JP3507875B2 - Micro sample storage device - Google Patents

Micro sample storage device

Info

Publication number
JP3507875B2
JP3507875B2 JP29538093A JP29538093A JP3507875B2 JP 3507875 B2 JP3507875 B2 JP 3507875B2 JP 29538093 A JP29538093 A JP 29538093A JP 29538093 A JP29538093 A JP 29538093A JP 3507875 B2 JP3507875 B2 JP 3507875B2
Authority
JP
Japan
Prior art keywords
sample
unit
storage medium
storage
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29538093A
Other languages
Japanese (ja)
Other versions
JPH07144139A (en
Inventor
英雄 榎
亮 三宅
雅治 石井
功夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29538093A priority Critical patent/JP3507875B2/en
Publication of JPH07144139A publication Critical patent/JPH07144139A/en
Application granted granted Critical
Publication of JP3507875B2 publication Critical patent/JP3507875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細胞を含む試料の凍結
保存に係り、特に試料を急速に冷却・加熱し長期保存を
行なうのに好適な微量試料保存装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cryopreservation of a sample containing cells, and more particularly to a trace sample preservation device suitable for rapid cooling and heating of the sample for long-term preservation.

【0002】[0002]

【従来の技術】従来の血球や各種の細胞を凍結保存する
微量試料保存装置においては、細胞を含む溶液にグリセ
リンなどの凍害防御剤を添加し数℃〜数百℃/minの
冷却速度で緩速凍結し−80℃以下で凍結保存する手段
がよく用いられている。しかしながら、凍害防御剤の添
加操作や解凍した後の凍害防御剤の除去操作が煩雑で操
作に数時間を要する。これらの手段以外に凍害防御剤を
用いず細胞を急速に凍結する超急速凍結法があるが10
000℃/s以上の冷却速度を実現しないと細胞の内外
に氷の結晶が生じ細胞が破壊される。超急速凍結法は主
に電子顕微鏡で生物試料を観察するときの前処理として
採用されている。この方法には衝突法、投入法、スプレ
ー法の3種がある。衝突法は低温の金属ブロックに試料
を打ち付け急速に凍結させる方法で、この場合、氷晶を
生じさせないためには試料の厚さが100μm以下であ
る必要があり装置の大きさの制限のため一度に凍結でき
る試料の量は非常に少なくなる。投入法、スプレー法は
どちらも液体窒素や液体エタンなどの冷媒に試料を投入
する方法で投入法は固形試料、スプレー法は液状試料を
対象とするものである。双方とも液体窒素などの冷媒に
試料を投入するが投入速度が数m〜数百m/sとなる。
特に、スプレー法は液体を数十μmに微粒化し数百m/
sの高速で冷媒に突入する必要があり細胞の損傷を生じ
る恐れがある。
2. Description of the Related Art In a conventional small sample storage apparatus for cryopreserving blood cells and various cells, a cryoprotective agent such as glycerin is added to a solution containing cells and the cells are slowly cooled at a cooling rate of several to several hundred ° C / min. A means for quick-freezing and freezing storage at −80 ° C. or lower is often used. However, the operation of adding the anti-frost damage agent and the operation of removing the anti-frost damage agent after thawing are complicated, and the operation requires several hours. In addition to these means, there is an ultra-rapid freezing method for rapidly freezing cells without using a frost damage protecting agent.
If a cooling rate of 000 ° C./s or more is not achieved, ice crystals will form inside and outside the cells and the cells will be destroyed. The ultra-rapid freezing method is mainly used as a pretreatment when observing a biological sample with an electron microscope. There are three types of this method: a collision method, a charging method, and a spray method. The collision method is a method of hitting a sample on a low-temperature metal block to freeze it rapidly. In this case, the thickness of the sample must be 100 μm or less in order to prevent the formation of ice crystals. Very little sample can be frozen. Both the charging method and the spraying method are methods in which a sample is charged into a refrigerant such as liquid nitrogen or liquid ethane, and the charging method is a solid sample and the spraying method is a liquid sample. In both cases, the sample is charged into a refrigerant such as liquid nitrogen, but the charging speed is several m to several hundred m / s.
In particular, the spray method atomizes the liquid into a few tens of μm
It is necessary to rush into the refrigerant at a high speed of s, which may cause cell damage.

【0003】以上に関連する文献としては、冷凍,Vol.5
7,No.656,pp560-567、およびジャーナル オブ マイクロ
スコピイ(Journal of Microscopy),Vol.140,Pt1,pp17
-40などがある。
References related to the above include Frozen, Vol.
7, No.656, pp560-567, and Journal of Microscopy, Vol.140, Pt1, pp17
-40 and so on.

【0004】[0004]

【発明が解決しようとする課題】従来の微量試料保存装
置にあっては、試料の前処理部、微量化部、冷却部など
を一つ以上備えてはいるものの各部を備えてなく、細胞
の損傷を防止して連続的に急速凍結し、個別に長期保存
する装置がない問題点があった。そして、試料の保存時
には液体窒素容器やフリーザ内に多数の試料を混在して
保存するため保存管理が面倒で、また、試料の貯蔵、搬
出時に外気が流入し庫内の温度が上昇し保存状態が悪く
なる。さらに、試料間の汚染や人手による取り扱いのた
めの汚染の危険性が生じる問題点があった。
The conventional trace amount sample storage device includes at least one sample pretreatment unit, trace amount reduction unit, cooling unit, etc. There is a problem in that there is no device that prevents damage and rapidly freezes continuously, and individually stores for a long time. When storing samples, many samples are mixed and stored in a liquid nitrogen container or freezer, which makes storage management cumbersome.In addition, when the samples are stored or carried out, the outside air flows in and the temperature inside the storage chamber rises, and storage conditions are high. Becomes worse. Further, there is a problem that there is a risk of contamination between samples and contamination due to manual handling.

【0005】本発明の目的は、細胞を含む溶液を凍結す
るにあたり細胞の損傷を防ぐとともに、連続的して急速
に細胞を凍結し、個別に長期保存することのできる微量
試料保存装置を提供することにある。
An object of the present invention is to provide a micro sample storage device capable of preventing cells from being damaged when freezing a solution containing cells and freezing cells continuously and rapidly for long-term storage individually. Especially.

【0006】[0006]

【課題を解決するための手段】発明に係る微量試料保
存装置は、粒子または薬品を含む液状の試料を前処理す
る前処理部と、試料を微量化する微量化部と、微量化し
た微量試料を冷却する冷却部と、装置内で微量試料を搬
送する搬送部と、微量試料を保存する保管部と、保存さ
れた試料を再生回収する回収部と、再生試料の後処理を
行う後処理部と、制御部及び制御部へ情報の入出力を行
う入出力部とを備え、それぞれの部は、試料の少なくと
も冷却、保存及び再生を平面状の保存媒体上で行う構
とする。
A trace sample storage apparatus according to the present invention comprises a pretreatment unit for pretreating a liquid sample containing particles or chemicals, a trace amount reducing unit for reducing the amount of the sample, and a trace amount for reducing the amount. A cooling unit that cools the sample, a transport unit that transports a small amount of sample in the device, a storage unit that stores a small amount of sample, a recovery unit that regenerates and recovers the stored sample, and a post-treatment that performs post-treatment on the regenerated sample comprising a part, an output section for inputting and outputting information to the control unit and the control unit, each of the parts are at least the cooling of the sample, the row cormorants configure the storage and playback on planar storage media.

【0007】そして微量化部は、回転機構と昇降機構と
を有するピペッタと、ピペッタで吸引した試料を微粒化
し放出するノズルと、放出された試料内の粒子を光学的
に検出する検出部と、ノズルの前方に配置され微粒化し
た試料の進行方向を制御し保存媒体を所定の位置に滴下
させる電極とよりなり、冷却部は保存媒体と接触して冷
却し、保管部は保存媒体を低温保存する棚状のスタッカ
を有し、回収部は保存媒体上の試料を加熱・解凍して回
収する回収機構を有し、後処理部は保存媒体上の再生試
料を外部の容器に回収し、制御部は装置内のそれぞれの
部を制御し、入出力部は制御部へ少なくとも指令、デー
タの交換、外部ネットワークとの通信及びマンマシンイ
ンターフェースを行なう構とすることにより上記課題
を解決する。
The miniaturization unit includes a pipettor having a rotating mechanism and an elevating mechanism, a nozzle for atomizing and ejecting the sample sucked by the pipettor, and a detecting unit for optically detecting particles in the ejected sample. It consists of an electrode that is placed in front of the nozzle and controls the traveling direction of the atomized sample to drop the storage medium at a predetermined position.The cooling unit contacts and cools the storage medium, and the storage unit stores the storage medium at low temperature. The stacker has a stacker, and the collection unit has a collection mechanism that heats and defrosts the sample on the storage medium and collects it.The post-processing unit collects the regenerated sample on the storage medium in an external container and controls it. parts controls the respective parts in the device, at least a command, exchange of data to the input-output unit control section, the object by the communications and man-machine interface with an external network and the row of the Hare configuration
To solve.

【0008】さらに、微量化部は、液状試料を放出する
ノズルを有する流路と、流路内の液状試料に含まれる粒
子を検出する第一の検出手段と、ノズルの出口近傍に設
けられる第一の電極と、液状試料の液滴の進行方向に向
かい液滴の位置、速度及び進行方向を検出する第二の検
出手段及び第二の電極と、液滴の位置、速度及び進行方
向を検出する第三の検出手段及び第三の電極とを有する
構成とすることにより上記課題を解決する。
Further, the micronization unit releases the liquid sample.
Particles contained in the liquid sample in the channel with the channel having the nozzle
Installed near the outlet of the nozzle and the first detection means to detect the child.
The first electrode to be struck and the direction of travel of the liquid sample droplets.
A second detection for detecting the position, velocity and traveling direction of the paddle droplet.
Ejection means and second electrode, and position, velocity and way of droplet
Having a third detecting means for detecting the direction and a third electrode
The above problem is solved by adopting a configuration.

【0009】また、微量化部の流路を、二重管で形成し
かつ二重管の内管の出口を外管の流路内に設け、内管に
液状試料を流通するとともに外管に搬送液を流通し、中
央を流れる液状試料に光を照射する光源と液状試料内の
粒子からの散乱光及び蛍光を検出する検出器とを具備し
た構成でもよい。
Further , the flow path of the miniaturization section is formed by a double pipe.
In addition, the outlet of the inner pipe of the double pipe is provided in the flow path of the outer pipe,
The liquid sample is circulated and the carrier liquid is circulated in the outer tube.
The light source that illuminates the liquid sample flowing through the center and the inside of the liquid sample
And a detector for detecting scattered light and fluorescence from the particles.
The configuration may be different.

【0010】そして冷却部は、冷凍機より供給される冷
媒の流通する冷媒流路を内蔵する冷却ブロックと冷却ブ
ロック上の伝熱部材とよりなり、伝熱部材上に保存媒体
を接触冷却するものである構成でもよい。
The cooling unit is composed of a cooling block containing a refrigerant passage through which the refrigerant supplied from the refrigerator flows and a heat transfer member on the cooling block, and cools the storage medium in contact with the heat transfer member. The configuration may be

【0011】さらに、冷却部は、冷凍機より供給される
冷媒の流通する冷媒流路を内蔵する冷却ブロックと、冷
却ブロック上に設けられペルチエ効果を有するn型半導
体及びp型半導体と、それぞれの半導体のそれぞれの端
面に形成された電極と、冷却ブロックとそれぞれの半導
体の一方の端面の電極との間を絶縁する絶縁部とよりな
り、保存媒体の電気的導体で形成した試料保存部をそれ
ぞれの半導体の他方の端面の電極に接触し、それぞれの
電極間に電圧を印加する構成とすることにより上記課題
を解決する。
Further, the cooling section includes a cooling block containing a refrigerant passage through which a refrigerant supplied from the refrigerator flows, and an n-type semiconductor and a p-type semiconductor provided on the cooling block and having a Peltier effect. An electrode formed on each end face of the semiconductor and an insulating part that insulates between the cooling block and the electrode on one end face of each semiconductor, and a sample storage part formed of an electrical conductor of a storage medium, respectively. above problems by the semiconductor in contact with the electrode of the other end face, a configuration for applying a voltage between the respective electrodes
To solve.

【0012】さらに複数対のn型半導体及びp型半導体
を直列に接続し、保存媒体上にそれぞれの対の半導体に
対向し複数の電気的導体部を設けた構成でもよい。
Further, a plurality of pairs of n-type semiconductors and p-type semiconductors may be connected in series, and a plurality of electric conductor portions may be provided on the storage medium so as to face the respective pairs of semiconductors.

【0013】さらに、微量化部の流路を、二重管で形成
しかつ該二重管の内管の出口を外管の流路内に設け、内
管に液状試料を流通するとともに外管に搬送液を流通
し、中央を流れる液状試料に光を照射する光源と液状試
料内の粒子からの散乱光及び蛍光を検出する検出器とを
具備し、検出器による検出部と保存媒体との間のほぼ中
央で外管を貫通して露出させた内管を屈曲させ、内管の
保存媒体と対向する位置に開口部を設けた構成とするこ
とにより上記課題を解決する。
Further, the flow path of the micronization section is formed of a double tube, and the outlet of the inner tube of the double tube is provided in the flow path of the outer tube so that the liquid sample can be circulated in the inner tube and the outer tube. The carrier liquid is circulated, and a light source for irradiating the liquid sample flowing through the center with light and a detector for detecting scattered light and fluorescence from particles in the liquid sample are provided. The inner tube exposed by penetrating the outer tube approximately at the center is bent, and an opening is provided at a position facing the storage medium of the inner tube .
And solve the above problems.

【0014】また屈曲させた内管を切断して形成した開
口部の周辺に弾性部材を設けるとともに、弾性部材のそ
れぞれの側に弾性部材より大きい剛性を有する支持部材
を設け、それぞれの支持部材内に開口部の上流側と下流
側のそれぞれの内管を埋設し、それぞれの支持部材間に
伸縮可能なアクチュエータを設けた構成でもよい。
Elastic members are provided around the openings formed by cutting the bent inner pipe, and support members having rigidity higher than that of the elastic members are provided on the respective sides of the elastic members. Alternatively, the inner pipes on the upstream side and the downstream side of the opening may be embedded and the expandable actuators may be provided between the respective support members.

