。しかし、現実には信号の遷移確率が一様とは限
らず、たとえば直進する確率が大きいなどの性質をもつ
信号も多い。そのような信号に対して遷移確率が一様と
仮定した処理を行えば、現実とモデルとの差異に基づく
性能の劣化が免れない。そこで、従来から、遷移確率を
自由に設定できて、しかも信号の検出判定はNeyman Pea
rson法と等価な方法に従うような技術が求められてい
た。
However, this does not hold when the transition probability is not a constant value, so that there is a constraint that the transition probability must be uniform as long as the Neyman Pearson method is followed. However, in reality, the transition probabilities of signals are not always uniform, and many signals have the property of having a high probability of going straight. If such a signal is processed on the assumption that the transition probabilities are uniform, performance deterioration due to the difference between the reality and the model cannot be avoided. Therefore, conventionally, the transition probability can be freely set, and the signal detection judgment is performed by the Neyman Pea.
There was a demand for a technique that follows a method equivalent to the rson method.

【0013】[0013]

【課題を解決するための手段】本発明に係る狭帯域信号
検出方法は、入力音響信号に対して、所定のサンプル時
刻k=1,2,...,Kごとに周波数分析を施して得
られる、周波数ビンm=1,2,...,Nにおける信
号強度X(m,k)に基づいて、最大事後確率法によっ
て周波数遷移経路を推定したうえで狭帯域信号の検出を
判定する狭帯域信号検出方法において、あらかじめ与え
られた周波数ビンνに相当する狭帯域信号の周波数が1
サンプル時刻後に周波数ビンmに遷移する遷移確率a
(m|ν)、及び信号が存在するときの信号強度の確率
密度分布p1 (z)と信号が存在しないときの信号強度
の確率密度分布p0 (z)の比によって定義される尤度
比P(z)=p1 (z)/p0 (z)を用い、各サンプ
ル時刻k及び各周波数ビンmごとに、経路確信度Γ
(m,k)及び検出確信度Λ(m,k)を、以下の各式
により算出し、該検出確信度Λ(m,k)が、あらかじ
め設定された閾値を超えた場合に狭帯域信号が到来した
と判定する。 ・各周波数ビンνについて、 γ(ν,m,k):=log P(X(m,k))+log a
(m|ν)+Γ(ν,k−1) ・ν0 :={γ(ν,m,k)を最大にする周波数ビン
ν} ・Γ(m,k):=γ(ν0 ,m,k) ・Λ(m,k):=log P(X(m,k))+Λ
(ν0 ,k−1)
A narrow band signal detecting method according to the present invention is applied to a predetermined sampling time k = 1, 2 ,. . . , K, the frequency bins m = 1, 2 ,. . . , N based on the signal strength X (m, k) at N, the narrowband signal detection method for estimating the narrowband signal after estimating the frequency transition path by the maximum posterior probability method. The frequency of the narrowband signal corresponding to
Transition probability a of transition to frequency bin m after sample time
(M | ν) and the likelihood defined by the ratio of the probability density distribution p 1 (z) of the signal strength when the signal exists to the probability density distribution p 0 (z) of the signal strength when the signal does not exist Using the ratio P (z) = p 1 (z) / p 0 (z), for each sample time k and each frequency bin m, the route certainty factor Γ
(M, k) and the detection certainty factor Λ (m, k) are calculated by the following equations, and when the detection certainty factor Λ (m, k) exceeds a preset threshold value, the narrowband signal is calculated. Is determined to have arrived. For each frequency bin ν, γ (ν, m, k): = log P (X (m, k)) + log a
(M | ν) + Γ (ν, k−1) · ν 0 : = {frequency bin ν that maximizes γ (ν, m, k)} · Γ (m, k): = γ (ν 0 , m , K) · Λ (m, k): = log P (X (m, k)) + Λ
0 , k-1)

【0014】[0014]

【発明の実施の形態】実施の形態1.図1は本発明の一
実施の形態に係る狭帯域信号検出方法の動作を示すフロ
ーチャートである。この実施の形態では、従来例と同様
に、周波数ビンの遷移は、たかだか1ビンまでとする。
しかし、この実施の形態においては、検出しようとする
信号の性質にあわせて遷移確率を任意に定めてよいもの
としている。 a(m|ν)=a1 ( if m=ν−1)……(6) a2 ( if m=ν) a3 ( if m=ν+1) 0 ( otherwise) ただし、a1 +a2 +a3 =1.0
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 is a flowchart showing the operation of a narrowband signal detection method according to an embodiment of the present invention. In this embodiment, as in the conventional example, the frequency bin transition is limited to at most 1 bin.
However, in this embodiment, the transition probability may be arbitrarily determined according to the property of the signal to be detected. a (m | ν) = a 1 (if m = ν−1) (6) a 2 (if m = ν) a 3 (if m = ν + 1) 0 (otherwise) where a 1 + a 2 + a 3 = 1.0