【0015】さらに屈曲させた内管を切断して形成した
開口部の周辺に支持部材を設けるとともに、支持部材内
に開口部の上流側と下流側のそれぞれの内管を埋設し、
開口部の上部の支持部材にダイヤフラムにより隔離され
た二つの室を設け、開口部に近接する第一の室に開口部
と接触しかつ液体試料と非混合の流体を充満し、第二の
室内に伸縮可能なアクチュエータを内蔵し、アクチュエ
ータの伸縮方向の端面をダイヤフラムを介して第一の室
に接続した構成でもよい。
Further, a supporting member is provided around the opening formed by cutting the bent inner pipe, and inner pipes on the upstream side and the downstream side of the opening are embedded in the supporting member,
The support member above the opening is provided with two chambers separated by a diaphragm, and the first chamber close to the opening is in contact with the opening and filled with a fluid that is not mixed with the liquid sample, and the second chamber It is also possible to have a structure in which an expandable / contractible actuator is built in and the end face in the expansion / contraction direction of the actuator is connected to the first chamber via a diaphragm.

【0016】そして屈曲させた内管を切断して形成した
開口部の周辺に支持部材を設けるとともに、支持部材内
に開口部の上流側と下流側のそれぞれの内管を埋設し、
開口部の上部の支持部材に室を設けて室内に伸縮可能な
アクチュエータを内蔵し、アクチュエータの伸縮方向の
一端を室の一面に接続し、他端を開口部を横切るピスト
ンに接続した構成でもよい。
A supporting member is provided around the opening formed by cutting the bent inner pipe, and the inner pipes on the upstream side and the downstream side of the opening are embedded in the supporting member.
A configuration may be adopted in which a chamber is provided in a support member above the opening, a retractable actuator is built in the chamber, one end of the actuator in the extension / contraction direction is connected to one surface of the chamber, and the other end is connected to a piston that traverses the opening. .

【0017】また屈曲させた内管の開口部の上流側の内
管の外周に、径方向に伸縮可能な円環状のアクチュエー
タを設けた構成でもよい。
Further, it is also possible to provide an annular actuator which is expandable and contractable in the radial direction on the outer circumference of the inner pipe upstream of the opening of the bent inner pipe.

【0018】さらに微量化部の流路を、二重管で形成し
かつ二重管の内管の出口を外管の流路内に設け、内管に
液状試料を流通するとともに外管に搬送液を流通し、中
央を流れる液状試料に光を照射する光源と液状試料内の
粒子からの散乱光及び蛍光を検出する検出器とを具備
し、検出器による検出部と保存媒体との間のほぼ中央で
外管を貫通して内管を露出させ、内管の保存媒体に対向
する先端に開口部を設けて開口部の上流側の内管の外周
に、径方向に伸縮可能な円環状のアクチュエータを設け
て開口部を包む第二の外管を設けた構成でもよい。
Further, the flow path of the micronization section is formed by a double tube and the outlet of the inner tube of the double tube is provided in the flow path of the outer tube so that the liquid sample is circulated in the inner tube and is conveyed to the outer tube. A liquid source that circulates the liquid and is equipped with a light source that irradiates the liquid sample flowing through the center with light and a detector that detects scattered light and fluorescence from particles in the liquid sample, and is provided between the detection unit by the detector and the storage medium. A circular ring that can be expanded and contracted in the radial direction on the outer circumference of the inner pipe upstream of the opening by opening the inner pipe through the outer pipe at approximately the center to expose the inner pipe and facing the storage medium. The actuator may be provided and a second outer tube for wrapping the opening may be provided.

【0019】そして開口部の上流側の内管の管壁内に、
径方向に伸縮可能な円環状のアクチュエータを内蔵した
構成でもよい。
Then, in the pipe wall of the inner pipe on the upstream side of the opening,
A configuration in which an annular actuator that can expand and contract in the radial direction is incorporated may be used.

【0020】また搬送部は、筒状の支持部と、支持部に
収容され駆動源により回転駆動される主動ローラと主動
ローラに対向する従動ローラとよりなる少なくとも一つ
の搬送ユニットと、保管部内で搬送ユニットを上下動さ
せる上下機構と、回転させる回転機構とを有している構
成でもよい。
In the storage section, the transport section includes a tubular support section, at least one transport unit including a drive roller housed in the support section and rotated by a drive source, and a driven roller facing the drive roller. A configuration having an up-and-down mechanism for moving the transport unit up and down and a rotating mechanism for rotating the transport unit may be used.

【0021】さらに保存媒体は、平面状の基板と、基板
上に試料を保存する少なくとも一つの区画に分割された
試料保存部とを有する構成でもよい。
Further, the storage medium may have a structure having a flat substrate and a sample storage section divided into at least one section for storing the sample on the substrate.

【0022】そして保存媒体は、情報記録部を有する構
成でもよい。
The storage medium may have a structure having an information recording section.

【0023】また保存媒体は、試料保存部のそれぞれの
区画に発熱抵抗体及び温度センサを備えたブリッジを有
する構成でもよい。
The storage medium may have a structure in which a bridge having a heating resistor and a temperature sensor is provided in each section of the sample storage unit.

【0024】さらに回収部は、回収液の流通する屈曲し
た回収管の屈曲部に設けた開口部を保存媒体に対向して
配置し、回収管をXYZ軸方向に駆動する駆動部を具備
している構成でもよい。
Further, the recovery section is provided with a drive section for arranging an opening provided in the bent section of the bent recovery tube through which the recovery liquid flows so as to face the storage medium, and for driving the recovery tube in the XYZ axis directions. You may have a structure.

【0025】そして回収管の開口部付近に回収管を支持
する支持部材を設け、支持部材に温度センサとヒータと
を内蔵した構成でもよい。
A support member for supporting the recovery pipe may be provided near the opening of the recovery pipe, and a temperature sensor and a heater may be built in the support member.

【0026】また回収管を二重管で形成した構成でもよ
い。
Further, the recovery pipe may be a double pipe.

【0027】さらに細胞バンクにおいては、前記いずれ
か一つの微量試料保存装置を備えてなる構成とする。
Further, the cell bank is configured to include any one of the above-mentioned minute sample storage devices.

【0028】[0028]

【作用】本発明によれば、試料に前処理部で薬品を添加
し、微量化部で分離して微量の試料を形成し、この試料
を冷却部の保存媒体に接触・冷却し凍結保存する。保存
媒体は保管部に保存され、回収部で再生操作を施され、
後処理部に回収される。
According to the present invention, a chemical is added to the sample in the pretreatment section and separated in the micronization section to form a trace amount of the sample, which is contacted and cooled with a storage medium in the cooling section to be frozen and stored. . The storage medium is stored in the storage section, and is regenerated in the collection section.
It is collected in the post-processing section.

【0029】そして、前処理部のピペッタにより試料を
吸引し微量化部に供給する。微量化部で試料内の細胞な
どの粒子を認識・選別しノズル先端から放出された液滴
を電極により形成した電場により保存媒体上の所定の位
置に滴下して凍結し、搬送部により保存媒体を保管部内
に移動し保管機構に保持した後に搬送部により搬入出す
る。回収時は回収部で保管媒体上の試料を加熱・解凍し
て、後処理部を経由して容器に回収する。
Then, the sample is sucked by the pipettor of the pretreatment section and supplied to the micronization section. The micronization unit recognizes and sorts out particles such as cells in the sample, drops the droplets ejected from the nozzle tip at a predetermined position on the storage medium by the electric field formed by the electrode, freezes it, and the storage unit stores it. Is moved into the storage unit, held in the storage mechanism, and then carried in and out by the transfer unit. At the time of collection, the sample on the storage medium is heated and thawed in the collection unit, and collected in the container via the post-treatment unit.

【0030】また、前処理部のピペッタにより吸引した
試料は、微粒化部の内管より流出し一定流速で細長い流
れとなって流下する。この流れに光源からの光を照射
し、流れに含まれる微粒子からの散乱光、蛍光を受光素
子より検知し粒子を判別する。さらにノズル先端から分
離飛翔した液滴を電場により保存媒体上の所定の位置に
滴下し凍結保存する。
Further, the sample sucked by the pipettor of the pretreatment section flows out from the inner pipe of the atomization section and becomes a slender flow at a constant flow rate. The flow is irradiated with light from a light source, and scattered light and fluorescence from fine particles contained in the flow are detected by a light receiving element to identify the particles. Further, the droplets separated and fly from the tip of the nozzle are dropped at a predetermined position on the storage medium by an electric field and frozen and stored.

【0031】さらに、第二の検出手段により飛翔後の液
滴の進行方向、速度および大きさを検出する。第二の電
極により所定の電界を発生させ、第二の電極を通過した
液滴の進行方向および速度を第三の検出器により検知
し、方向および速度の変化を基に液滴の帯電量を推定
し、保存媒体上の所定の位置に液滴が落下するように第
三の電極に印加する電圧を決定する。
Further, the advancing direction, velocity and size of the droplet after flight are detected by the second detecting means. A predetermined electric field is generated by the second electrode, the advancing direction and speed of the droplet that has passed through the second electrode are detected by a third detector, and the charge amount of the droplet is determined based on the change in direction and speed. It is estimated and the voltage applied to the third electrode is determined so that the droplet drops at a predetermined position on the storage medium.

【0032】そして、冷却部に至った保存媒体は伝熱部
材に接触し冷却される。
Then, the storage medium that has reached the cooling unit contacts the heat transfer member and is cooled.

【0033】また、半導体上の電極は、転送されてきた
保存媒体上の試料保存部に接触し、半導体に電圧を印加
して試料保存部からペルチエ効果により吸熱し冷却す
る。
Further, the electrode on the semiconductor comes into contact with the sample storage section on the transferred storage medium, and a voltage is applied to the semiconductor to absorb heat from the sample storage section by the Peltier effect and cool it.

【0034】さらに、直列した半導体回路に電圧を印加
して保存媒体上の複数の電気的導体部を個別に冷却す
る。
Further, a voltage is applied to the semiconductor circuits in series to individually cool the plurality of electric conductors on the storage medium.

【0035】そして、二重管の内部の管から出て二重管
の中央付近を流れた試料液は下流側中央付近に設けた内
管に流入し、下流側の保存媒体に対向する位置に存在す
る開口部で保存媒体に接触し凍結して保存媒体上に定着
する。
The sample liquid flowing out of the inner tube of the double tube and flowing near the center of the double tube flows into the inner tube provided near the center of the downstream side and is positioned at a position facing the storage medium on the downstream side. The existing opening contacts the storage medium, freezes, and fixes on the storage medium.

【0036】また、アクチュエータが伸縮し、弾性部材
に包まれた管の切断部が開閉し、試料の一部が押し出さ
れ対面する保存媒体に接触し凍結固定される。
Further, the actuator expands and contracts, the cut portion of the tube wrapped with the elastic member opens and closes, and a part of the sample is extruded and brought into contact with the facing storage medium and freeze-fixed.

【0037】さらに、アクチュエータの伸縮によりダイ
ヤフラムが変位し流体を管の開放部に突出させ、管内を
流れてきた試料が保存媒体側に押し出され保存媒体表面
に接触し凍結固定される。
Further, due to the expansion and contraction of the actuator, the diaphragm is displaced and the fluid is projected to the open portion of the tube, and the sample flowing in the tube is pushed out to the storage medium side and comes into contact with the surface of the storage medium and is frozen and fixed.

【0038】そして、ピストンがアクチュエータにより
開放部に突出し試料を保存媒体側に押し出し凍結固定す
る。
Then, the piston is projected to the open portion by the actuator and the sample is pushed out toward the storage medium to freeze-fix it.

【0039】また、アクチュエータを径方向に伸縮し試
料を保存媒体側に押し出し保存媒体に接触させることに
より凍結固定させる。
Further, the actuator is expanded and contracted in the radial direction to push the sample toward the storage medium to bring it into contact with the storage medium, thereby freezing and fixing.

【0040】さらに、二重管内部のアクチュエータを径
方向に伸縮し試料を保存媒体側に押し保存媒体に接触さ
せることにより凍結固定させる。
Furthermore, the actuator inside the double tube is expanded and contracted in the radial direction to push the sample toward the storage medium and bring it into contact with the storage medium, thereby freezing and fixing.

【0041】そして、二重管の内部の管に内蔵したアク
チュエータを径方向に伸縮し試料を保存媒体側に押し保
存媒体に接触させることにより凍結固定させる。
Then, the actuator built in the tube inside the double tube is expanded and contracted in the radial direction to push the sample toward the storage medium to bring it into contact with the storage medium, thereby freezing and fixing.

【0042】また、保存媒体は、搬送ユニット内のロー
ラに挟持されローラの回転により微量化部に導入され
る。微量化部での処理が終了すると、保管部に導かれ上
下機構、回転機構により搬送ユニットから棚状のスタッ
カに保管される。
Further, the storage medium is sandwiched by the rollers in the transport unit and introduced into the micronization section by the rotation of the rollers. When the processing in the miniaturization unit is completed, it is guided to the storage unit and stored in the stacker stack from the transport unit by the vertical movement mechanism and the rotation mechanism.

【0043】さらに、保存媒体上の各小区画には小滴化
した試料が保存される。
Furthermore, the dropletized sample is stored in each small section on the storage medium.

【0044】さして、情報記録媒部で、保存媒体上に保
存された試料に関する情報を保持する。
Now, the information recording medium section holds information about the sample stored on the storage medium.

【0045】また、温度センサからの信号をもとに発熱
抵抗体に流す電流を調節し試料の温度履歴を制御する。
Further, the temperature history of the sample is controlled by adjusting the current flowing through the heating resistor based on the signal from the temperature sensor.

【0046】さらに、発熱抵抗体の発熱によりブリッジ
がたわみブリッジ中央部と保存媒体基板との接触熱抵抗
が増加し、発熱抵抗体による温度上昇がより急峻にな
る。
Further, the heat generated by the heating resistor causes the bridge to bend and the contact thermal resistance between the central portion of the bridge and the storage medium substrate increases, so that the temperature rise by the heating resistor becomes steeper.

【0047】そして、回収管の開口部で回収液と凍結試
料が接触して試料が融解し回収管内に回収されるまた、
温度センサの出力によりヒータに流れる電流を調整し回
収機構先端の温度を一定に保つ。
Then, the recovered liquid and the frozen sample are brought into contact with each other at the opening of the recovery tube, the sample is melted and recovered in the recovery tube.
The temperature of the tip of the recovery mechanism is kept constant by adjusting the current flowing through the heater by the output of the temperature sensor.

【0048】さらに、駆動部により保存媒体上の試料の
上に回収管の開口部を移動し、回収機構を降下させ開口
部を試料に接触させ試料を開口部で回収液により融解さ
れ回収される。
Further, the drive unit moves the opening of the recovery tube onto the sample on the storage medium, lowers the recovery mechanism to bring the opening into contact with the sample, and the sample is melted and recovered by the recovery liquid in the opening. .

【0049】そして、二重管の内部の管から流出した回
収液は保存媒体上の凍結試料と接触し試料を融解する。
融解された試料は回収液とともにして外側の管から吸入
され回収される。
Then, the recovered liquid flowing out from the tube inside the double tube comes into contact with the frozen sample on the storage medium to melt the sample.
The thawed sample is sucked from the outer tube and collected together with the collected liquid.

【0050】[0050]

【実施例】本発明の一実施例を図1を参照しながら説明
する。図1に示すように、粒子または薬品を含む液状の
試料11を前処理する前処理部2と、試料11を微量化
する微量化部3と、微量化した微量試料を冷却する冷却
部5と、装置内で微量試料を搬送する搬送部6と、微量
試料を保存する保管部7と、保存された試料を再生回収
する回収部8、再生試料の後処理を行う後処理部9と、
制御部10及び制御部10へ情報の入出力を行う入出力
部101とを備え、それぞれの部2,3,5,6,7,
8,9,10,101は、試料の少なくとも冷却、保存
及び再生を平面状の保存媒体4上で行うものである構成
とする。すなわち、保存・処理対象となる細胞、蛋白
質、遺伝子、薬品などの試料11に前処理部2で蛍光色
素などの分類用試薬やグリセリンやDMSOなどの凍害
防止剤を添加し、微量化部3で分離し微量の試料11を
形成する。冷却部5では、保存媒体4が冷却された状態
でセットされており、これに微量化部3から出た微量の
試料11が接触・冷却し凍結して定着する。保存媒体4
は保管部7の特定の位置に保存され、適宜、回収部8に
送られる。保存媒体4上の微量の試料11は解凍などの
再生操作を施され、後処理部9で添加されていた薬品の
除去や新たな薬品の添加などの処理を施された後、再生
試料12として提供される。搬送部6は装置内での保存
媒体4のハンドリングを行う。また、制御部10は装置
内の各部を協調制御するとともに入出力部101を介し
て試料に関する情報や操作司令を受け、試料の処理状
況、保存場所や装置の状態を出力する。なお、微量化部
3で微量化された試料11を直接、後処理部9に送って
もよい。また、再生試料12を再び試料11として前処
理部2に投入してもよい。本実施例によれば、細胞など
の多種類かつ微小な試料を自動的に保存処理できるので
試料の管理が容易で省力化が可能になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a pretreatment unit 2 for pretreating a liquid sample 11 containing particles or chemicals, a miniaturization unit 3 for miniaturizing the sample 11, and a cooling unit 5 for cooling the microvolume sample. A transport unit 6 for transporting a small amount of sample in the apparatus, a storage unit 7 for storing a small amount of sample, a recovery unit 8 for regenerating and recovering the stored sample, a post-processing unit 9 for post-processing a regenerated sample,
The control unit 10 and the input / output unit 101 for inputting / outputting information to / from the control unit 10 are provided, and the respective units 2, 3, 5, 6, 7,
8, 9, 10, and 101 are configured to perform at least cooling, storage, and reproduction of the sample on the planar storage medium 4. That is, a pretreatment part 2 adds a classification reagent such as a fluorescent dye or an antifreezing agent such as glycerin or DMSO to a sample 11 of cells, proteins, genes, drugs, etc. to be preserved / processed, and the micropartization part 3 Separate and form a small amount of sample 11. In the cooling unit 5, the storage medium 4 is set in a cooled state, and a small amount of the sample 11 emitted from the miniaturization unit 3 is brought into contact with it, cooled, frozen, and fixed. Storage medium 4
Is stored in a specific position in the storage unit 7 and is sent to the collection unit 8 as appropriate. A small amount of the sample 11 on the storage medium 4 is subjected to a regenerating operation such as thawing, and is subjected to a treatment such as removal of the chemical added in the post-treatment section 9 or addition of a new chemical, and then a regenerated sample 12 is obtained. Provided. The transport unit 6 handles the storage medium 4 in the device. Further, the control unit 10 cooperatively controls each unit in the apparatus, receives information about a sample and an operation command through the input / output unit 101, and outputs a processing state of the sample, a storage location, and a state of the apparatus. It should be noted that the sample 11 that has been reduced in amount by the reduction unit 3 may be directly sent to the post-processing unit 9. In addition, the regenerated sample 12 may be put into the pretreatment unit 2 again as the sample 11. According to this embodiment, various kinds of minute samples such as cells can be automatically preserved, so that the samples can be easily managed and the labor can be saved.

【0051】図2に本発明の他の実施例を示す。本実施
例は試料11を装置内に吸引供給する前処理部2と、試
料11を微粒化し試料内の細胞などの粒子の選別を行な
う微量化部3と、微粒化した試料11を保持し保存する
保存媒体4と、保存媒体4を冷却する冷却部5と、保存
媒体4を出入口13,14から搬入出し装置内で搬送す
る搬送部6と、保存媒体4を保管する保管部7と、保存
媒体4上の試料11の回収を行なう回収部8と、回収部
8の保存媒体4上の再生試料12を外部の容器93に回
収する後処理部9と、冷却部5を冷却する冷凍機51
と、装置1内の各部を協調制御する制御部10と、制御
部10への指令、データの交換、外部ネットワークとの
通信およびマンマシンインターフェースなどを行なう入
出力部101とよりなる。
FIG. 2 shows another embodiment of the present invention. In this embodiment, a pretreatment unit 2 for suctioning and supplying the sample 11 into the apparatus, a miniaturization unit 3 for atomizing the sample 11 to sort particles such as cells in the sample, and a microparticle 11 for holding and storing the sample 11. Storage medium 4, a cooling unit 5 for cooling the storage medium 4, a transport unit 6 for transporting the storage medium 4 from the entrances / outlets 13, 14 in the loading / unloading device, a storage unit 7 for storing the storage medium 4, and a storage unit A collection unit 8 that collects the sample 11 on the medium 4, a post-processing unit 9 that collects the regenerated sample 12 on the storage medium 4 of the collection unit 8 into an external container 93, and a refrigerator 51 that cools the cooling unit 5.
And a control unit 10 for cooperatively controlling each unit in the apparatus 1, and an input / output unit 101 for performing a command to the control unit 10, data exchange, communication with an external network, a man-machine interface, and the like.

【0052】次に本実施例の動作について説明する。前
処理部2の昇降機構211および回転機構212により
ピペッタ22の先端を試料11の入った容器23に挿入
し試料11を吸引し微量化部3に供給する。微量化部3
のソート機構31は細胞の分別回収を行なうセルソータ
などに採用されている機構を用い、微量化部3内の流路
を流れる試料11内の細胞などの粒子を電気的・光学的
に認識・選別し、流路先端32から放出された液滴33
を電極34で帯電させた上で、所定の電圧を印加した電
極35により液滴33の進行方向を制御し、対向する保
存媒体4上の所定の位置に滴下する。保存媒体4は冷却
部5により試料11に適合した所定の温度に冷却されて
おり、保存媒体4上に落下した液滴33は保存媒体4上
に凍結固定される。試料11を保存媒体上に滴下した
後、搬送部6により保存媒体4を保管部7内に移動す
る。保管部7には温湿度センサ71が設置されており、
温湿度センサ71の信号により冷凍機51を運転し保管
部7内を所定の温湿度に保つ。また保管部7内にはスタ
ッカなどの保管機構72を有し、保管媒体4を複数保持
して搬送部6により搬出入する。保管部7から保管媒体
4を搬出する場合、搬送部6により回収部8に搬送し、
回収機構82で保管媒体4上の試料11を加熱・解凍し
て、再生試料を後処理部9を介して容器93に回収した
り、出入口13,14より保管媒体4ごと取り出す。な
お、保存媒体4の冷却を行なわず保存媒体4上に滴下し
た薬品・試料11を搬送部6により直接、回収部8に搬
送し、後処理部9から容器93に回収してもよい。ま
た、複数の液滴33を保管媒体4上の同一位置に滴下し
てもよい。本実施例によれば、微量の薬品・試料を保存
媒体上に衝突冷却するため急速冷却が可能になり試料を
高品質保存できる。また、保存媒体上の特定の位置に保
存できるので薬品・試料の管理が容易になる。
Next, the operation of this embodiment will be described. The tip of the pipettor 22 is inserted into the container 23 containing the sample 11 by the elevating mechanism 211 and the rotating mechanism 212 of the pretreatment unit 2, and the sample 11 is sucked and supplied to the micronization unit 3. Miniaturization part 3
The sorting mechanism 31 of is a mechanism adopted in a cell sorter for separating and collecting cells, and electrically and optically recognizes and sorts particles such as cells in the sample 11 flowing through the flow path in the miniaturization unit 3. Then, the droplet 33 discharged from the channel tip 32
After being charged by the electrode 34, the advancing direction of the droplet 33 is controlled by the electrode 35 to which a predetermined voltage is applied, and the droplet 33 is dropped at a predetermined position on the facing storage medium 4. The storage medium 4 is cooled to a predetermined temperature suitable for the sample 11 by the cooling unit 5, and the droplets 33 dropped on the storage medium 4 are frozen and fixed on the storage medium 4. After the sample 11 is dropped onto the storage medium, the transport unit 6 moves the storage medium 4 into the storage unit 7. A temperature / humidity sensor 71 is installed in the storage unit 7,
The refrigerator 51 is operated by the signal of the temperature / humidity sensor 71 to keep the inside of the storage unit 7 at a predetermined temperature and humidity. Further, the storage unit 7 has a storage mechanism 72 such as a stacker, and holds a plurality of storage media 4 and carries them in and out by the transport unit 6. When carrying out the storage medium 4 from the storage unit 7, it is transported to the collection unit 8 by the transport unit 6,
The collection mechanism 82 heats and thaws the sample 11 on the storage medium 4, and the regenerated sample is collected in the container 93 via the post-processing unit 9 or taken out together with the storage medium 4 from the inlets / outlets 13 and 14. The chemical / sample 11 dropped on the storage medium 4 without cooling the storage medium 4 may be directly transported to the recovery unit 8 by the transport unit 6 and recovered from the post-processing unit 9 into the container 93. Also, a plurality of droplets 33 may be dropped at the same position on the storage medium 4. According to this embodiment, since a small amount of chemicals / samples are collision-cooled onto the storage medium, rapid cooling is possible, and the samples can be stored with high quality. In addition, since it can be stored at a specific position on the storage medium, management of chemicals and samples becomes easy.

【0053】図3および図4に本発明の他の実施例を示
す。本実施例は微量化部3の構成および動作に関するも
のである。図3に示すシース液容器113から出た流路
1131は、三方弁115,116,117に接続す
る。三方弁115,116,117は、それぞれシリン
ジポンプ118,119,120と、試料駆動用流路1
151、洗浄用流路1161およびシース液流路117
1とに接続し、流路1131と各シリンジポンプまたは
各流路の連結を切り替える。流路およびシリンジポンプ
内はシース液により満たされている。
3 and 4 show another embodiment of the present invention. The present embodiment relates to the configuration and operation of the miniaturization unit 3. The flow path 1131 exiting from the sheath liquid container 113 shown in FIG. 3 is connected to the three-way valves 115, 116, 117. The three-way valves 115, 116 and 117 are respectively the syringe pumps 118, 119 and 120 and the sample driving flow path 1
151, cleaning flow channel 1161, and sheath liquid flow channel 117
1 to switch connection between the flow channel 1131 and each syringe pump or each flow channel. The flow path and the interior of the syringe pump are filled with the sheath liquid.

【0054】本実施例の動作シーケンスを図4を参照し
ながら説明する。まず、前処理部2の昇降機構211お
よび回転機構212によりピペッタ22を上昇・回転・
降下させ、三方弁115によりシリンジポンプ118と
ピペッタ22を結ぶ流路を連結し、シリンジポンプ11
8により容器23内の試料11を吸引する。所定量の試
料11を吸引後シリンジポンプ118を停止し、昇降機
構211および回転機構212によりピペッタ先端を注
入ポート213に挿入するとともに、三方弁117によ
りシリンジポンプ120とシース液流路1171とを連
結する。次に、シリンジポンプ118,120を駆動
し、それぞれ試料11とシース液とをフローセル301
内に一定流量吐出する。これにより、前処理部2より吸
入された試料11は、先細中空円筒形のフローセル30
1内の中央に位置したノズル302から吐出されてフロ
ーセル側面の流路から流れ込んだシース流112に包み
込まれ、フローセル中央を一定流速で細長い流れ(サン
プル流111)となって流下する。サンプル流111内
に含まれる細胞などの微粒子は光源303から照射され
た光を散乱、または蛍光物質により染色され、照射光に
より励起されて蛍光を発する。これらの光を、受光素子
(第一の検出手段)304により検知し受光量により粒
子の種類を判別する。フローセル先端からは超音波振動
子305の一定周波数の振動により一定周期で試料を含
む液滴が分離飛翔するが、流速が一定のため粒子の含ま
れる液滴33を同定することができる。フローセル先端
付近には電極34が存在し、粒子の種類に応じて所定の
電圧が印加され液滴33を帯電させる。帯電された液滴
33は電位差を有する複数の電極よりなる対向電極35
により、発生された電界により帯電量に応じて進路を変
更され冷却部5で冷却された保存媒体4上の所定の位置
に落下する(保存液滴331)。また不要な液滴(廃棄
液滴332)は廃液回収管1241を経由して廃液用容
器124に廃棄される。以上の操作が終了すると、昇降
機構211および回転機構212によりピペッタ22を
洗浄ポート125内に挿入し、三方弁116を切り替え
てシリンジポンプ119と流路1161とを連結し、シ
リンジポンプ119を駆動しピペッタ22の洗浄を行
う。洗浄により生じた廃液は洗浄液回収管1251を経
由して廃液用容器124に回収する。本実施例によれ
ば、微量の試料を薬品・試料を保存媒体上の特定の位置
に微量固定できるので多種多数の薬品・試料を小さなス
ペースに保管できる。また、微量の薬品・試料から分析
データが得られる。
The operation sequence of this embodiment will be described with reference to FIG. First, the elevating mechanism 211 and the rotating mechanism 212 of the pretreatment unit 2 raises / rotates the pipettor 22.
Then, the flow path connecting the syringe pump 118 and the pipettor 22 is connected by the three-way valve 115, and the syringe pump 11
The sample 11 in the container 23 is aspirated by 8. After sucking a predetermined amount of the sample 11, the syringe pump 118 is stopped, the tip of the pipetter is inserted into the injection port 213 by the elevating mechanism 211 and the rotating mechanism 212, and the syringe pump 120 and the sheath liquid channel 1171 are connected by the three-way valve 117. To do. Next, the syringe pumps 118 and 120 are driven to supply the sample 11 and the sheath liquid to the flow cell 301, respectively.
Discharge at a constant flow rate. As a result, the sample 11 sucked in from the pretreatment unit 2 becomes the tapered hollow cylindrical flow cell 30.
1 is enclosed by a sheath flow 112 discharged from a nozzle 302 located at the center of the flow cell 1 and flowing from a flow path on the side surface of the flow cell, and flows down in the center of the flow cell as a slender flow (sample flow 111) at a constant flow velocity. Fine particles such as cells contained in the sample flow 111 scatter light emitted from the light source 303 or are dyed with a fluorescent substance and are excited by the emitted light to emit fluorescence. These lights are detected by the light receiving element (first detecting means) 304, and the kind of particles is discriminated by the amount of received light. From the tip of the flow cell, droplets containing a sample separate and fly at a constant cycle due to the vibration of the ultrasonic transducer 305 at a constant frequency, but since the flow velocity is constant, the droplets 33 containing particles can be identified. An electrode 34 exists near the tip of the flow cell, and a predetermined voltage is applied according to the type of particle to charge the droplet 33. The charged droplet 33 is a counter electrode 35 including a plurality of electrodes having a potential difference.
As a result, the generated electric field causes the path to change in accordance with the amount of charge and drops to a predetermined position on the storage medium 4 cooled by the cooling unit 5 (storage droplet 331). Further, unnecessary liquid droplets (discarded liquid droplets 332) are discarded into the waste liquid container 124 via the waste liquid recovery pipe 1241. When the above operation is completed, the pipette 22 is inserted into the cleaning port 125 by the elevating mechanism 211 and the rotating mechanism 212, the three-way valve 116 is switched to connect the syringe pump 119 and the flow path 1161, and the syringe pump 119 is driven. The pipette 22 is washed. The waste liquid generated by the cleaning is recovered in the waste liquid container 124 via the cleaning liquid recovery pipe 1251. According to the present embodiment, a very small amount of chemicals / samples can be fixed in a specific position on the storage medium, so that a large number of chemicals / samples can be stored in a small space. In addition, analytical data can be obtained from a small amount of chemicals and samples.