【0015】まず、従来例と同様に、各サンプル時刻k
および各周波数ビンmごとに、上記(1)式に示す確信
度γ(ν,m,k)が最大になるνを選びν0 とする
(S10〜S16)。そして、γ(ν0 ,m,k)を、
Γ(m,k)に格納し(S17)、以下の(7)式に従
って、Λ(m,k)を算出する(S18)。 Λ(m,k):=log P(X(m,k))+Λ(ν0 ,k−1)……(7) ここで、Γ(m,k)は信号がたどった経路を特定する
ための確信度で、Λ(m,k)は信号が存在するか否か
を判定するための確信度である。
First, as in the conventional example, each sample time k
And for each frequency bin m, ν that maximizes the certainty factor γ (ν, m, k) shown in the above equation (1) is selected and set as ν 0 (S10 to S16). Then, γ (ν 0 , m, k) is
It is stored in Γ (m, k) (S17), and Λ (m, k) is calculated according to the following equation (7) (S18). Λ (m, k): = log P (X (m, k)) + Λ (ν 0 , k−1) (7) where Γ (m, k) specifies the path taken by the signal. Λ (m, k) is a certainty factor for determining whether or not a signal exists.

【0016】以下の説明では、Γ(m,k)を経路確信
度、Λ(m,k)を検出確信度と呼ぶ。
In the following description, Γ (m, k) is called a route certainty factor and Λ (m, k) is called a detected certainty factor.

【0017】そして、以上の処理をすべてのサンプル時
刻k,周波数ビンmについて終了した後(S19,S2
0)、検出確信度Λ(m,K)の最大値Λ(m0 ,K)
を求め、所定の閾値Tと比較し、もし、Λ(m0 ,K)
が閾値Tを超えていれば、周波数ビンm0 に狭帯域信号
が検出されたという情報を出力する(S21,S22,
S23)。また、従来例と同様に、該狭帯域信号がたど
ってきた周波数ビン{m1 ,m2,...,mK-1 ,m
K (=m0 )}を出力するようにしてもよい。
After the above processing is completed for all sample times k and frequency bins m (S19, S2).
0), the maximum value Λ (m 0 , K) of the detection certainty Λ (m, K)
Is calculated and compared with a predetermined threshold value T, and if Λ (m 0 , K)
Is greater than the threshold T, the information that the narrow band signal is detected in the frequency bin m 0 is output (S21, S22,
S23). In addition, as in the conventional example, the frequency bins {m 1 , m 2 , ..., M K-1 , m that the narrowband signal has followed.
K (= m 0 )} may be output.

【0018】この実施の形態では、信号検出の指標とな
る検出確信度Λ(mK ,E)は、以下の(8)式で表わ
される。 Λ(m0 ,K)=Σk=1,2,...,K {log P(X(mk ,k))}……(8) これはまさに、上記(4)式に示したλと等しく、従っ
て該検出確信度を閾値と比較する信号検出方法は、Neym
an Pearson法にほかならない。
In this embodiment, the detection certainty factor Λ (m K , E), which is an index of signal detection, is expressed by the following equation (8). Λ (m 0 , K) = Σ k = 1,2, ..., K {log P (X (m k , k))} (8) This is exactly shown in the above equation (4). A signal detection method that is equal to λ and therefore compares the detection certainty with a threshold is Neym
It is nothing but the an Pearson method.

【0019】すなわち、この実施の形態によれば、いか
なる遷移確率を用いようとも、Neyman Pearson法に従っ
た信号検出判定が可能となる。言い換えれば、遷移確率
a(mk |mk-1 )を任意に設定することができ、か
つ、誤警報確率を一定にしたときの検出性能を高く保つ
ことが可能となる。
That is, according to this embodiment, it is possible to perform signal detection determination according to the Neyman Pearson method, regardless of the transition probability used. In other words, the transition probability a (m k | m k-1 ) can be set arbitrarily, and the detection performance can be kept high when the false alarm probability is constant.

【0020】実施の形態2.図2は本発明の他の実施の
形態に係る狭帯域信号検出方法の動作を示すフローチャ
ートである。この実施の形態では、実施の形態1が、時
刻k={1,2,...,K}の範囲内で信号を検出す
るものであったのに対して、この実施の形態はデータ入
力のサンプル個数に特に制限を設けず、理論上は半永久
的に連続して運用可能なものである。
Embodiment 2. FIG. 2 is a flowchart showing the operation of the narrowband signal detection method according to another embodiment of the present invention. In this embodiment, according to the first embodiment, time k = {1, 2 ,. . . , K}, the signal is detected within the range, whereas this embodiment does not particularly limit the number of data input samples, and theoretically can be operated semipermanently and continuously. Is.