【0055】図5に本発明の他の実施例を示す。本実施
例は微量化部3のソート機構に関するものである。フロ
ーセル301先端から分離された液滴33は、電極(第
一の電極)34を通過し、光源307と、レンズ30
8,309,311と、ライン状(1次元)の検出部を
有するポジションセンサ310,312とよりなる検出
器314の検出器群(第二の検出手段)3141,31
42および検出器群(第三の検出手段)3143,31
44を通過する。検出器314は、光源307から発し
た光をレンズ308で液滴33の進行方向(紙面に向か
う方向)に垂直な平面をなすシート光3081に変換す
る。ポジションセンサ310,311の光軸はシート光
と同一平面にあり互いにほぼ垂直であり、シート光30
81を通過する液滴33からの散乱光または蛍光を検知
し、液滴33がシート光3081を通過する瞬間の液滴
33の位置を検知する。検出器3141,3142の出
力を制御部10で処理し電極34を通過した後の液滴3
3の速度と進行方向を求める。また液滴33からの散乱
光または蛍光の強度により液滴の大きさおよび形状に関
する情報も求められる。電極(第二の電極)341の対
向する極板間に所定の電圧を印加し所定の電界をかけて
おく。電極341を通過した液滴33は帯電量に応じた
力を受けて速度・進行方向が変化する。これを検出器3
143,3144により検出器3141,3142と同
様に検知する。これにより液滴の帯電量を推定する。こ
の情報と検出器3143,3144通過後の液滴の速度
および進行方向のデータをもとに、下方に位置する保存
媒体4上の所定の位置に液滴が落下するように電極(第
三の電極)35のx,y方向偏向電極351,352に
印加する電圧を決定する。なお、本実施例では2組の検
知器により液滴の進行方向および速度を検知したが、検
知器の光源からの光をレンズにより矩形または円形状断
面を有する平行光とし、検知器に2次元の検出部を有す
るポジションセンサを使用し、平行光内を移動する液滴
からの散乱光または蛍光を検知し液滴の軌跡を求めて液
滴の進行方向および速度を検出することとしてもよい。
本実施例によれば、液滴の位置、移動方向、速度および
帯電量が計測できるため、電極による液滴の誘導が正確
になり保存媒体上の所定の位置に液滴を精度よく滴下で
きる。
FIG. 5 shows another embodiment of the present invention. This embodiment relates to the sorting mechanism of the miniaturization unit 3. The droplet 33 separated from the tip of the flow cell 301 passes through the electrode (first electrode) 34, and the light source 307 and the lens 30.
A detector group (second detecting means) 3141, 31 of a detector 314 composed of 8, 309, 311 and position sensors 310, 312 having a linear (one-dimensional) detector.
42 and detector group (third detecting means) 3143, 31
Pass 44. The detector 314 converts the light emitted from the light source 307 into sheet light 3081 that forms a plane perpendicular to the traveling direction of the droplet 33 (direction toward the paper surface) by the lens 308. The optical axes of the position sensors 310 and 311 are on the same plane as the sheet light and are substantially perpendicular to each other.
The scattered light or fluorescence from the liquid droplet 33 passing through 81 is detected, and the position of the liquid droplet 33 at the moment when the liquid droplet 33 passes through the sheet light 3081 is detected. Droplets 3 after the outputs of the detectors 3141 and 3142 are processed by the control unit 10 and passed through the electrode 34
3. Find the speed and direction of travel. Further, information on the size and shape of the droplet can be obtained from the intensity of scattered light or fluorescence from the droplet 33. A predetermined voltage is applied between the electrode plates of the electrode (second electrode) 341 facing each other, and a predetermined electric field is applied. The droplet 33 that has passed through the electrode 341 receives a force corresponding to the amount of charge and changes its speed and traveling direction. This is detector 3
143 and 3144 detect like detectors 3141 and 3142. With this, the charge amount of the droplet is estimated. Based on this information and the data of the velocity and traveling direction of the droplet after passing through the detectors 3143 and 3144, the electrode (third electrode) is arranged so that the droplet may drop to a predetermined position on the storage medium 4 located below. The voltage applied to the x and y direction deflection electrodes 351 and 352 of the electrode 35 is determined. In this embodiment, two sets of detectors detect the traveling direction and velocity of the liquid droplets, but the light from the light source of the detectors is made into parallel light having a rectangular or circular cross section by a lens, and two-dimensional detectors are used. It is also possible to use the position sensor having the detection unit of 1) to detect scattered light or fluorescence from a droplet moving in parallel light, obtain the trajectory of the droplet, and detect the traveling direction and velocity of the droplet.
According to this embodiment, since the position, the moving direction, the speed, and the charge amount of the droplet can be measured, the guide of the droplet by the electrode is accurate, and the droplet can be accurately dropped at a predetermined position on the storage medium.

【0056】図6に本発明の他の実施例を示す。図6は
冷却部5の保存媒体4の冷却手段を示す。冷却部5に至
った保存媒体4は、冷凍機51から供給される冷媒の流
通する冷媒流路511を内蔵する冷却ブロック512上
の伝熱部材514に試料保存部42を接触し冷却され
る。伝熱部材514は熱伝導率が高い金属やセラミック
(ベリリア;BeO)を用い、試料保存部42に対して
熱容量を数倍以上大きくする。本実施例によれば、伝熱
部材の熱伝導率が高く熱容量も大きく試料保存部の冷却
が急速にできるので試料冷却時の操作時間を短縮でき
る。
FIG. 6 shows another embodiment of the present invention. FIG. 6 shows a cooling means for the storage medium 4 of the cooling unit 5. The storage medium 4 that has reached the cooling unit 5 is cooled by contacting the sample storage unit 42 with the heat transfer member 514 on the cooling block 512 that contains the refrigerant channel 511 in which the refrigerant supplied from the refrigerator 51 flows. The heat transfer member 514 is made of metal or ceramic (beryllia; BeO) having high heat conductivity, and has a heat capacity several times or more larger than that of the sample storage unit 42. According to this embodiment, the heat conductivity of the heat transfer member is high, the heat capacity is large, and the sample storage section can be cooled rapidly, so that the operation time for cooling the sample can be shortened.

【0057】図7に冷却部での保存媒体の冷却手段を示
す。保存媒体4上の試料保存部42は金属などの導体よ
りなる。また、冷却部はペルチエ効果を有するn型半導
体52と、p型半導体53と、各々の半導体の両端に形
成した電極541〜544と、冷凍機51から供給され
る冷媒の流通する冷媒流路511を内蔵する冷却ブロッ
ク512とよりなり、冷却ブロック512と電極54
1,544とは電気的な絶縁効果を持つ絶縁部513を
介して接触している。半導体上の電極542,543
は、転送されてきた保存媒体4上の試料保存部42に接
触し電極541から電極544に至る熱電対回路を形成
する。試料保存部42は、この回路に流れる電流551
の量に応じてペルチエ効果により吸熱され、電極54
1,544側よりも低い温度に冷却される。また、電流
の向きを反転させることにより試料保存部42の温度を
上昇させることもできる。本実施例によれば、試料保存
部の温度を冷凍機の能力以上に下げることができるので
試料保存部に接触した試料の冷却速度をより大きくでき
る。また、回路に流す電流を調節することにより試料保
存部の温度をコントロールできるので試料保存部を試料
に適した温度に保持できる。また、回路に流す電流を反
転することにより試料の加熱も可能になる。
FIG. 7 shows a cooling means for the storage medium in the cooling section. The sample storage unit 42 on the storage medium 4 is made of a conductor such as metal. Further, the cooling unit has an n-type semiconductor 52 having a Peltier effect, a p-type semiconductor 53, electrodes 541 to 544 formed at both ends of each semiconductor, and a refrigerant channel 511 through which a refrigerant supplied from the refrigerator 51 flows. The cooling block 512 and the electrode 54
1, 544 are in contact with each other via an insulating portion 513 having an electrical insulating effect. Electrodes on semiconductor 542,543
Forms a thermocouple circuit from the electrode 541 to the electrode 544 in contact with the transferred sample storage unit 42 on the storage medium 4. The sample storage unit 42 uses the current 551 flowing in this circuit.
Depending on the amount of heat absorbed by the Peltier effect, the electrode 54
It is cooled to a temperature lower than the 1,544 side. Also, the temperature of the sample storage unit 42 can be raised by reversing the direction of the current. According to the present embodiment, the temperature of the sample storage unit can be lowered beyond the capacity of the refrigerator, so that the cooling rate of the sample in contact with the sample storage unit can be increased. Further, since the temperature of the sample storage section can be controlled by adjusting the current flowing through the circuit, the sample storage section can be maintained at a temperature suitable for the sample. Further, the sample can be heated by reversing the current flowing through the circuit.

【0058】図8に本発明の他の実施例を示す。本実施
例ではペルチエ効果を有するn型半導体521〜523
およびp型半導体531〜533の各組(各対)を複数
直列に配置し、保存媒体4上の試料保存部42を、絶縁
体420と、絶縁体420の半導体に対向する面に各半
導体組に対応して形成した電極421〜423とで形成
し、電気的に直列な熱電対回路とする。なお、図8では
半導体の組を3組としたが、組の数は任意に変更でき
る。また、異なる回路を設けて試料保存部42を部分的
に冷却または加熱してもよい。また、半導体組の上に平
板を設置しさらにその上に半導体組を形成して冷却ブロ
ック512と試料保存部42の温度差を増大させてもよ
い。本実施例によれば、複数の半導体組を形成するので
熱電対の数が増加し吸熱量および発熱量が増す。また、
試料保存部を部分的に温度制御したり、試料保存部内で
の温度差を増加することが可能になる。
FIG. 8 shows another embodiment of the present invention. In this embodiment, n-type semiconductors 521 to 523 having a Peltier effect are used.
And a plurality of pairs (each pair) of p-type semiconductors 531 to 533 are arranged in series, and the sample storage unit 42 on the storage medium 4 is provided with the insulator 420 and each semiconductor assembly on the surface of the insulator 420 facing the semiconductor. And the electrodes 421 to 423 formed correspondingly to form a thermocouple circuit electrically connected in series. Although three semiconductor sets are shown in FIG. 8, the number of sets can be changed arbitrarily. Further, different circuits may be provided to partially cool or heat the sample storage unit 42. Alternatively, a flat plate may be placed on the semiconductor set and further the semiconductor set may be formed thereon to increase the temperature difference between the cooling block 512 and the sample storage unit 42. According to this embodiment, since a plurality of semiconductor groups are formed, the number of thermocouples increases, and the heat absorption amount and the heat generation amount increase. Also,
It is possible to partially control the temperature of the sample storage unit or increase the temperature difference in the sample storage unit.

【0059】図9および図10に本発明の他の実施例を
示す。本実施例では試料液を保存媒体上に点着すること
により保存を行なう。シース液容器113から前処理部
2およびフローセル301に至る流路は図3に示す実施
例と同様であり、サンプル流111内の粒子の検出も図
3と同様であるが、ソート機構で微粒化は行わずフロー
セル301の下流にサンプル流111を回収するサンプ
ル流導入管(内管)1111と、シース流112を回収
するシース流回収管(外管)1121とよりなる試料分
離部を設ける(図11参照)。サンプル流導入管111
1の末端は点着機構52の先端で保存媒体4に対向した
開口部を有し、開口部から出たサンプル流111に含ま
れる試料11の一部が保存媒体4に接して冷却され凍結
して保存媒体4上に定着する。点着機構52は水平およ
び垂直方向に移動可能なXYZステージ53上に設置さ
れ、開口部を保存媒体4に対して移動し任意の位置に試
料を点着する。残ったサンプル流111は隣接するサン
プル回収管1221から三方弁123を介してシリンジ
ポンプ126により吸引される。また、シース流112
はシース流回収管1121から三方弁122を介してシ
リンジポンプ121により吸引される。シリンジポンプ
121,126に吸引された廃液は三方弁122、12
3を介してシリンジポンプ121,126から吐出され
管1241から廃液用容器124に排出される。本実施
例によれば、試料の微粒化が不要で液滴が空中を飛翔す
ることがないので試料の保存位置をより正確に決めるこ
とができる。また、液滴が飛散することが無いので装置
内の汚染防止に有効である。
9 and 10 show another embodiment of the present invention. In this embodiment, the sample solution is stored by spotting the sample solution on the storage medium. The flow path from the sheath liquid container 113 to the pretreatment unit 2 and the flow cell 301 is the same as that of the embodiment shown in FIG. 3, and the detection of particles in the sample flow 111 is also the same as in FIG. A sample separation section including a sample flow introduction pipe (inner pipe) 1111 for collecting the sample flow 111 and a sheath flow collection pipe (outer pipe) 1121 for collecting the sheath flow 112 is provided downstream of the flow cell 301 (see FIG. 11). Sample flow introduction tube 111
The end of 1 has an opening facing the storage medium 4 at the tip of the spotting mechanism 52, and a part of the sample 11 contained in the sample flow 111 emerging from the opening comes into contact with the storage medium 4 and is frozen. And is fixed on the storage medium 4. The spotting mechanism 52 is installed on the XYZ stage 53 which is movable in the horizontal and vertical directions, moves the opening with respect to the storage medium 4, and spots the sample at an arbitrary position. The remaining sample flow 111 is sucked by the syringe pump 126 from the adjacent sample recovery pipe 1221 via the three-way valve 123. Also, the sheath flow 112
Is sucked by the syringe pump 121 from the sheath flow recovery pipe 1121 via the three-way valve 122. The waste liquid sucked by the syringe pumps 121, 126 is the three-way valves 122, 12
3 is discharged from the syringe pumps 121 and 126, and is discharged from the pipe 1241 to the waste liquid container 124. According to this embodiment, it is not necessary to atomize the sample and the liquid droplets do not fly in the air, so that the storage position of the sample can be determined more accurately. In addition, since droplets do not scatter, it is effective in preventing contamination in the device.

【0060】図12に本発明の他の実施例を示す。本実
施例は点着機構先端の構造と動作を示すものである。点
着機構52にはサンプル導入管1111からサンプル流
111が流入し、サンプル導入管1111に連結した点
着管521を通って点着機構先端522に至り方向転換
してサンプル回収管1221に流出する。点着機構先端
部分の点着管521はゴムや樹脂などの弾性を有する弾
性部材523に包まれ、さらに両側は弾性部材523よ
り剛性の大きな支持部材524に包まれている。また、
圧電素子やソレノイドなどのアクチュエータ525が支
持部材524に挟まれている。点着管521は点着機構
先端に切断部526を有するが通常、弾性部材523の
弾性により接続しサンプル流111をサンプル導入管1
111側からサンプル回収管1221に導いている。サ
ンプル導入管上流のフローセル301内で検出された細
胞などの保存対象がサンプル導入管1111から点着管
521を経由して点着機構先端に達したとき、制御部
(図示しない)からの信号によりアクチュエータ525
が伸縮し、さらにこれに伴って弾性部材523も伸縮し
弾性部材523に包まれた点着管521の切断部526
が開閉する間に細胞などの試料を含むサンプル流111
の一部1112が切断部526から点着機構先端に押し
出される。このとき押し出されたサンプル流の一部11
12は対面する保存媒体4に接触し急速に冷却されて保
存媒体4上に凍結固定される。なお、点着機構52を支
持するXYZステージ(図示しない)により点着機構先
端を下降し点着機構先端に付着したサンプル流の一部1
112を保存媒体に点着した後、点着機構を上昇し点着
を行うこととしてもよい。本実施例によれば、点着を行
うときのみ切断部が開くので不要なサンプル流が保存媒
体上に付着することがない。
FIG. 12 shows another embodiment of the present invention. This embodiment shows the structure and operation of the tip of the spotting mechanism. The sample flow 111 flows into the spotting mechanism 52 from the sample introduction pipe 1111, passes through the spotting pipe 521 connected to the sample introduction pipe 1111 to reach the tip 522 of the spotting mechanism, and is turned to the sample recovery pipe 1221. . The spotting tube 521 at the tip of the spotting mechanism is wrapped in an elastic member 523 having elasticity such as rubber or resin, and further, both sides are wrapped in a supporting member 524 having rigidity higher than that of the elastic member 523. Also,
An actuator 525 such as a piezoelectric element or a solenoid is sandwiched between support members 524. The spotting tube 521 has a cutting portion 526 at the tip of the spotting mechanism, but is normally connected by the elasticity of an elastic member 523 to connect the sample flow 111 to the sample introducing tube 1.
The sample recovery pipe 1221 is guided from the 111 side. When a storage object such as a cell detected in the flow cell 301 upstream of the sample introduction tube reaches the tip of the spotting mechanism from the sample introduction tube 1111 via the spotting tube 521, a signal from a control unit (not shown) Actuator 525
Expand and contract, and the elastic member 523 also expands and contracts accordingly, and the cutting portion 526 of the spotting tube 521 wrapped in the elastic member 523.
Sample flow 111 containing samples such as cells during opening and closing
1112 is extruded from the cutting portion 526 to the tip of the spotting mechanism. Part of the sample flow extruded at this time 11
12 contacts the storage medium 4 facing each other, is rapidly cooled, and is freeze-fixed on the storage medium 4. A part 1 of the sample flow adhered to the tip of the spotting mechanism by descending the tip of the spotting mechanism by an XYZ stage (not shown) that supports the spotting mechanism 52.
After spotting 112 on the storage medium, the spotting mechanism may be raised to perform spotting. According to the present embodiment, the cutting portion is opened only when spotting is performed, so that an unnecessary sample flow does not adhere to the storage medium.

【0061】図13に本発明の他の実施例を示す。本実
施例の点着管521は点着機構先端で開放している。点
着機構先端に近接する支持部材524内にはダイヤフラ
ム527により隔離された室(第二の室)528が存在
しアクチュエータ525によりダイヤフラム527が振
動する。室528に対してダイヤフラム527を挟んで
点着管開放部側に連結する室(第一の室)529には気
体またはサンプル流111と混合しない液体などの流体
が満たされている。サンプル導入管上流のフローセル3
01内で検出された細胞などの保存対象がサンプル導入
管1111から点着管521を経由して点着機構先端に
達したとき、制御部(図示しない)からの信号によりア
クチュエータ525が伸縮し、ダイヤフラム527が変
位し室529内の流体を点着管開放部に突出させる。こ
れにより点着管521内を流れてきた保存対象を含むサ
ンプル流111は保存媒体4側に押し出される。これに
より保存対象を含むサンプル流111の一部が冷却され
た保存媒体表面に接触し急速に冷却され凍結固定され
る。本実施例によれば、アクチュエータは微量の質量の
小さな流体を駆動するのでアクチュエータが小形にな
る。
FIG. 13 shows another embodiment of the present invention. The spotting tube 521 of this embodiment is open at the tip of the spotting mechanism. A chamber (second chamber) 528 separated by a diaphragm 527 exists inside the support member 524 near the tip of the spotting mechanism, and the diaphragm 527 is vibrated by the actuator 525. A chamber (first chamber) 529 connected to the chamber 528 on the side of the opening of the spotting tube with the diaphragm 527 interposed therebetween is filled with a fluid such as a gas or a liquid that does not mix with the sample flow 111. Flow cell 3 upstream of sample introduction tube
When the storage object such as cells detected in 01 reaches the tip of the spotting mechanism from the sample introduction tube 1111 via the spotting tube 521, the actuator 525 expands and contracts due to a signal from the control unit (not shown), The diaphragm 527 is displaced so that the fluid in the chamber 529 is projected to the opening of the spotting tube. As a result, the sample flow 111 containing the object to be stored, which has flowed through the spotting tube 521, is pushed out to the side of the storage medium 4. As a result, a part of the sample flow 111 including the storage object comes into contact with the surface of the cooled storage medium and is rapidly cooled and freeze-fixed. According to this embodiment, since the actuator drives a small amount of fluid having a small mass, the size of the actuator is reduced.

【0062】本発明の他の実施例を図14に示す。本実
施例では前記実施例のダイヤフラム527の代わりにピ
ストン5271がアクチュエータ525により点着管開
放部に突出しサンプル流111の一部を保存媒体側に押
し出す。本実施例によれば、アクチュエータによる駆動
力が流体を介さず直接ピストンを伝わるのでサンプル流
の押し出しを高速化できる。
Another embodiment of the present invention is shown in FIG. In this embodiment, instead of the diaphragm 527 of the previous embodiment, the piston 5271 projects to the open part of the spotting tube by the actuator 525 and pushes part of the sample flow 111 to the storage medium side. According to the present embodiment, the driving force of the actuator is directly transmitted to the piston without passing through the fluid, so that the sample flow can be pushed out at high speed.

【0063】図15に本発明の他の実施例を示す。本実
施例では点着機構先端の点着管521に開放部を設け、
サンプル流111をサンプル回収管側の点着管5212
から吸引する。サンプル導入管側の点着管5211の外
部に円環状のアクチュエータ525を設置し、サンプル
導入管上流のフローセル301内で検出された細胞など
の保存対象が、サンプル導入管1111から点着管52
1を経由して点着機構先端に達したとき、制御部(図示
しない)からの信号によりアクチュエータ525を径方
向に伸縮し、サンプル流111の一部を保存媒体側に押
し出し保存媒体4に接触させることにより急速に冷却し
凍結固定させる。本実施例によれば、可動部が少ないの
で構造が簡単になり故障が減少する。
FIG. 15 shows another embodiment of the present invention. In this embodiment, an opening is provided in the spotting tube 521 at the tip of the spotting mechanism,
The sample flow 111 is connected to the spotting pipe 5212 on the sample recovery pipe side.
Aspirate from. An annular actuator 525 is installed outside the spotting tube 5211 on the side of the sample introducing tube, and storage targets such as cells detected in the flow cell 301 upstream of the sample introducing tube are transferred from the sample introducing tube 1111 to the spotting tube 5211.
When reaching the tip of the spotting mechanism via 1, the actuator 525 is expanded and contracted in the radial direction by a signal from a control unit (not shown) to push a part of the sample flow 111 to the storage medium side and contact the storage medium 4. Then, it is rapidly cooled and freeze-fixed. According to this embodiment, since the number of movable parts is small, the structure is simple and the number of failures is reduced.

【0064】図16に本発明の他の実施例を示す。本実
施例では、点着管521が二重管で形成されている。サ
ンプル導入管側が内側の点着管5211で、サンプル回
収管側が外側の点着管(第二の外管)5212となって
いる。点着管5211側から出たサンプル流は点着管5
212に吸引される。点着管5211の外部に円環状の
アクチュエータ525が設置され、サンプル導入管上流
のフローセル301内で検出された細胞などの保存対象
が、サンプル導入管1111から点着管521を経由し
て点着機構先端に達したとき、制御部(図示しない)か
らの信号によりアクチュエータ525が径方向に伸縮
し、サンプル流111の一部が保存媒体側に押し出され
保存媒体4に接触し急速に冷却されて凍結固定される。
本実施例によれば、点着管が同心状になっているので点
着機構先端が小形化できる。また、点着管が小形となる
ので点着機構先端に点着管を複数並列することができ
る。
FIG. 16 shows another embodiment of the present invention. In this embodiment, the spotting pipe 521 is formed of a double pipe. The sample introducing pipe side is an inner spotting pipe 5211, and the sample collecting pipe side is an outer spotting pipe (second outer pipe) 5212. The sample flow emerging from the spotting tube 5211 side is the spotting tube 5
212 is sucked. An annular actuator 525 is installed outside the spotting tube 5211, and storage targets such as cells detected in the flow cell 301 upstream of the sample introducing tube are spotted from the sample introducing tube 1111 via the spotting tube 521. When reaching the tip of the mechanism, the actuator 525 expands and contracts in the radial direction by a signal from a control unit (not shown), a part of the sample flow 111 is pushed out to the storage medium side, contacts the storage medium 4, and is rapidly cooled. It is frozen and fixed.
According to this embodiment, since the spotting tube is concentric, the tip of the spotting mechanism can be downsized. Further, since the spotting pipe is small, a plurality of spotting pipes can be arranged in parallel at the tip of the spotting mechanism.

【0065】図17に本発明の他の実施例を示す。本実
施例は前記実施例の点着管5211にアクチュエータ5
25を内蔵した構成である。本実施例によれば、アクチ
ュエータがサンプル流に触れることがないのでアクチュ
エータによるサンプル流の汚染およびサンプル流による
アクチュエータの腐蝕が防止できる。
FIG. 17 shows another embodiment of the present invention. In this embodiment, the actuator 5 is attached to the spotting tube 5211 of the above embodiment.
This is a configuration including 25. According to this embodiment, since the actuator does not come into contact with the sample flow, contamination of the sample flow by the actuator and corrosion of the actuator due to the sample flow can be prevented.

【0066】図18に本発明の他の実施例を示す。本実
施例は搬送部6と保管部7に関するもので保管部7の一
部を示している。搬送部6はモータなどの駆動源61に
より回転駆動される主動ローラ62と、主動ローラ62
に対向する従動ローラ63(保存媒体4を主動ローラ6
2とともに挟持し、主動ローラ62の回転により駆動さ
れる保存媒体4に接触し回転する)とを備えた複数の搬
送ユニットよりなる(図2参照)。出入口13から挿入
された保存媒体4は、搬送ユニット601のセンサ64
により検知され、センサ64は制御部10に検知信号を
送る。この検知信号をもとに制御部10は搬送ユニット
601に動作開始を指令し、保存媒体を微量化部3に導
入する。保存媒体4の先端が微量化部3を横切りセンサ
65に達すると、センサ65から検知信号が制御部10
に発せられる。制御部10は、この検知信号をもとに搬
送ユニット601を停止し、保存媒体4をソート機構3
1の流路先端32に対向する位置に停止させる。微量化
部3での処理が終了すると、制御部10は搬送ユニット
602を駆動し保存媒体4を保管部7に導く。保管部7
に入った保存媒体4はセンサ66により検知され、検知
信号が制御部10に送られる。制御部10は、この検知
信号をもとに搬送ユニット602を駆動する。保存媒体
4の先端がセンサ67に検知されると、検知信号が制御
部10に送られ、制御部10は、これをもとに搬送ユニ
ット602を停止し保存媒体4をスタッカ72の前に止
める。
FIG. 18 shows another embodiment of the present invention. This embodiment relates to the transport section 6 and the storage section 7, and shows a part of the storage section 7. The transport unit 6 includes a driving roller 62 that is driven to rotate by a driving source 61 such as a motor, and a driving roller 62.
The driven roller 63 facing the
2 and nip it, and contacts the storage medium 4 which is driven by the rotation of the driving roller 62 to rotate) (see FIG. 2). The storage medium 4 inserted from the doorway 13 is stored in the sensor 64 of the transport unit 601.
The sensor 64 sends a detection signal to the control unit 10. Based on this detection signal, the control unit 10 instructs the transport unit 601 to start the operation, and introduces the storage medium into the miniaturization unit 3. When the tip of the storage medium 4 crosses the miniaturization unit 3 and reaches the sensor 65, a detection signal is sent from the sensor 65 to the control unit 10.
Is emitted to. The control unit 10 stops the transport unit 601 based on this detection signal and sorts the storage medium 4 into the sorting mechanism 3
It is stopped at a position facing the first flow path tip 32. When the processing in the miniaturization unit 3 is completed, the control unit 10 drives the transport unit 602 and guides the storage medium 4 to the storage unit 7. Storage section 7
The entered storage medium 4 is detected by the sensor 66, and a detection signal is sent to the control unit 10. The control unit 10 drives the transport unit 602 based on this detection signal. When the sensor 67 detects the front end of the storage medium 4, a detection signal is sent to the control unit 10, and the control unit 10 stops the transport unit 602 based on this and stops the storage medium 4 in front of the stacker 72. .