【0021】まず、信号強度分布 X(m,k)(m=
1,2,...,M;k=1,2,...,K)を入力
し(S30)、各サンプル時刻k,各周波数ビンmに対
して、また1サンプル時刻前の各νに対して、以下の
(9)式に示す径路確信度γ(ν,m,k)を算出する
(S31,S32,S33,S34,S35)。 γ(ν,m,k):= α×{log P(X(m,k))+log a(m|ν)} +(1−α)×{Γ(ν,k−1)}……(9) ただし、αはあらかじめ定められた時定数で、以下の範
囲にとる。 0.0<α<1.0……(10)
First, the signal intensity distribution X (m, k) (m =
1, 2 ,. . . , M; k = 1, 2 ,. . . , K) is input (S30), and for each sample time k, each frequency bin m, and for each ν one sample time before, the path certainty factor γ (ν, m, k) is calculated (S31, S32, S33, S34, S35). γ (ν, m, k): = α × {log P (X (m, k)) + log a (m | ν)} + (1-α) × {Γ (ν, k-1)} ... (9) However, α is a predetermined time constant and is in the following range. 0.0 <α <1.0 (10)

【0022】そして、γ(ν,m,k)を最大にするν
を選択してこれをν0 とし(S36)、選択された経路
に対応する確信度γ(ν0 ,m,k)を、Γ(m,k)
に格納する(S37)。そして、以下の(11)式に従
って検出確信度を算出する(S38)。 Λ(m,k):=α×{log P(X(m,k))} +(1−α)×{Λ(ν0 ,k−1)……(11)
Then, ν that maximizes γ (ν, m, k)
Is selected as ν 0 (S36), and the certainty factor γ (ν 0 , m, k) corresponding to the selected route is set to Γ (m, k).
(S37). Then, the detection certainty factor is calculated according to the following equation (11) (S38). Λ (m, k): = α × {log P (X (m, k))} + (1-α) × {Λ (ν 0 , k-1) (11)

【0023】そして、以上の処理をすべての周波数ビン
mについて終了した後(S39)、検出確信度Λ(m,
K)の最大値Λ(m0 ,K)を求め、所定の閾値Tと比
較し、もし、Λ(m0 ,K)が閾値Tを超えていれば、
周波数ビンm0 に狭帯域信号が検出されたという情報を
出力する(S40,S41,S42)。そして、時刻サ
ンプルk={1,2,...,K}におけるデータをす
べて処理し終えてから判定を行うのではなく、サンプル
時刻ごとに毎回判定を行う(S43)。なお、経路確信
度と検出確信度の初期値Γ(m,0),Λ(m,0)は
適当な値、たとえば0に初期化しておくこととする。
After the above processing is completed for all frequency bins m (S39), the detection certainty factor Λ (m,
The maximum value Λ (m 0 , K) of K) is calculated and compared with a predetermined threshold T. If Λ (m 0 , K) exceeds the threshold T,
Information that a narrow band signal has been detected is output to the frequency bin m 0 (S40, S41, S42). Then, the time samples k = {1, 2 ,. . . , K} are not processed after all the data have been processed, but the judgment is performed every sample time (S43). The initial values Γ (m, 0) and Λ (m, 0) of the route certainty factor and the detected certainty factor are initialized to appropriate values, for example, 0.

【0024】ここで、信号検出の実際の運用場面では、
信号が入力する時刻が既知であるとは限らない。信号は
出現あるいは消失することがあり、しかもその時刻も予
知が困難であるという状況下で運用可能な方法が望まれ
る。この実施の形態では、径路確信度及び検出確信度の
算出に時定数αを導入して過去の情報を忘却する方式を
採用し、各サンプル時刻ごとに信号の検出を判定するこ
とにしたため、実施の形態1に述べた方法と近似的に等
価な信号検出処理を、時間的に連続して行うことが可能
である。
Here, in the actual operation of signal detection,
The time when a signal is input is not always known. There is a demand for a method that can be operated under the circumstances where a signal may appear or disappear and the time is difficult to predict. In this embodiment, a method of forgetting past information by introducing a time constant α in the calculation of the path certainty factor and the detection certainty factor is adopted, and it is decided to detect the signal at each sample time. It is possible to perform the signal detection processing that is approximately equivalent to the method described in the first embodiment consecutively in time.

【0025】また、従来、入力される信号は終始がはっ
きりしないが、リアルタイムに検出を行う必要があるた
め検出処理を繰り返さなければならなかったが、この実
施の形態では、連続して行うため迅速に検出を行うこと
が可能となる。なお、この実施の形態の信号検出方法
は、時定数αの大きさ次第で異なる特徴を示す。もしα
が大きければ忘却の度合が大きいので、信号の出現や消
失に敏速に反応することができる。一方、もしαが小さ
ければ長時間のデータに基づいて信号検出を行うことに
なるので、微弱な信号を検出する能力に優れるものとな
る。
Further, conventionally, although the input signal is not completely clear, the detection process has to be repeated because it is necessary to detect the signal in real time. It is possible to perform the detection. The signal detection method of this embodiment has different characteristics depending on the magnitude of the time constant α. If α
If is larger, the degree of forgetting is larger, so that it is possible to react promptly to the appearance and disappearance of a signal. On the other hand, if α is small, signal detection is performed based on long-term data, so that the ability to detect weak signals is excellent.

【0026】実施の形態3.図3は本発明の他の実施の
形態に係る狭帯域信号検出方法の動作を示すフローチャ
ートである。まず、信号強度分布 X(m,k)(m=
1,2,...,M;k=1,2,...,K)を入力
し(S50)、各サンプル時刻kに対して、入力データ
X(m,k)(m=1,2,...,M)の平均値μと
標準備差σを算出し、各周波数ビンmに対して、平均値
μと標準偏差σを用いて、入力データX(m,k)(m
=1,2,...,M)を規格化し、以下の(12)式
により、Y(m,k)(m=1,2,...,M)を生
成する(S51,S52,S53,S54)。 Y(m,k):={X(m,k)−μ}/σ……(12)
Embodiment 3. FIG. 3 is a flowchart showing the operation of the narrowband signal detecting method according to another embodiment of the present invention. First, the signal intensity distribution X (m, k) (m =
1, 2 ,. . . , M; k = 1, 2 ,. . . , K) is input (S50), and for each sample time k, the average value μ of the input data X (m, k) (m = 1, 2, ..., M) and the standard difference σ are calculated. Then, for each frequency bin m, using the average value μ and standard deviation σ, input data X (m, k) (m
= 1, 2 ,. . . , M) is standardized, and Y (m, k) (m = 1, 2, ..., M) is generated by the following equation (12) (S51, S52, S53, S54). Y (m, k): = {X (m, k) -μ} / σ ... (12)

【0027】また、1サンプル時刻前の各νに対して、
以下の(13)式に示す尤度比の対数値Q、及び以下の
(14)式に示す確信度γ(ν,m,k)を算出する
(S55,S56,S57,S58)。 Q:=Λ(ν,k−1) ×{Y(m,k)−Λ(ν,k−1)/2}……(13) γ(ν,m,k):=α×{Q+log a(m|ν)}+(1−α) ×{Γ(ν,k−1)}……(14)
For each ν one sample time before,
The logarithmic value Q of the likelihood ratio shown in the following equation (13) and the certainty factor γ (ν, m, k) shown in the following equation (14) are calculated (S55, S56, S57, S58). Q: = Λ (ν, k−1) × {Y (m, k) −Λ (ν, k−1) / 2} (13) γ (ν, m, k): = α × {Q + log a (m | ν)} + (1-α) × {Γ (ν, k-1)} (14)

【0028】そして、γ(ν,m,k)を最大にするν
を選択してこれをν0 とし(S59)、選択された経路
に対応する確信度γ(ν0 ,m,k)を、Γ(m,k)
に格納する(S60)。そして、以下の(15)式に従
って検出確信度を算出する(S61)。 Λ(m,k):=α×{Y(m,k)} +(1−α)×{Λ(ν0,k−1)}……(15)
Then, ν that maximizes γ (ν, m, k)
Is selected as ν 0 (S59), and the certainty factor γ (ν 0 , m, k) corresponding to the selected route is set to Γ (m, k).
(S60). Then, the detection certainty factor is calculated according to the following equation (15) (S61). Λ (m, k): = α × {Y (m, k)} + (1-α) × {Λ (ν0, k-1)} (15)

【0029】そして、以上の処理をすべての周波数ビン
mについて終了した後(S62)、検出確信度Λ(m,
K)の最大値Λ(m0 ,K)を求め、所定の閾値Tと比
較し、もし、Λ(m0 ,K)が閾値Tを超えていれば、
周波数ビンm0 に狭帯域信号が検出されたという情報を
出力する(S63,S64,S65)。そして、時刻サ
ンプルk={1,2,...,K}におけるデータをす
べて処理し終えてから判定を行うのではなく、サンプル
時刻ごとに毎回判定を行う(S66)。なお、経路確信
度と検出確信度の初期値Γ(m,0),Λ(m,0)は
適当な値、たとえば0に初期化しておくこととする。
After the above processing is completed for all frequency bins m (S62), the detection certainty factor Λ (m,
The maximum value Λ (m 0 , K) of K) is calculated and compared with a predetermined threshold T. If Λ (m 0 , K) exceeds the threshold T,
Information that a narrow band signal has been detected is output to the frequency bin m 0 (S63, S64, S65). Then, the time samples k = {1, 2 ,. . . , K} are not processed after all the data have been processed, but the judgment is performed every sample time (S66). The initial values Γ (m, 0) and Λ (m, 0) of the route certainty factor and the detected certainty factor are initialized to appropriate values, for example, 0.