【0067】保管部4内の搬送ユニットは、搬送ユニッ
トを保持する筒状の支持部6051と、これらを上下さ
せる上下機構および回転させる回転機構とよりなる。上
下機構は保管部7内のベース681と、保管部7外のプ
レート682と、保管部7の外壁73を貫通してベース
681とプレート682とを結合するシャフト683
と、外壁73上に設置されたモータ684と、モータ6
84の回転軸に取り付けられたボールネジによりプレー
ト682を上下動させる直動機構685とよりなる。回
転機構はベース681上のモータ691の回転軸(また
は歯車などの動力伝達系を介して)が支持部6051の
上面に結合した構造で、モータ691の回転により搬送
ユニットの方向を変える。搬送ユニットは上下機構およ
び回転機構により位置決めされるが、制御部10により
各機構のモータ回転軸に設置したエンコーダ(図示しな
い)からのパルスを計数しモータの回転数および回転角
度を求め、直動機構の移動量や搬送ユニットの回転角度
を求めることにより搬送ユニットの位置を求めることが
できる。また、外壁73やスタッカ72などに設置した
距離センサや光スイッチなどからの信号により搬送ユニ
ットの位置を求められることは言うまでもない。
The transport unit in the storage unit 4 is composed of a cylindrical support portion 6051 for holding the transport unit, an up-and-down mechanism for raising and lowering these, and a rotating mechanism for rotating them. The vertical mechanism penetrates the base 681 inside the storage unit 7, the plate 682 outside the storage unit 7, and the outer wall 73 of the storage unit 7 and connects the base 681 and the plate 682 with the shaft 683.
And a motor 684 installed on the outer wall 73 and the motor 6
The linear movement mechanism 685 is configured to move the plate 682 up and down by a ball screw attached to the rotating shaft of 84. The rotation mechanism has a structure in which the rotation shaft of the motor 691 on the base 681 (or via a power transmission system such as a gear) is coupled to the upper surface of the support portion 6051, and the direction of the transport unit is changed by the rotation of the motor 691. The transport unit is positioned by an up-and-down mechanism and a rotating mechanism, and the controller 10 counts pulses from an encoder (not shown) installed on the motor rotation shaft of each mechanism to obtain the number of rotations and the rotation angle of the motor, and the linear movement is performed. The position of the transport unit can be determined by determining the amount of movement of the mechanism and the rotation angle of the transport unit. Further, it goes without saying that the position of the transport unit can be obtained by signals from a distance sensor, an optical switch, etc. installed on the outer wall 73, the stacker 72, etc.

【0068】制御部10は上下機構および回転機構によ
り搬送ユニットを90゜回転し、かつ上下動させること
により所定のスタッカの区画の前に搬送ユニット内の保
存媒体4を移動させ、搬送ユニット内の駆動機構を動作
させ保存媒体4を区画内に送り込む。保存媒体4の設置
が終了すると、搬送ユニットは上下機構68および回転
機構69により初期位置(微量化部3の駆動部から保存
媒体4を受け取る位置)に復帰する。
The control section 10 moves the storage medium 4 in the transport unit in front of a predetermined stacker section by rotating the transport unit 90 ° and vertically moving the transport unit by means of an up-and-down mechanism and a rotating mechanism. The drive mechanism is operated to feed the storage medium 4 into the compartment. When the installation of the storage medium 4 is completed, the transport unit returns to the initial position (the position where the storage medium 4 is received from the drive unit of the microminiaturization unit 3) by the vertical movement mechanism 68 and the rotation mechanism 69.

【0069】スタッカ72の所定の区画に保存された保
存媒体4を取り出す場合、制御部10は搬送ユニット内
のセンサ(図示しない)からの信号により搬送ユニット
内に他の保存媒体のないことを確認して搬送ユニットを
90゜回転し、かつ上下動させて搬送ユニットを保存媒
体4の存在する所定の区画前に移動させる。スタッカ7
2を挟んで反対側には補助機構65が存在すが、補助機
構65は、ソレノイドなど軸が出入りするタイプのアク
チュエータ651を支持するプレート652と、ガイド
棒653(プレート652を貫通しプレート652がガ
イド棒653の軸方向に移動可能)と、モータとボール
ネジとによりプレート652をガイド棒652に沿って
上下に駆動する直動機構654とにより形成されてい
る。補助機構65は制御部10からの指令にもとづき所
定の回転数および角度だけボールネジを回転させ、プレ
ート652を保存媒体4の存在する区画まで移動し、プ
レート652上のアクチュエータ651の軸により保存
媒体4を搬送ユニット側に突き出す。突き出された保存
媒体4は搬送ユニット内の搬送ユニットに捉えられて搬
送ユニット内に取り込まれる。次に、搬送ユニットは上
下機構および回転機構により初期位置(微量化部3の駆
動部から保存媒体4を受け取る位置)に復帰し、保存媒
体4を搬送ユニットに次々と受け渡し反応処理部8に移
送する。本実施例によれば、搬送ユニット、スタッカお
よび補助機構をユニットとして複数直列に接続できるた
め、ユニットの追加・削減により保管量の増減が容易に
できる。
When taking out the storage medium 4 stored in a predetermined section of the stacker 72, the control unit 10 confirms that there is no other storage medium in the transport unit by a signal from a sensor (not shown) in the transport unit. Then, the transport unit is rotated 90 ° and moved up and down to move the transport unit to the front of a predetermined section in which the storage medium 4 is present. Stacker 7
There is an auxiliary mechanism 65 on the opposite side with respect to the two, but the auxiliary mechanism 65 includes a plate 652 that supports an actuator 651 such as a solenoid that has a shaft that moves in and out, and a guide rod 653 (a plate 652 that penetrates the plate 652. (Movable in the axial direction of the guide rod 653) and a linear movement mechanism 654 that drives the plate 652 up and down along the guide rod 652 by a motor and a ball screw. The auxiliary mechanism 65 rotates the ball screw by a predetermined number of rotations and an angle based on a command from the control unit 10, moves the plate 652 to the section where the storage medium 4 exists, and the storage medium 4 is moved by the axis of the actuator 651 on the plate 652. Stick out to the transport unit side. The protruding storage medium 4 is captured by the transport unit in the transport unit and taken into the transport unit. Next, the transport unit is returned to the initial position (the position where the storage medium 4 is received from the drive unit of the micronization unit 3) by the vertical mechanism and the rotation mechanism, and the storage medium 4 is transferred to the transport unit one after another and transferred to the reaction processing unit 8. To do. According to this embodiment, a plurality of transport units, stackers, and auxiliary mechanisms can be connected in series as a unit, so that the storage amount can be easily increased or decreased by adding or reducing units.

【0070】図19〜図21に本発明の他の実施例を示
す。本実施例は保存媒体の構成に関するものである。保
存媒体は、基本的に平面状の基板41と、基板41上で
試料や薬品を保存する領域となる試料保存部42とより
なる。試料保存部42は基板41と別部品で接着または
溶着により基板41に取り付けるか(図19参照)、基
板41の表面を直接加工して形成する(図20参照)。
試料保存部42の表面はエッチングやスパッタリングな
どの加工技術により凹凸を形成し複数の小区画43から
なる領域としてもよい(図20参照)。各小区画には小
滴化した試料が保存される。本実施例によれば、区画に
分けされた平面状の保存部に試料や薬品を保存でき、保
存した試料や薬品の位置が数値化されるので情報管理が
容易になる。
19 to 21 show another embodiment of the present invention. This embodiment relates to the structure of a storage medium. The storage medium is basically composed of a flat substrate 41 and a sample storage unit 42 which is a region on the substrate 41 for storing samples and chemicals. The sample storage unit 42 is attached to the substrate 41 by adhesion or welding as a separate component from the substrate 41 (see FIG. 19), or is formed by directly processing the surface of the substrate 41 (see FIG. 20).
The surface of the sample storage unit 42 may be formed into a concavo-convex pattern by a processing technique such as etching or sputtering to form a region composed of a plurality of small sections 43 (see FIG. 20). The dropletized sample is stored in each of the small compartments. According to this embodiment, the samples and the chemicals can be stored in the planar storage unit divided into the sections, and the positions of the stored samples and the chemicals are digitized, so that the information management becomes easy.

【0071】図22に本発明の他の実施例を示す。本実
施例の保存媒体は試料保存部42内の小区画43に複数
のブリッジ44を形成し、ブリッジ44の脚の部分およ
び中央部分に発熱抵抗体451,452および温度セン
サ461,462を設ける。ブリッジ44の中央部分に
は微量化部で微量化された試料11が凍結保存される。
保存媒体は2枚の基板47,48を貼り合わせて形成さ
れており、上部基板47上には、ブリッジ44と基板上
の各ブリッジの温度センサからの出力を増幅する増幅
器、および発熱抵抗体に電流を供給するドライバが搭載
された回路部471が存在する。回路部471はコネク
タ472を介して図1に示す制御部10と接続され、電
流の供給を受けて温度センサからの信号や制御部10か
らの指令信号の授受を行う。また、記録媒体473は磁
気ストライプやバーコード、RAMおよびROMなどの
情報記録媒体であり、保存媒体上に保存された試料に関
する情報を保持する。記録媒体473が磁気ストライプ
の場合は搬送部または保管部に設けた記録再生ヘッド
(図示しない)によって制御部10との情報の授受を行
なう。また、RAM,ROMなどの場合は回路部471
を経由するか、専用の電極(図示しない)により制御部
10との情報の授受を行なう。下部基板48には、上部
基板47上の各ブリッジ44の脚部に対向する凹部48
1と、凹部481に挟まれブリッジ44の中央部分に対
向する凸部482(基板面に対して数十マイクロメータ
以下突出)が存在し、凹部481,凸部482以外の基
板面で上部基板と貼り合わされている。この構造により
ブリッジ中央部は凸部482と接触して冷却されかつ試
料11も冷却される。
FIG. 22 shows another embodiment of the present invention. In the storage medium of this embodiment, a plurality of bridges 44 are formed in a small section 43 in the sample storage unit 42, and heating resistors 451 and 452 and temperature sensors 461 and 462 are provided at the legs and the central portion of the bridge 44. In the central portion of the bridge 44, the sample 11 whose amount has been reduced by the reducing unit is frozen and stored.
The storage medium is formed by bonding two substrates 47 and 48 together. On the upper substrate 47, a bridge 44, an amplifier for amplifying the output from the temperature sensor of each bridge on the substrate, and a heating resistor are provided. There is a circuit portion 471 equipped with a driver that supplies current. The circuit unit 471 is connected to the control unit 10 shown in FIG. 1 via a connector 472, receives a current, and sends and receives a signal from the temperature sensor and a command signal from the control unit 10. The recording medium 473 is an information recording medium such as a magnetic stripe, a bar code, a RAM and a ROM, and holds information about the sample stored on the storage medium. When the recording medium 473 is a magnetic stripe, information is exchanged with the control unit 10 by a recording / reproducing head (not shown) provided in the transport unit or the storage unit. In the case of RAM, ROM, etc., the circuit unit 471
Information is exchanged with the control unit 10 via a dedicated electrode (not shown). The lower substrate 48 has recesses 48 facing the legs of each bridge 44 on the upper substrate 47.
1 and a convex portion 482 (protruding a few tens of micrometers or less with respect to the substrate surface) which is sandwiched between the concave portions 481 and faces the central portion of the bridge 44. Pasted together. With this structure, the central portion of the bridge comes into contact with the convex portion 482 to be cooled, and the sample 11 is also cooled.

【0072】制御部10は冷却時および、加熱時にブリ
ッジ44上の温度センサ461,462からの信号をも
とに発熱抵抗体451,452に流す電流を調節し試料
11の温度履歴を制御する。ブリッジ44の脚部上の発
熱抵抗体451の発熱により脚部の温度が上昇すると、
脚部が熱膨脹してブリッジ44がたわみ、ブリッジ中央
部と凸部との接触圧力が低下する。接触熱抵抗は接触圧
力により変化する(一般的には接触圧力が大きいほど接
触熱抵抗は小さくなる)が、接触圧力の低下によりブリ
ッジ中央部と凸部の接触熱抵抗が大きくなる。これによ
り、発熱抵抗体452による温度上昇がより急峻にな
る。また、加熱中のブリッジ44以外の部分への熱の流
出が減り他の小区画の温度上昇を防止できる。また、加
熱を中止した場合、ブリッジの温度が下がるほどブリッ
ジ中央部と凸部との接触圧力が増加し接触熱抵抗が減少
するので急峻な温度低下が実現できる。
The control unit 10 controls the temperature history of the sample 11 by adjusting the current flowing through the heating resistors 451 and 452 based on the signals from the temperature sensors 461 and 462 on the bridge 44 during cooling and heating. When the temperature of the legs rises due to the heat generated by the heating resistor 451 on the legs of the bridge 44,
The legs are thermally expanded and the bridge 44 is bent, and the contact pressure between the central portion of the bridge and the convex portion is reduced. The contact thermal resistance changes depending on the contact pressure (generally, the larger the contact pressure is, the smaller the contact thermal resistance is), but the decrease in contact pressure increases the contact thermal resistance between the central portion and the convex portion of the bridge. As a result, the temperature rise due to the heating resistor 452 becomes steeper. In addition, the heat is prevented from flowing out to a portion other than the bridge 44 during heating, and the temperature rise of other small sections can be prevented. Further, when the heating is stopped, as the temperature of the bridge decreases, the contact pressure between the central portion of the bridge and the convex portion increases and the contact thermal resistance decreases, so that a sharp temperature decrease can be realized.