【0030】ここで、雑音のみが入力している入力信号
X(m,k)の分布が正規分布に従うとみなせる場合、
入力を規格化したY(m,k)は、平均値0、標準備差
1の標準正規分布に従う。すなわち、信号が存在しない
場合にY(m,k)が従う分布の確率密度関数p
0 (Z)は、以下の(16)式で表される。 p0 (Z)=exp (−Z2 /2)……(16) 同様に、信号強度Aの狭帯域信号が存在するという仮定
のもとでは、 p1 (Z)=exp (−(Z−A)2 /2)……(17)
Here, when it can be considered that the distribution of the input signal X (m, k) in which only noise is input follows a normal distribution,
The standardized input Y (m, k) follows a standard normal distribution with an average value of 0 and a standard deviation of 1. That is, the probability density function p of the distribution that Y (m, k) follows when there is no signal
0 (Z) is expressed by the following equation (16). p 0 (Z) = exp ( -Z 2/2) ...... (16) Similarly, under the assumption that a narrow-band signal of the signal intensity A is present, p 1 (Z) = exp (- (Z -A) 2/2) ...... ( 17)

【0031】これより、尤度比の対数値Qは、以下の
(18)式で表わされる。 Q=log P(Y(m,k)) =log p1 (Y(m,k))−log p0 (Y(m,k)) =−Y(m,k)2 /2+(Y(m,k)−A)2 /2 =A×Y(m,k)−A2 /2……(18)
From this, the logarithmic value Q of the likelihood ratio is expressed by the following equation (18). Q = log P (Y (m , k)) = log p 1 (Y (m, k)) - log p 0 (Y (m, k)) = -Y (m, k) 2/2 + (Y ( m, k) -A) 2/ 2 = A × Y (m, k) -A 2/2 ...... (18)

【0032】信号強度Aは正なので、QはY(m,k)
の単調増加関数である。したがって、Qに対して閾値判
定を行うことはY(m,k)に対して閾値判定を行うこ
とと等価である。この考えに立って、上記(15)式に
示したように、Y(m,k)を時間的に積分したものを
検出確信度A(m,k)とし、該検出確信度が閾値を超
えることをもって信号の存在を判定することにした。
Since the signal strength A is positive, Q is Y (m, k)
Is a monotonically increasing function of. Therefore, performing the threshold determination on Q is equivalent to performing the threshold determination on Y (m, k). Based on this idea, as shown in the equation (15), the temporal integration of Y (m, k) is set as the detection certainty factor A (m, k), and the detection certainty factor exceeds the threshold value. I decided to judge the existence of the signal.

【0033】また、上記のようにして求めた検出確信度
Λ(m,k)は、信号強度の推定値にもなっていること
に注目する。すなわち、もし信号強度Aの狭帯域信号が
周波数ビンmに定常的に入力しており、かつ十分長い時
間にわたって信号の追尾が理想的に行われていると仮定
するならば、検出確信度Λ(m,k)の期待値は信号強
度Aに等しい。そこで、尤度比の対数値を表わした上記
(18)式において、信号強度Aを検出確信度Λ(m,
k)で置き換えたものが上記(13)式である。ただ
し、信号強度Aは負になりえないため、たとえば検出確
信度Λ(m,k)が負の場合はA=0とみなす、等の安
全策を講じてもよい。
It should be noted that the detection certainty factor Λ (m, k) obtained as described above is also an estimated value of the signal strength. That is, if it is assumed that a narrowband signal of signal strength A is constantly input to the frequency bin m, and signal tracking is ideally performed for a sufficiently long time, the detection confidence Λ ( The expected value of m, k) is equal to the signal strength A. Therefore, in the above equation (18) expressing the logarithmic value of the likelihood ratio, the signal strength A is detected with the detection certainty Λ (m,
What is replaced by k) is the above formula (13). However, since the signal strength A cannot be negative, safety measures may be taken, such as assuming that A = 0 when the detection certainty factor Λ (m, k) is negative.

【0034】このように、この実施の形態では、上記
(13)式及び(14)式に従って径路確信度を、ま
た、(15)式に従って検出確信度を算出することにし
たため、必要な演算処理は加減乗除のみとなった。すな
わち、対数関数等の演算処理が含まれないため、比較的
小さな演算資源で最大事後確率法に基づく信号検出方法
を実現する事が可能となる。
As described above, in this embodiment, the route certainty factor is calculated according to the above equations (13) and (14), and the detected certainty factor is calculated according to the equation (15). Was only addition, subtraction, multiplication and division. That is, since a calculation process such as a logarithmic function is not included, it is possible to realize a signal detection method based on the maximum posterior probability method with a relatively small calculation resource.