【0073】本実施例によれば、試料保存部を熱容量の
小さなブリッジで形成したため、ブリッジ上の試料の温
度変化を急峻にできる。また、ブリッジ上に温度センサ
や発熱抵抗体が存在するのでブリッジの精密な温度制御
ができる。また、保存媒体上に記録媒体が存在するので
保存媒体自体の管理や流通が容易になる。
According to this embodiment, since the sample storage portion is formed by the bridge having a small heat capacity, the temperature change of the sample on the bridge can be made sharp. Further, since the temperature sensor and the heating resistor are present on the bridge, the temperature of the bridge can be precisely controlled. Further, since the recording medium exists on the storage medium, the storage medium itself can be easily managed and distributed.

【0074】図23,24に本発明の他の実施例を示
す。図23は保存媒体上の試料を回収する装置を示して
いる。装置は主に後処理部9と回収機構82とよりな
る。回収時には、後処理部9のピペッタ92を昇降機構
911と回転機構912により吸入ポート917に挿入
する。同時に三方弁915によりシリンジポンプ918
をピペッタ92内の流路と連結する。また、回収機構5
4側の三方弁922によりシリンジポンプ923と回収
液導入管9221とを連結する。これにより、シリンジ
ポンプ923からピペッタ92に至る流路が形成され
る。シリンジポンプ918とシリンジポンプ923とは
それぞれ同時に吸引動作と吐出動作を開始する。シリン
ジポンプ923からは回収液容器914から吸引してお
いた回収液を、吐出し回収液導入管9221から回収機
構82先端に供給する。回収機構先端で回収液は保存媒
体上の試料に接触し、融解した試料を取り込んでピペッ
タ92側の回収液吸入管9222からピペッタ92内の
流路に吸引する。次に各シリンジポンプを停止し、昇降
機構911,回転機構912を動作させピペッタ92を
容器93内に挿入する。次に、シリンジポンプ918を
駆動しピペッタ92内の試料を含む回収液を容器93内
に吐出すことにより回収動作を終了する。
23 and 24 show another embodiment of the present invention. FIG. 23 shows an apparatus for collecting the sample on the storage medium. The device mainly comprises a post-processing section 9 and a recovery mechanism 82. At the time of collection, the pipettor 92 of the post-processing unit 9 is inserted into the suction port 917 by the elevating mechanism 911 and the rotating mechanism 912. At the same time, the syringe pump 918 is operated by the three-way valve 915.
Is connected to the flow path in the pipetter 92. In addition, the recovery mechanism 5
The syringe pump 923 and the recovery liquid introducing pipe 9221 are connected by the four-way three-way valve 922. As a result, a flow path from the syringe pump 923 to the pipettor 92 is formed. The syringe pump 918 and the syringe pump 923 each simultaneously start a suction operation and a discharge operation. The recovery liquid sucked from the recovery liquid container 914 is discharged from the syringe pump 923 and is supplied from the recovery liquid introducing pipe 9221 to the tip of the recovery mechanism 82. The recovered liquid comes into contact with the sample on the storage medium at the tip of the recovery mechanism, takes in the melted sample, and sucks it from the recovered liquid suction pipe 9222 on the pipetter 92 side into the flow path inside the pipettor 92. Next, each syringe pump is stopped, the elevating mechanism 911 and the rotating mechanism 912 are operated, and the pipettor 92 is inserted into the container 93. Next, the syringe pump 918 is driven to discharge the recovery liquid containing the sample in the pipettor 92 into the container 93, thereby completing the recovery operation.

【0075】本実施例によれば、保存媒体を冷却した状
態で装置内に留めたまま保存媒体上の一部の試料を回収
できるため、保存媒体の汚染や温度上昇による試料の変
質を防止できる。
According to this embodiment, since a part of the sample on the storage medium can be recovered while being kept in the apparatus in a state where the storage medium is cooled, contamination of the storage medium and deterioration of the sample due to temperature rise can be prevented. .

【0076】図25に本発明の他の実施例を示す。本実
施例は回収機構先端の構成に関するものである。両端が
回収液導入管9221と回収液吸入管9222とに連結
する回収管821内には回収液導入管9221から注入
された回収液が満たされている。回収機構先端の回収管
821には開口部822が存在し、周囲を支持部材82
3により支持されている。支持部材823内には温度セ
ンサ824,ヒータ825が存在する。図1に示す制御
部10は、温度センサ824の出力によりヒータ825
に流れる電流を調整し回収機構先端の温度を一定に保
つ。試料回収時には図23に示すXYZステージ83に
より、保存媒体4上の微量化された試料11の上に回収
管821の開口部822を移動する。次にXYZステー
ジ83により回収機構82を降下させ開口部822を試
料11に接触させ、シリンジポンプ823を駆動し回収
液導入管9221から回収液を注入する。試料11は開
口部922で回収液により融解され、回収液吸入管92
22に吸入されてピペッタ92に回収され後処理部で処
理される。回収が終了するとXYZステージ83によ
り、回収機構82を上昇させ保存媒体4から隔離し次の
回収に備える。
FIG. 25 shows another embodiment of the present invention. This embodiment relates to the structure of the tip of the recovery mechanism. The inside of the recovery pipe 821, whose both ends are connected to the recovery liquid introduction pipe 9221 and the recovery liquid suction pipe 9222, is filled with the recovery liquid injected from the recovery liquid introduction pipe 9221. An opening 822 exists in the recovery pipe 821 at the tip of the recovery mechanism, and the periphery is surrounded by the support member 82.
Supported by 3. A temperature sensor 824 and a heater 825 exist inside the support member 823. The controller 10 shown in FIG. 1 controls the heater 825 based on the output of the temperature sensor 824.
The temperature of the tip of the recovery mechanism is kept constant by adjusting the current flowing through. At the time of sample recovery, the opening 822 of the recovery tube 821 is moved onto the traced sample 11 on the storage medium 4 by the XYZ stage 83 shown in FIG. Next, the recovery mechanism 82 is lowered by the XYZ stage 83 to bring the opening 822 into contact with the sample 11, the syringe pump 823 is driven, and the recovery liquid is injected from the recovery liquid introduction pipe 9221. The sample 11 is melted by the recovery liquid at the opening 922, and the recovery liquid suction pipe 92
It is inhaled by 22 and collected by the pipetter 92 and processed by the post-processing section. When the collection is completed, the collection mechanism 82 is raised by the XYZ stage 83 to be separated from the storage medium 4 to prepare for the next collection.

【0077】本実施例によれば、回収機構は回収対象の
試料のみにアクセスするので保存媒体上の他の試料の温
度上昇や変質を防止できる。
According to this embodiment, since the recovery mechanism accesses only the sample to be recovered, it is possible to prevent the temperature rise and deterioration of other samples on the storage medium.

【0078】図26に本発明の他の実施例を示す。本実
施例では回収管821を2重管構造とし、回収液導入管
側の回収管8211からの回収液を回収液吸入管側に吸
引し試料の回収を行うものである。なお、図26では回
収液吸入管を内側の管とし、回収液導入管を外側の管と
したが、回収液吸入管を外側の管とし、回収液導入管を
内側の管としてもよい。
FIG. 26 shows another embodiment of the present invention. In this embodiment, the recovery pipe 821 has a double-tube structure, and the recovery liquid from the recovery liquid inlet pipe side recovery pipe 8211 is sucked to the recovery liquid suction pipe side to recover the sample. Note that, in FIG. 26, the recovered liquid suction pipe is the inner pipe and the recovered liquid introduction pipe is the outer pipe, but the recovered liquid suction pipe may be the outer pipe and the recovered liquid introduction pipe may be the inner pipe.

【0079】本実施例によれば、回収管が同心状になっ
ているので回収機構先端が小形化できる。また、回収管
が小形となるので回収機構先端に回収管を複数並列する
ことができる。
According to this embodiment, since the collecting tube is concentric, the tip of the collecting mechanism can be downsized. Moreover, since the recovery pipe is small, a plurality of recovery pipes can be arranged in parallel at the tip of the recovery mechanism.

【0080】本発明の他の実施例として細胞バンクは、
前記いずれか一つの微量試料保存装置を備えてなる構成
とする。
As another embodiment of the present invention, the cell bank is
It is configured to include any one of the micro sample storage devices.

【0081】[0081]

【発明の効果】本発明によれば、細胞や薬品などの微細
でかつ微量な試料を、急速に凍結して高密度に保存で
き、各試料に個別にアクセスできるため、細胞や薬品の
高品質保存が可能となるとともに操作・管理が容易にな
る。
EFFECTS OF THE INVENTION According to the present invention, a minute and minute amount of a sample of cells or drugs can be rapidly frozen and stored at a high density, and each sample can be accessed individually. It becomes possible to save and it becomes easy to operate and manage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1に示す装置の構成図である。FIG. 2 is a configuration diagram of the device shown in FIG.

【図3】図1に示す微量化部の構成図である。FIG. 3 is a configuration diagram of a miniaturization unit shown in FIG. 1.

【図4】図3の動作シーケンスを示す図である。FIG. 4 is a diagram showing an operation sequence of FIG. 3;

【図5】図3の要部を拡大した図である。5 is an enlarged view of a main part of FIG.

【図6】図3に示す冷却部の構成図である。6 is a configuration diagram of a cooling unit shown in FIG.

【図7】冷却部の他の実施例を示す構成図である。FIG. 7 is a configuration diagram showing another embodiment of the cooling unit.

【図8】冷却部の他の実施例を示す構成図である。FIG. 8 is a configuration diagram showing another embodiment of the cooling unit.

【図9】微量化部の他の実施例を示す構成図である。FIG. 9 is a configuration diagram showing another embodiment of the miniaturization unit.

【図10】図9の動作シーケンスを示す図である。FIG. 10 is a diagram showing an operation sequence of FIG. 9;

【図11】図9に示す試料分離部の要部を拡大した構成
図である。
FIG. 11 is an enlarged configuration diagram of a main part of the sample separation unit shown in FIG. 9.

【図12】点着機構先端の構成図である。FIG. 12 is a configuration diagram of a tip of a spotting mechanism.

【図13】点着機構先端の他の実施例を示す構成図であ
る。
FIG. 13 is a configuration diagram showing another embodiment of the tip of the spotting mechanism.

【図14】点着機構先端の他の実施例を示す構成図であ
る。
FIG. 14 is a configuration diagram showing another embodiment of the tip of the spotting mechanism.

【図15】点着機構先端の他の実施例を示す構成図であ
る。
FIG. 15 is a configuration diagram showing another embodiment of the tip of the spotting mechanism.

【図16】点着機構先端の他の実施例を示す構成図であ
る。
FIG. 16 is a configuration diagram showing another embodiment of the tip of the spotting mechanism.

【図17】点着機構先端の他の実施例を示す構成図であ
る。
FIG. 17 is a configuration diagram showing another embodiment of the tip of the spotting mechanism.

【図18】搬送部および保管部の構成図である。FIG. 18 is a configuration diagram of a transport unit and a storage unit.

【図19】保存媒体の構成図である。FIG. 19 is a configuration diagram of a storage medium.

【図20】保存媒体の構成図である。FIG. 20 is a configuration diagram of a storage medium.

【図21】保存媒体の構成図である。FIG. 21 is a configuration diagram of a storage medium.

【図22】保存媒体の構成を示す斜視図である。FIG. 22 is a perspective view showing a configuration of a storage medium.

【図23】回収部の構成図である。FIG. 23 is a configuration diagram of a recovery unit.

【図24】図23の動作シーケンスを示す図である。FIG. 24 is a diagram showing an operation sequence in FIG. 23.

【図25】回収機構先端の構成図である。FIG. 25 is a configuration diagram of a tip of a recovery mechanism.

【図26】回収機構先端の他の実施例を示す構成図であ
る。
FIG. 26 is a configuration diagram showing another embodiment of the tip of the recovery mechanism.

【符号の説明】[Explanation of symbols]

2 前処理部 3 微量化部 4 保存媒体 5 冷却部 6 搬送部 7 保管部 8 回収部 9 後処理部 10 制御部 11 試料 101 入出力部 2 Pretreatment section 3 Trace reduction unit 4 Storage medium 5 Cooling unit 6 Transport section 7 Storage 8 Collection Department 9 Post-processing section 10 Control unit 11 samples 101 Input / output unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G05D 22/00 G05D 22/00 A 23/00 23/00 Z 23/19 23/19 A (72)発明者 山崎 功夫 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (56)参考文献 特開 平5−18874(JP,A) 特表 平3−504076(JP,A) 特表 平4−502580(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01L 11/00 G01N 1/00 G01N 33/48 - 33/98 G01N 35/00 - 37/00 A01N 1/00 - 65/02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI G05D 22/00 G05D 22/00 A 23/00 23/00 Z 23/19 23/19 A (72) Inventor Isao Yamazaki Ibaraki Prefecture 502 Jinrachicho, Tsuchiura City, Ltd., Mechanical Engineering Laboratory, Hitachi, Ltd. (56) Reference Japanese Patent Laid-Open No. 5-18874 (JP, A) Special Table 3-504076 (JP, A) Special Table 4-502580 (JP, A) ) (58) Fields surveyed (Int.Cl. 7 , DB name) B01L 11/00 G01N 1/00 G01N 33/48-33/98 G01N 35/00-37/00 A01N 1/00-65/02

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒子または薬品を含む液状の試料を前処
理する前処理部と、前記試料を微量化する微量化部と、
微量化した微量試料を冷却する冷却部と、装置内で前記
微量試料を搬送する搬送部と、該微量試料を保存する保
管部と、保存された試料を再生回収する回収部と、再生
試料の後処理を行う後処理部と、制御部及び該制御部へ
情報の入出力を行う入出力部とを備え、それぞれの部
は、前記試料の少なくとも冷却、保存及び再生を平面状
の保存媒体上で行うものであり、 微量化部は、回転機構と昇降機構とを有するピペッタ
と、該ピペッタで吸引した試料を微粒化し放出するノズ
ルと、放出された前記試料内の粒子を光学的に検出する
検出部と、前記ノズルの前方に配置され微粒化した前記
試料の進行方向を制御し保存媒体を所定の位置に滴下さ
せる電極とよりなり、冷却部は前記保存媒体と接触して
冷却し、保管部は前記保存媒体を低温保存する棚状のス
タッカを有し、回収部は前記保存媒体上の試料を加熱・
解凍して回収する回収機構を有し、後処理部は前記保存
媒体上の再生試料を外部の容器に回収し、制御部は装置
内のそれぞれの部を制御し、入出力部は前記制御部へ少
なくとも指令、データの交換、外部ネットワークとの通
信及びマンマシンインターフェースを行なってなる 微量
試料保存装置。
1. A liquid sample containing particles or chemicals is pretreated.
A pretreatment unit for processing, and a trace amount reducing unit for reducing the amount of the sample,
In the cooling unit that cools the trace amount of trace amount sample,
A transport unit for transporting a small amount of sample and a storage unit for storing the small amount of sample.
Tube section, collection section for reclaiming stored sample, and regeneration
To the post-processing unit that performs post-processing of the sample, the control unit, and the control unit
Each unit has an input / output unit that inputs and outputs information.
At least for cooling, storage and regeneration of the sample in a planar
On the storage medium of, The miniaturization unit is a pipettor having a rotation mechanism and a lifting mechanism.
And a nozzle that atomizes and ejects the sample sucked by the pipettor
And the emitted particles in the sample are optically detected.
The detection part, and the atomized particle that is arranged in front of the nozzle
Control the direction of travel of the sample and drop the storage medium at a predetermined position.
The cooling unit is in contact with the storage medium.
Cooling, the storage unit is a shelf-shaped space for cryopreserving the storage medium.
It has a tacker, and the recovery unit heats the sample on the storage medium.
It has a collection mechanism that defrosts and collects, and the post-processing unit stores it as above.
The regenerated sample on the medium is collected in an external container, and the control unit
Control each part of the
Directives, data exchange, communication with external networks
Communication and man-machine interface Very small amount
Sample storage device.
【請求項2】 粒子または薬品を含む液状の試料を前処
理する前処理部と、前記試料を微量化する微量化部と、
微量化した微量試料を冷却する冷却部と、装置内で前記
微量試料を搬送する搬送部と、該微量試料を保存する保
管部と、保存された試料を再生回収する回収部と、再生
試料の後処理を行う後処理部と、制御部及び該制御部へ
情報の入出力を行う入出力部とを備え、それぞれの部
は、前記試料の少なくとも冷却、保存及び再生を平面状
の保存媒体上で行うものであり、 微量化部は、液状試料を放出するノズルを有する流路
と、該流路内の液状試料に含まれる粒子を検出する第一
の検出手段と、前記ノズルの出口近傍に設けられる第一
の電極と、前記液状試料の液滴の進行方向に向かい液滴
の位置、速度及び進行方向を検出する第二の検出手段及
び第二の電極と、前記液滴の位置、速度及び進行方向を
検出する第三の検出手段及び第三の電極とを有する 微量
試料保存装置。
2.Pretreatment of liquid samples containing particles or chemicals
A pretreatment unit for processing, and a trace amount reducing unit for reducing the amount of the sample,
In the cooling unit that cools the trace amount of trace amount sample,
A transport unit for transporting a small amount of sample and a storage unit for storing the small amount of sample.
Tube section, collection section for reclaiming stored sample, and regeneration
To the post-processing unit that performs post-processing of the sample, the control unit, and the control unit
Each unit has an input / output unit that inputs and outputs information.
At least for cooling, storage and regeneration of the sample in a planar
On the storage medium of The micronization unit is a flow path that has a nozzle for discharging a liquid sample.
And first detecting particles contained in the liquid sample in the flow channel
Detection means and the first provided near the outlet of the nozzle
Of the liquid sample and the droplet of the liquid sample
Second detection means for detecting the position, speed and traveling direction of
The second electrode and the position, velocity and direction of travel of the droplet.
Having a third detecting means for detecting and a third electrode Very small amount
Sample storage device.
【請求項3】 請求項1または2記載の微量試料保存装
置において、微量化部の流路を、二重管で形成しかつ該
二重管の内管の出口を外管の流路内に設け、前記内管に
液状試料を流通するとともに前記外管に搬送液を流通
し、中央を流れる前記液状試料に光を照射する光源と該
液状試料内の粒子からの散乱光及び蛍光を検出する検出
器とを具備したことを特徴とする微量試料保存装置。
3. The micro sample storage device according to claim 1, wherein the flow path of the micro-quantification part is formed by a double tube and the outlet of the inner tube of the double tube is in the flow path of the outer tube. A light source for irradiating the liquid sample flowing through the center with the liquid sample flowing through the inner tube and the carrier liquid flowing through the outer tube and detecting scattered light and fluorescence from particles in the liquid sample are provided. A trace sample storage device comprising a detector.
【請求項4】 請求項1乃至3記載の微量試料装置にお
いて、冷却部は、冷凍機より供給される冷媒の流通する
冷媒流路を内蔵する冷却ブロックと該冷却ブロック上の
伝熱部材とよりなり、該伝熱部材上に保存媒体を接触冷
却するものであることを特徴とする微量試料保存装置。
4. The trace amount sampler according to claim 1, wherein the cooling unit includes a cooling block containing a refrigerant passage through which a refrigerant supplied from a refrigerator flows, and a heat transfer member on the cooling block. The micro sample storage device is characterized in that a storage medium is contact-cooled onto the heat transfer member.
【請求項5】 粒子または薬品を含む液状の試料を前処
理する前処理部と、前記試料を微量化する微量化部と、
微量化した微量試料を冷却する冷却部と、装置内で前記
微量試料を搬送する搬送部と、該微量試料を保存する保
管部と、保存された試料を再生回収する回収部と、再生
試料の後処理を行う後処理部と、制御部及び該制御部へ
情報の入出力を行う入出力部とを備え、それぞれの部
は、前記試料の少なくとも冷却、保存及び再生を平面状
の保存媒体上で行うものであり、 冷却部は、冷凍機より供給される冷媒の流通する冷媒流
路を内蔵する冷却ブロックと、該冷却ブロック上に設け
られペルチエ効果を有するn型半導体及びp型半導体
と、それぞれの半導体のそれぞれの端面に形成された電
極と、前記冷却ブロックとそれぞれの半導体の一方の端
面の電極との間を絶縁する絶縁部とよりなり、保存媒体
の電気的導体で形成した試料保存部をそれぞれの半導体
の他方の端面の電極に接触し、それぞれの電極間に電圧
を印加してなる微量試料保存装置。
5.Pretreatment of liquid samples containing particles or chemicals
A pretreatment unit for processing, and a trace amount reducing unit for reducing the amount of the sample,
In the cooling unit that cools the trace amount of trace amount sample,
A transport unit for transporting a small amount of sample and a storage unit for storing the small amount of sample.
Tube section, collection section for reclaiming stored sample, and regeneration
To the post-processing unit that performs post-processing of the sample, the control unit, and the control unit
Each unit has an input / output unit that inputs and outputs information.
At least for cooling, storage and regeneration of the sample in a planar
On the storage medium of The cooling unit is a refrigerant flow through which the refrigerant supplied from the refrigerator flows.
A cooling block with a built-in passage and provided on the cooling block
N-type semiconductor and p-type semiconductor having the Peltier effect
And the electrical charges formed on each end face of each semiconductor.
A pole, one end of the cooling block and each semiconductor
The storage medium consists of an insulating part that insulates between the surface electrodes.
The sample storage part formed by the electric conductor of
Contact the electrode on the other end of the
ApplyWill doMicro sample storage device.
【請求項6】 請求項記載の微量試料保存装置におい
て、複数対のn型半導体及びp型半導体を直列に接続
し、保存媒体上にそれぞれの対の半導体に対向し複数の
電気的導体部を設けたことを特徴とする微量試料保存装
置。
6. The micro sample storage device according to claim 5, wherein a plurality of pairs of n-type semiconductors and p-type semiconductors are connected in series, and a plurality of electrical conductors are provided on the storage medium so as to face the respective semiconductor pairs. A micro sample storage device characterized by being provided with.
【請求項7】 粒子または薬品を含む液状の試料を前処
理する前処理部と、前記試料を微量化する微量化部と、
微量化した微量試料を冷却する冷却部と、装置内で前記
微量試料を搬送する搬送部と、該微量試料を保存する保
管部と、保存された試料を再生回収する回収部と、再生
試料の後処理を行う後処理部と、制御部及び該制御部へ
情報の入出力を行う入出力部とを備え、それぞれの部
は、前記 試料の少なくとも冷却、保存及び再生を平面状
の保存媒体上で行うものであり、 微量化部の流路を、二重管で形成しかつ該二重管の内管
の出口を外管の流路内に設け、前記内管に液状試料を流
通するとともに前記外管に搬送液を流通し、中央を流れ
る前記液状試料に光を照射する光源と該液状試料内の粒
子からの散乱光及び蛍光を検出する検出器とを具備し、
該検出器による検出部と保存媒体との間のほぼ中央で前
記外管を貫通して露出させた前記内管を屈曲させ、該内
管の前記保存媒体と対向する位置に開口部を設けたこと
を特徴とする微量試料保存装置。
7.Pretreatment of liquid samples containing particles or chemicals
A pretreatment unit for processing, and a trace amount reducing unit for reducing the amount of the sample,
In the cooling unit that cools the trace amount of trace amount sample,
A transport unit for transporting a small amount of sample and a storage unit for storing the small amount of sample.
Tube section, collection section for reclaiming stored sample, and regeneration
To the post-processing unit that performs post-processing of the sample, the control unit, and the control unit
Each unit has an input / output unit that inputs and outputs information.
Is the above At least cooling, storage, and regeneration of the sample are flat
On the storage medium of The flow path of the miniaturization part is formed by a double tube and the inner tube of the double tube is formed.
The outlet of the liquid sample is installed in the flow path of the outer tube, and the liquid sample flows
Through the outer pipe and the carrier liquid flowing through the center.
A light source for irradiating the liquid sample with light and particles in the liquid sample
A detector for detecting scattered light and fluorescence from the child,
In front of approximately the center between the detector and the storage medium by the detector
The inner tube exposed by penetrating the outer tube is bent to
An opening is provided in the tube at a position facing the storage medium.
Trace sample storage device characterized by.
【請求項8】請求項記載の微量試料保存装置におい
て、屈曲させた内管を切断して形成した開口部の周辺に
弾性部材を設けるとともに、該弾性部材のそれぞれの側
に該弾性部材より大きい剛性を有する支持部材を設け、
それぞれの支持部材内に前記開口部の上流側と下流側の
それぞれの内管を埋設し、それぞれの支持部材間に伸縮
可能なアクチュエータを設けたことを特徴とする微量試
料保存装置。
8. The micro sample storage device according to claim 7 , wherein an elastic member is provided around an opening formed by cutting a bent inner tube, and the elastic member is provided on each side of the elastic member. Providing a support member with great rigidity,
A micro sample storage device, characterized in that inner pipes on the upstream side and the downstream side of the opening are embedded in the respective support members, and expandable and contractible actuators are provided between the respective support members.
【請求項9】請求項記載の微量試料保存装置におい
て、屈曲させた内管を切断して形成した開口部の周辺に
支持部材を設けるとともに、該支持部材内に前記開口部
の上流側と下流側のそれぞれの内管を埋設し、前記開口
部の上部の前記支持部材にダイヤフラムにより隔離され
た二つの室を設け、前記開口部に近接する第一の室に前
記開口部と接触しかつ液体試料と非混合の流体を充満
し、第二の室内に伸縮可能なアクチュエータを内蔵し、
該アクチュエータの伸縮方向の端面を前記ダイヤフラム
を介して前記第一の室に接続したことを特徴とする微量
試料保存装置。
9. The micro sample storage device according to claim 7 , wherein a supporting member is provided around an opening formed by cutting a bent inner tube, and the inside of the supporting member is provided with an upstream side of the opening. Each inner pipe on the downstream side is buried, two chambers separated by a diaphragm are provided in the support member above the opening, and the first chamber close to the opening is in contact with the opening and It is filled with a fluid that is not mixed with the liquid sample, and has an expandable actuator inside the second chamber.
A micro sample storage device, characterized in that the end face of the actuator in the expansion / contraction direction is connected to the first chamber via the diaphragm.
JP29538093A 1993-11-25 1993-11-25 Micro sample storage device Expired - Fee Related JP3507875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29538093A JP3507875B2 (en) 1993-11-25 1993-11-25 Micro sample storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29538093A JP3507875B2 (en) 1993-11-25 1993-11-25 Micro sample storage device

Publications (2)

Publication Number Publication Date
JPH07144139A JPH07144139A (en) 1995-06-06
JP3507875B2 true JP3507875B2 (en) 2004-03-15

Family

ID=17819885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29538093A Expired - Fee Related JP3507875B2 (en) 1993-11-25 1993-11-25 Micro sample storage device

Country Status (1)

Country Link
JP (1) JP3507875B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679847B2 (en) * 2004-07-12 2011-05-11 オリンパス株式会社 Cell analysis method
JP5598766B2 (en) * 2008-04-10 2014-10-01 デナトール アクティエボラグ Device for storing and adjusting biological samples
WO2016074720A1 (en) * 2014-11-13 2016-05-19 Leica Mikrosysteme Gmbh Freezing machine with container for frozen samples
CN113819677A (en) * 2021-10-22 2021-12-21 西安热工研究院有限公司 Temperature control system suitable for online fluid monitoring

Also Published As

Publication number Publication date
JPH07144139A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
US11524287B2 (en) Automatic pipetting device for transferring samples and/or reagents and method for transferring liquid samples and/or reagents
JP3659890B2 (en) Apparatus and method for conveying small quantities of material
AU699986B2 (en) Molecular analyzer and method of use
US8834793B2 (en) Apparatus and method for dispensing cells or particles confined in a free flying droplet
CA2433296C (en) Focused acoustic ejection cell sorting system and method
US7759123B2 (en) Removing surface deposits of concentrated collected particles
US6695146B2 (en) Method for surface deposition of concentrated airborne particles
US7968060B2 (en) Wave guide with isolated coupling interface
US20020090720A1 (en) Focused acoustic ejection cell sorting system and method
US6806465B2 (en) Sample collection preparation methods for time-of flight miniature mass spectrometer
US20040112978A1 (en) Apparatus for high-throughput non-contact liquid transfer and uses thereof
JP2000346842A (en) Method and device for production of probe array using micro particles
CN114585903B (en) System and method for rapid autonomous detection of aerosol particles
US20220072541A1 (en) Fluidic autosampler and incubator
CA2430422A1 (en) Non-contact fluid transfer methods apparatus and uses thereof
JP2003526523A (en) Micro experimental device and method
JP4071907B2 (en) Automatic nucleic acid testing equipment
JP3507875B2 (en) Micro sample storage device
CA3077972A1 (en) Sample containers adapted for acoustic ejections and sample preservation and methods thereof
US6938777B2 (en) Method for removing surface deposits of concentrated collected particles
US7923679B2 (en) Method and device for handling objects
CN114778422B (en) Automatic cell sorting system and method based on micro-droplet control technology
JP4941719B2 (en) Liquid ejection apparatus and biochip manufacturing method
US20140227685A1 (en) Rapid freeze-quench device and methods of use thereof
US20090123958A1 (en) Laboratory Devices, Methods and Systems Employing Acoustic Ejection Devices

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

LAPS Cancellation because of no payment of annual fees