【0035】[0035]

【発明の効果】以上のように本発明によれば、あらかじ
め与えられた周波数ビンνに相当する狭帯域信号の周波
数が1サンプル時刻後に周波数ビンmに遷移する遷移確
率a(m|ν)、及び信号が存在するときの信号強度の
確率密度分布p1 (z)と信号が存在しないときの信号
強度の確率密度分布p0 (z)の比によって定義される
尤度比P(z)=p1 (z)/p0 (z)を用い、各サ
ンプル時刻k及び各周波数ビンmごとに、経路確信度Γ
(m,k)及び検出確信度Λ(m,k)を、 ・各周波数ビンνについて、 γ(ν,m,k):=log P(X(m,k))+log a
(m|ν)+Γ(ν,k−1) ・ν0 :={γ(ν,m,k)を最大にする周波数ビン
ν} ・Γ(m,k):=γ(ν0 ,m,k) ・Λ(m,k):=log P(X(m,k))+Λ
(ν0 ,k−1) の各式により算出し、該検出確信度Λ(m,k)が、あ
らかじめ設定された閾値を超えた場合に狭帯域信号が到
来したと判定するようにしたので、いかなる遷移確率を
用いようとも、Neyman Pearson法に従った信号検出判定
ができるので、遷移確率a(mk |mk-1 )を任意に設
定することができ、かつ、誤警報確率を一定にしたとき
の検出性能を高く保つことができるという効果を有す
る。
As described above, according to the present invention, the transition probability a (m | ν) that the frequency of the narrowband signal corresponding to the frequency bin ν given in advance transits to the frequency bin m after one sample time, And the likelihood ratio P (z) = defined by the ratio of the probability density distribution p 1 (z) of the signal strength when the signal exists and the probability density distribution p 0 (z) of the signal strength when the signal does not exist. Using p 1 (z) / p 0 (z), for each sample time k and each frequency bin m, the path certainty factor Γ
(M, k) and the detection confidence Λ (m, k): γ (ν, m, k): = log P (X (m, k)) + log a for each frequency bin ν.
(M | ν) + Γ (ν, k−1) · ν 0 : = {frequency bin ν that maximizes γ (ν, m, k)} · Γ (m, k): = γ (ν 0 , m , K) · Λ (m, k): = log P (X (m, k)) + Λ
Since it is calculated by each equation of (ν 0 , k−1) and the detection certainty factor Λ (m, k) exceeds a preset threshold value, it is determined that a narrowband signal has arrived. Since the signal detection determination according to the Neyman Pearson method can be performed regardless of any transition probability, the transition probability a (m k | m k-1 ) can be set arbitrarily and the false alarm probability is constant. This has the effect that the detection performance can be maintained at a high level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る狭帯域信号検出方
法の動作を示すフローチャートである。
FIG. 1 is a flowchart showing an operation of a narrowband signal detecting method according to an embodiment of the present invention.

【図2】本発明の他の実施の形態に係る狭帯域信号検出
方法の動作を示すフローチャートである。
FIG. 2 is a flowchart showing an operation of a narrowband signal detecting method according to another embodiment of the present invention.

【図3】本発明の他の実施の形態に係る狭帯域信号検出
方法の動作を示すフローチャートである。
FIG. 3 is a flowchart showing an operation of a narrowband signal detecting method according to another embodiment of the present invention.

【図4】従来の狭帯域信号検出方法の動作を示すフロー
チャートである。
FIG. 4 is a flowchart showing an operation of a conventional narrowband signal detection method.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 23/16 G10L 11/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01R 23/16 G10L 11/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入力音響信号に対して、所定のサンプル
時刻k=1,2,...,Kごとに周波数分析を施して
得られる、周波数ビンm=1,2,...,Nにおける
信号強度X(m,k)に基づいて、最大事後確率法によ
って周波数遷移経路を推定したうえで狭帯域信号の検出
を判定する狭帯域信号検出方法において、 あらかじめ与えられた周波数ビンνに相当する狭帯域信
号の周波数が1サンプル時刻後に周波数ビンmに遷移す
る遷移確率a(m|ν)、及び信号が存在するときの信
号強度の確率密度分布p1 (z)と信号が存在しないと
きの信号強度の確率密度分布p0 (z)の比によって定
義される尤度比P(z)=p1 (z)/p0 (z)を用
い、 各サンプル時刻k及び各周波数ビンmごとに、経路確信
度Γ(m,k)及び検出確信度Λ(m,k)を、以下の
各式により算出し、該検出確信度Λ(m,k)が、あら
かじめ設定された閾値を超えた場合に狭帯域信号が到来
したと判定することを特徴とする狭帯域信号検出方法。 ・各周波数ビンνについて、 γ(ν,m,k):=log P(X(m,k))+log a
(m|ν)+Γ(ν,k−1) ・ν0 :={γ(ν,m,k)を最大にする周波数ビン
ν} ・Γ(m,k):=γ(ν0 ,m,k) ・Λ(m,k):=log P(X(m,k))+Λ
(ν0 ,k−1)
1. Predetermined sample times k = 1, 2 ,. . . , K, the frequency bins m = 1, 2 ,. . . , N in the narrowband signal detection method for determining the narrowband signal detection after estimating the frequency transition path by the maximum posterior probability method based on the signal strength X (m, k). The probability of a transition of the frequency of the narrow band signal corresponding to the transition to the frequency bin m after one sample time, a (m | ν), and the probability density distribution p 1 (z) of the signal strength when the signal exists and the signal exist. When the likelihood ratio P (z) = p 1 (z) / p 0 (z) defined by the ratio of the probability density distribution p 0 (z) of the signal intensity when not using each sample time k and each frequency bin For each m, the route certainty factor Γ (m, k) and the detected certainty factor Λ (m, k) are calculated by the following equations, and the detected certainty factor Λ (m, k) is set to a preset threshold value. Narrowband signal is judged to have arrived when Narrowband signal detection method characterized by and. For each frequency bin ν, γ (ν, m, k): = log P (X (m, k)) + log a
(M | ν) + Γ (ν, k−1) · ν 0 : = {frequency bin ν that maximizes γ (ν, m, k)} · Γ (m, k): = γ (ν 0 , m , K) · Λ (m, k): = log P (X (m, k)) + Λ
0 , k-1)
【請求項2】 入力音響信号に対して、所定のサンプル
時刻k=1,2,...,Kごとに周波数分析を施して
得られる、周波数ビンm=1,2,...,Nにおける
信号強度X(m,k)に基づいて、最大事後確率法によ
って周波数遷移経路を推定したうえで狭帯域信号の検出
を判定する狭帯域信号検出方法において、 あらかじめ与えられた、周波数ビンνに相当する狭帯域
信号の周波数が1サンプル時刻後に周波数ビンmに遷移
する遷移確率a(m|ν)、信号が存在するときの信号
強度の確率密度分布p1 (z)と信号が存在しないとき
の信号強度の確率密度分布p0 (z)の比によって定義
される尤度比P(z)=p1 (z)/p0 (z)、及び
あらかじめ与えられた積分係数αを用い、 各サンプル時刻k及び各周波数ビンmごとに、経路確信
度Γ(m,k)及び検出確信度Λ(m,k)を、以下の
各式により算出し、該検出確信度Λ(m,k)が、あら
かじめ設定された閾値を超えた場合に狭帯域信号が到来
したと判定することを特徴とする狭帯域信号検出方法。 ・各周波数ビンνについて、 γ(ν,m,k):=α(log P(X(m,k))+lo
g a(m|ν))+(1−α)Γ(ν,k−1) ・ν0 :={γ(ν,m,k)を最大にする周波数ビン
ν} ・Γ(m,k):=γ(ν0 ,m,k) ・Λ(m,k):=αlog P(X(m,k))+(1−
α)Λ(ν0 ,k−1)
2. A predetermined sampling time k = 1, 2 ,. . . , K, the frequency bins m = 1, 2 ,. . . , N, the narrowband signal detection method for determining the narrowband signal detection after estimating the frequency transition path by the maximum posterior probability method based on the signal strength X (m, k) at The transition probability a (m | ν) that the frequency of the narrowband signal corresponding to ν transits to the frequency bin m after one sampling time, the probability density distribution p 1 (z) of the signal strength when the signal exists, and the signal exist The likelihood ratio P (z) = p 1 (z) / p 0 (z) defined by the ratio of the probability density distribution p 0 (z) of the signal intensity when not and the integration coefficient α given in advance are used. , The route confidence Γ (m, k) and the detection confidence Λ (m, k) are calculated for each sample time k and each frequency bin m by the following equations, and the detection confidence Λ (m, k k) exceeds a preset threshold, Narrowband signal detecting method characterized by determining a narrow-band signal arriving at. -For each frequency bin ν: γ (ν, m, k): = α (log P (X (m, k)) + lo
g a (m | ν)) + (1−α) Γ (ν, k-1) · ν 0 : = {frequency bin ν that maximizes γ (ν, m, k)} · Γ (m, k) ): = Γ (ν 0 , m, k) ・ Λ (m, k): = α log P (X (m, k)) + (1-
α) Λ (ν 0 , k-1)
【請求項3】 入力音響信号に対して、所定のサンプル
時刻k=1,2,...,Kごとに周波数分析を施して
得られる、周波数ビンm=1,2,...,Nにおける
信号強度X(m,k)に基づいて、最大事後確率法によ
って周波数遷移経路を推定したうえで狭帯域信号の検出
を判定する狭帯域信号検出方法において、 あらかじめ与えられた、周波数ビンνに相当する狭帯域
信号の周波数が1サンプル時刻後に周波数ビンmに遷移
する遷移確率a(m|ν)、あらかじめ与えられた積分
係数α、及び雑音のみが入力した場合に観測される信号
強度の平均値μと標準偏差σを用い、 各サンプル時刻kおよび各周波数ビンmごとに、経路確
信度Γ(m,k)及び検出確信度Λ(m,k)を、以下
の各式により算出し、該検出確信度Λ(m,k)が、あ
らかじめ設定された閾値を超えた場合に狭帯域信号が到
来したと判定することを特徴とする狭帯域信号検出方
法。 ・各周波数ビンνについて、 Q:=Λ(ν,k−1)×{((X(m,k)−μ)/
σ)−Λ(ν,k−1)/2} γ(ν,m,k):=α(Q+log a(m|ν))+
(1−α)Γ(ν,k−1) ・ν0 :={γ(ν,m,k)を最大にする周波数ビン
ν) ・Γ(m,k):=γ(ν0 ,m,k) ・Λ(m,k):=α(X(m,k)−μ)/σ+(1
−α)Λ(ν0 ,k−1)
3. Predetermined sample times k = 1, 2 ,. . . , K, the frequency bins m = 1, 2 ,. . . , N based on the signal strength X (m, k) at N, the narrowband signal detection method for determining the narrowband signal detection after estimating the frequency transition path by the maximum posterior probability method. The transition probability a (m | ν) that the frequency of the narrowband signal corresponding to ν transits to the frequency bin m after one sample time, the predetermined integration coefficient α, and the signal strength observed when only noise is input. Using the average value μ and the standard deviation σ of each, the route confidence Γ (m, k) and the detection confidence Λ (m, k) are calculated for each sample time k and each frequency bin m by the following equations. Then, the narrowband signal detection method is characterized in that when the detection certainty factor Λ (m, k) exceeds a preset threshold value, it is determined that a narrowband signal has arrived. For each frequency bin ν: Q: = Λ (ν, k−1) × {((X (m, k) −μ) /
σ) −Λ (ν, k−1) / 2} γ (ν, m, k): = α (Q + log a (m | ν)) +
(1-α) Γ (ν, k-1) ν 0 : = {Frequency bin ν that maximizes γ (ν, m, k) ・ Γ (m, k): = γ (ν 0 , m , K) · Λ (m, k): = α (X (m, k) −μ) / σ + (1
−α) Λ (ν 0 , k−1)
JP27136098A 1998-09-25 1998-09-25 Narrowband signal detection method Expired - Fee Related JP3513645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27136098A JP3513645B2 (en) 1998-09-25 1998-09-25 Narrowband signal detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27136098A JP3513645B2 (en) 1998-09-25 1998-09-25 Narrowband signal detection method

Publications (2)

Publication Number Publication Date
JP2000097977A JP2000097977A (en) 2000-04-07
JP3513645B2 true JP3513645B2 (en) 2004-03-31

Family

ID=17498996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27136098A Expired - Fee Related JP3513645B2 (en) 1998-09-25 1998-09-25 Narrowband signal detection method

Country Status (1)

Country Link
JP (1) JP3513645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110352349B (en) * 2017-02-15 2023-01-31 日本电信电话株式会社 Abnormal sound detection device, abnormal degree calculation device, abnormal sound generation device, abnormal signal detection method, and recording medium

Also Published As

Publication number Publication date
JP2000097977A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
US6363333B1 (en) Method of classifying statistical dependency of a measurable series of statistical values
US20060074828A1 (en) Methods and apparatus for detecting temporal process variation and for managing and predicting performance of automatic classifiers
KR100513175B1 (en) A Voice Activity Detector Employing Complex Laplacian Model
CN116347318B (en) Intelligent production test method and system for sound equipment
US7373332B2 (en) Methods and apparatus for detecting temporal process variation and for managing and predicting performance of automatic classifiers
JP2009245314A (en) Identification system of time-series data, and apparatus of giving personal meta information to moving image
US20030204368A1 (en) Adaptive sequential detection network
Banbrook et al. How to extract Lyapunov exponents from short and noisy time series
JP3513645B2 (en) Narrowband signal detection method
US20030097261A1 (en) Speech detection apparatus under noise environment and method thereof
Chan et al. Performance evaluation of ESM deinterleaver using TOA analysis
Han et al. A detection optimal min-max test for transient signals
US6819230B2 (en) Target track crossing prediction/detection
US20060074826A1 (en) Methods and apparatus for detecting temporal process variation and for managing and predicting performance of automatic classifiers
CA1337708C (en) Adaptive multivariate estimating apparatus
US20060074827A1 (en) Methods and apparatus for detecting temporal process variation and for managing and predicting performance of automatic classifiers
JP6486850B2 (en) Signal detection apparatus, signal detection method, and signal detection program
CN111708017A (en) Multi-radar joint detection method and device based on Gaussian kernel
JPH10134086A (en) Causation detector and method
Kwon et al. A New P‐Wave Detector via Moving Empirical Cumulative Distribution Function
JPH1075218A (en) Method and device for identifying characteristic boundary of data groups
KR970003698B1 (en) Multi-target detector and method
US6484122B1 (en) System and method for evaluating characteristics for suitability in classification
EP0310636B1 (en) Distance measurement control of a multiple detector system
Shue et al. Asymptotic smoothing errors for hidden Markov models

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees