JP3505260B2 - Micro-detection device for microbial observation and method for purifying contaminated groundwater vein using the same - Google Patents

Micro-detection device for microbial observation and method for purifying contaminated groundwater vein using the same

Info

Publication number
JP3505260B2
JP3505260B2 JP08425895A JP8425895A JP3505260B2 JP 3505260 B2 JP3505260 B2 JP 3505260B2 JP 08425895 A JP08425895 A JP 08425895A JP 8425895 A JP8425895 A JP 8425895A JP 3505260 B2 JP3505260 B2 JP 3505260B2
Authority
JP
Japan
Prior art keywords
microorganisms
growth
micro
contaminated
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08425895A
Other languages
Japanese (ja)
Other versions
JPH08281282A (en
Inventor
英昭 高松
典久 重森
由夏 小野澤
昌彦 蜂谷
喜計 鈴木
Original Assignee
昌彦 蜂谷
喜計 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昌彦 蜂谷, 喜計 鈴木 filed Critical 昌彦 蜂谷
Priority to JP08425895A priority Critical patent/JP3505260B2/en
Publication of JPH08281282A publication Critical patent/JPH08281282A/en
Application granted granted Critical
Publication of JP3505260B2 publication Critical patent/JP3505260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な微生物用マイク
ロ検知装置及びそれを用いて、汚染された地下水脈の上
流に存在する汚染土壌領域の土壌微生物の生育状況を観
察しながら、微生物の繁殖、活動に必要な処置を迅速か
つ的確に施し、汚染物質を除去し、汚染された地下水脈
を効率よく浄化する方法関するものである。
BACKGROUND OF THE INVENTION This invention uses micro-sensing apparatus and that for new microorganisms, while observing the state of growth of soil microorganisms in the contaminated soil region present upstream of the contaminated groundwater vein, microorganisms breeding activities promptly and accurately performed the action necessary, remove contaminants, it relates contaminated underground water vein efficiency methods well purifying.

【0002】[0002]

【従来の技術】近年、生産活動及びその他、人の活動に
よってもたらされる環境汚染が世界的に問題となってき
ている。この環境汚染としては、例えば大気の汚染、水
質の汚濁、土壌の汚染、騒音、振動、地盤の沈下、悪臭
などが挙げられる。これらの環境汚染によって生じる被
害は、人体への健康被害と生活環境被害とに大別され
る。人体への健康被害は、水質汚濁や大気汚染から直接
受ける場合と、水質汚濁や土壌汚染により汚染された水
産物や農産物を摂取することによって間接的に被害を受
ける場合がある。一方、生活環境被害は、地盤沈下によ
る土木・建築物被害、固形廃棄物などによる景観・空間
占拠被害、騒音、振動、悪臭などによる不快感覚被害
や、大気汚染、水質汚濁による動植物被害が含まれる。
この中でも特に生活上大きな影響を与えるものは、地下
水脈の汚染である。
2. Description of the Related Art In recent years, environmental pollution caused by production activities and other human activities has become a global problem. Examples of the environmental pollution include air pollution, water pollution, soil pollution, noise, vibration, ground subsidence, and odor. Damages caused by these environmental pollutions are roughly classified into health damages to human bodies and living environment damages. The health damage to the human body may be directly caused by water pollution or air pollution, or indirectly by ingesting marine products or agricultural products polluted by water pollution or soil pollution. On the other hand, living environment damage includes civil engineering / building damage due to ground subsidence, landscape / space occupation damage due to solid waste, unpleasant sensation damage due to noise, vibration, odor, etc., and animal / plant damage due to air pollution and water pollution. .
Of these, the one that has a great impact on life is the contamination of groundwater veins.

【0003】ところで、この地下水脈の汚染は、その上
流地域に存在する土壌汚染から滲出する汚染物質、例え
ば家庭や工場から排出又は廃棄された有機化合物、重金
属、薬品など、あるいは散布された農薬が原因となって
いる。したがって、土壌汚染を浄化することにより地下
水脈の汚染を防止することができるので、これまで種々
の汚染土壌の浄化方法が試みられている。例えば、汚染
物質がトリクロロエタンやテトラクロロエチレンなどの
揮発性有機ハロゲン化合物の場合には、土壌に気体を通
気し、汚染物質を搬送除去したのち、通気ガスを処理し
て汚染物質を回収する方法が試みられているし、汚染物
質が重金属の場合には、土壌を溶剤抽出し、抽出した溶
剤を陽イオン交換体と接触させて重金属を捕集する方法
が試みられているが、いずれも大規模な設備や大量の処
理剤を必要とするため、実用化は至っていない。
By the way, this groundwater vein pollution is caused by pollutants exuding from soil pollution existing in the upstream region, for example, organic compounds discharged from homes and factories or discarded, heavy metals, chemicals, or sprayed pesticides. It is the cause. Therefore, since the groundwater veins can be prevented from being polluted by purifying the soil pollution, various methods for purifying the polluted soil have been attempted so far. For example, if the pollutant is a volatile organohalogen compound such as trichloroethane or tetrachloroethylene, a method has been tried in which a gas is aerated to the soil, the pollutant is transported and removed, and then the aerated gas is treated to recover the pollutant. However, when the pollutant is a heavy metal, a method has been attempted in which the soil is solvent-extracted and the extracted solvent is contacted with a cation exchanger to collect the heavy metal. Since it requires a large amount of treatment agent and has not been put to practical use.

【0004】近年、バイオテクノロジーの急速な進歩に
より、これまで難分解性とされていた汚染物質に作用す
る微生物も見出され、その微生物を利用して汚染土壌を
処理する研究も行われるようになってきた。
Due to the rapid progress of biotechnology in recent years, microorganisms that act on pollutants that have been considered to be difficult to decompose have been found, and researches for treating contaminated soil using these microorganisms have been conducted. It's coming.

【0005】ところで、微生物を用いて汚染土壌から汚
染物質を除くには、汚染地域の各所から土壌サンプルを
採取し、その中に存在する微生物を培養して生育状態を
観察し、汚染物質に対する作用の良好なものを選択し、
それを汚染土壌に接種するという方法がとられている。
しかしながら、このような方法は、多数のサンプルを採
取し、それぞれを培養して結果を確かめなければならな
いため、操作が煩雑である上に、微生物を汚染土壌に接
種した後で、その効果を確認することも困難であった。
しかしながら、これまで、このような微生物の生育状態
を観察するための簡便な検知装置が存在しないため、上
記の方法を効率よく行うことができなかった。
By the way, in order to remove pollutants from contaminated soil by using microorganisms, soil samples are collected from various places in the contaminated area, microorganisms present therein are cultured, and the growth state is observed, thereby acting on the pollutants. Choose a good one,
The method of inoculating it to contaminated soil is adopted.
However, in such a method, a large number of samples have to be collected, and each of them has to be cultured to confirm the result. Therefore, the operation is complicated, and the effect is confirmed after inoculating the contaminated soil with microorganisms. It was also difficult to do.
However, until now, the growth status of such microorganisms has
Since there is no simple detector for observing
The method described above could not be performed efficiently.

【0006】[0006]

【発明が解決しようとする課題】本発明は、汚染地域の
土壌に穿設したボーリング穴に設置して穴の周囲壁面の
微生物の生育状態を直接観察しうる簡便な微生物マイク
ロ検知装置を提供し、それを用いて汚染土壌に起因する
地下水脈の汚染を防止する方法を提供することを目的と
してなされたものである。
SUMMARY OF THE INVENTION The present invention is directed to a contaminated area.
Install in a boring hole drilled in the soil and
A simple microbial microphone that allows direct observation of the growth state of microorganisms
(B) A detector is provided for the purpose of providing a method for preventing contamination of a groundwater vein due to contaminated soil by using the detector .

【0007】[0007]

【課題を解決するための手段】本発明者らは地下水脈
の上流に位置する汚染地域に穿設した複数のボーリング
に配置し、この穴の周壁を直接観察し、微生物の生
育、繁殖状態を検知するための装置を開発するために種
々研究を重ねた結果、本発明をなすに至った。
Means for Solving the Problems The present inventors have arranged in a plurality of borehole bored in contaminated areas located upstream of the underground water vein, observation of the peripheral wall of the hole directly microbial growth, breeding Seed to develop a device for detecting conditions
As a result of repeated studies, the present invention has been completed.

【0008】すなわち、本発明は、下端部分を軸継ぎ手
機構により屈曲自在とし、中央適所にボーリング穴に取
り付けるための支持部材と上下移動用及び回転用駆動機
構を備えた内視筒と内視筒下端開口部に配設された対物
レンズ又は固体撮像素子及び照明ランプ、内視筒上端開
口部に配設された接眼レンズ、対物レンズと接眼レンズ
を連結するため内視筒に内蔵された光ファイバ束から構
成され、かつボーリング穴の壁面と対物レンズとの間の
距離を制御するための、前記軸継ぎ手機構と連動する隙
間センサを備えたことを特徴とする微生物観察用マイク
ロ検知装置、及び汚染された地下水脈を浄化するに当
り、地下水脈の上流に位置する汚染土壌領域の複数個所
にボーリング穴を穿設し、このボーリング穴を介して汚
染物質を栄養源とする微生物を汚染土壌に接種したの
ち、各ボーリング穴に上記の微生物観察用マイクロ検知
装置を取り付け、周囲壁面の微生物の生育及び繁殖状態
を経時的に検知し、得られた情報に基づいて、微生物の
生育及び繁殖条件を的確に制御することにより汚染物質
を減少させ、地下水脈への汚染物質の流入を抑制するこ
とを特徴とする汚染された地下水脈の浄化方法提供す
るものである。
That is, according to the present invention, the lower end portion is a shaft coupling.
The mechanism allows it to bend freely, with a boring hole in the center
Support member for mounting and driving machine for vertical movement and rotation
And an objective arranged at the opening of the lower end of the endoscope.
Lens or solid-state image sensor and lighting lamp, open upper end of endoscope
Eyepiece, objective lens and eyepiece arranged in the mouth
The optical fiber bundle built into the endoscope
And between the wall of the borehole and the objective lens
Gap that works with the shaft coupling mechanism to control the distance
Microphone for observing microorganisms characterized by having an inter-sensor
(B) When purifying a contaminated groundwater vein and a polluted groundwater vein, bore holes are drilled at multiple locations in the contaminated soil area located upstream of the groundwater vein, and pollutants are used as nutrient sources through these boreholes. After inoculating the contaminated soil with microorganisms, attach the above-mentioned micro-detection device for microorganisms to each boring hole, detect the growth and reproduction state of microorganisms on the surrounding wall over time, and based on the obtained information, It is intended to provide a method for purifying a contaminated groundwater vein, which is characterized by appropriately controlling growth and reproduction conditions to reduce the pollutant and suppress the inflow of the pollutant into the groundwater vein.

【0009】次に、添付図面に従って、本発明微生物
観察用マイクロ検知装置を説明する。図は、ファイバ
ースコープ方式マイクロ検知装置の1例の縦断図面、図
はその下面図であって、これはボーリング穴16内に
支持部材6により取り付けられている。この装置を構成
する内視筒4は、アクチェータ10及びステップモータ
11により上下移動、回転され、ボーリング穴16の壁
面に沿って、微生物の生育、繁殖状態を万遍なく観察し
うるようになっている。内視筒4の先端部分は軸継ぎ手
機構5により屈曲自在に本体と連結され、隙間センサ2
で検知される距離に連動するステップモータ12により
対物レンズ1と壁面との間隔を適宜調節する。対物レン
ズ1に対向する壁面は、照明ランプ3により照らされ、
観察面の状況は対物レンズ1から光ファイバ束8を介し
て接眼レンズ14に達し、裸眼又は必要に応じ顕微鏡を
通して内視筒上端開口部15から随時観察可能である。
照明ランプ3に接続するライトガイド9は、ライトガイ
ド接続口13から光源17に連結している。
[0009] Next, with reference to the accompanying drawings, illustrating the micro-detection device for microorganisms observation of the present invention. FIG. 1 is a vertical cross-sectional view of an example of a fiberscope type micro-detection device.
2 is a bottom view thereof, which is mounted in the boring hole 16 by a support member 6. The endoscope 4 constituting this device is vertically moved and rotated by the actuator 10 and the step motor 11 so that the growth and reproduction state of microorganisms can be observed uniformly along the wall surface of the boring hole 16. There is. The tip portion of the endoscope 4 is flexibly connected to the main body by a shaft coupling mechanism 5, and the gap sensor 2
The distance between the objective lens 1 and the wall surface is appropriately adjusted by the step motor 12 which is interlocked with the distance detected by. The wall surface facing the objective lens 1 is illuminated by the illumination lamp 3,
The condition of the observation surface reaches the eyepiece lens 14 from the objective lens 1 through the optical fiber bundle 8 and can be observed at any time from the upper end opening 15 of the endoscope through the naked eye or a microscope as necessary.
The light guide 9 connected to the illumination lamp 3 is connected to the light source 17 through the light guide connection port 13.

【0010】図は、固定撮像素子方式マイクロ検知装
置の1例を示す縦断面図であって、対物レンズの代りに
内視筒4の下端開口部にカメラ機能をもつ固定撮像素子
1´が配設されている。この固定撮像素子1´により得
られた壁面の情報は光ファイバ束8を経てコントロール
ユニット18に入力される。そして、必要に応じパーソ
ナルコンピュータに接続して演算処理や、情報処理を行
ったりテレビモニタに接続してボーリング穴の壁面にお
ける微生物の生育、繁殖状態の監視を行うことができ
る。
FIG. 3 is a longitudinal sectional view showing an example of a fixed image pickup device type micro-detecting device. Instead of the objective lens, a fixed image pickup device 1'having a camera function is provided at the lower end opening of the endoscope tube 4. It is arranged. The information on the wall surface obtained by the fixed image pickup device 1 ′ is input to the control unit 18 via the optical fiber bundle 8. If necessary, the personal computer can be connected to perform arithmetic processing and information processing, or can be connected to a television monitor to monitor the growth and breeding state of microorganisms on the wall surface of the bowling hole.

【0011】次に、上記の微生物観察用マイクロ検知装
置を用いて汚染された地下水脈を浄化する方法について
説明する。この方法においては、まず汚染された地下水
脈の上流に位置する汚染領域に複数個のボーリング穴を
穿設する。図は、この汚染水脈と汚染土壌領域との関
係及びボーリング穴の穿設個所を示す平面図である。す
なわち、地下水脈イ及びロに汚染が認められる場合、そ
れらと、その上流の清浄な地下水脈ハとの間には必ず汚
染源(I)が存在するはずである。そして、この汚染源
(I)の周囲には、通常、汚染源から拡散した汚染物質
により汚染された汚染土壌を含む地域(II)が存在す
る。本発明においては、この汚染源(I)とその周囲の
汚染土壌を含む地域(II)を一緒にして汚染土壌領域
と称する。ボーリング穴は、これまでに蓄積されたデー
タや地質構造、周囲の地形等を参考にして、汚染源
(I)の周囲及び汚染土壌を含む地域(II)の周囲の
位置を想定し、その両方に数個所ずつ、通常は4〜10
個所穿設される。
Next, the above-mentioned micro-detection device for observing microorganisms
Method for purifying contaminated groundwater veins
explain. In this method, first, a plurality of boring holes are formed in a contaminated region located upstream of a contaminated groundwater vein. FIG. 4 is a plan view showing the relationship between the contaminated water vein and the contaminated soil region and the location of the boring hole. That is, when the groundwater veins a and b are contaminated, the pollution source (I) must be present between them and the clean groundwater vein c upstream thereof. Around this pollution source (I), there is usually an area (II) containing contaminated soil contaminated by pollutants diffused from the pollution source. In the present invention, the pollution source (I) and the area (II) including the surrounding contaminated soil are collectively referred to as a contaminated soil area. The borehole is assumed to be located around the pollution source (I) and the area (II) containing the polluted soil with reference to the accumulated data, geological structure, surrounding topography, etc. Several places, usually 4-10
It is drilled at a place.

【0012】図の例においては、汚染源の周囲にA,
B,C,Dの4個所、汚染土壌を含む地域の周囲にa,
b,c,d,e,fの6個所、合計10個所にボーリン
グ穴が穿設されている。このボーリング穴の大きさは通
常50〜200mm、深さ5〜20mであるが、必要な
らばさらに大きくしたり、深くすることもできる。
In the example of FIG. 4 , A, A
Around the area containing contaminated soil at four locations B, C, and D,
Boring holes are drilled at 6 positions b, c, d, e, and f, a total of 10 positions. The size of the boring hole is usually 50 to 200 mm and the depth is 5 to 20 m, but it can be made larger or deeper if necessary.

【0013】図は、ボーリング穴を穿設した領域の土
地断面図を示す。汚染源(I)の下方に地下水脈(II
I)が通り、汚染源(I)やその周囲の汚染土壌を含む
地域(II)から滲出する汚染物質によりしだいに汚染
されていく。本発明方法においては、次にこのボーリン
グ穴のそれぞれに微生物観察用マイクロ検知装置を取り
付け、これを上下移動、回転させながら、ボーリング穴
の壁面を観察する。通常、汚染土壌中には、その中の汚
染物質を栄養源とする微生物が存在するが、それは菌株
の種類や環境の条件によって活動状態に差を生じる。
FIG. 5 shows a cross-sectional view of land in a region where a boring hole is formed. Below the pollution source (I), the groundwater vein (II
I) passes through, and is gradually polluted by pollutants leaching from the area (II) including the pollution source (I) and the surrounding contaminated soil. In the method of the present invention, next, a micro-detecting device for observing microorganisms is attached to each of the boring holes, and the wall surface of the boring holes is observed while vertically moving and rotating the micro-detecting device. Usually, in the contaminated soil, microorganisms whose nutrients are the pollutants are present, but their activity varies depending on the strain type and environmental conditions.

【0014】本発明方法においては、前記した微生物観
察用マイクロ検知装置を操作して、周囲壁面の微生物の
生育、繁殖状態を観察し、必要に応じボーリング穴を介
して活発に活動する微生物を採取し、活動が不活発な土
壌に接種したのち、観察により得られた情報を処理し
て、微生物の生育及び繁殖条件を的確に制御する。この
条件制御には、コンピュータを用い、情報の入力、演算
処理を行い、その処理結果と栄養源の供給、環境条件の
調節とを連動させて行うのが有利である。
In the method of the present invention, the above-mentioned micro-detecting device for observing microorganisms is operated to observe the growth and reproduction state of the microorganisms on the surrounding wall surface, and if necessary, the active microorganisms are collected through the boring hole. Then, after inoculating the inactive soil, the information obtained by the observation is processed to appropriately control the growth and reproduction conditions of the microorganism. For this condition control, it is advantageous to use a computer to input information, perform arithmetic processing, and interlock the processing result with the supply of nutrient sources and the adjustment of environmental conditions.

【0015】[0015]

【実施例】次に実施例により本発明の好適な実施態様を
説明する。
EXAMPLES Next, preferred embodiments of the present invention will be described with reference to examples.

【0016】まず、汚染源と汚染物質含有範囲の特定を
行う。土壌の各地点にボーリングにより穴を開け、穴中
の汚染物質の種類及び濃度を、君津式汚染調査法、汚染
地下水サンプリング法、吸引ポンプガスクロマトグラフ
ィー法、ATD/GC/PID分析法などにより求め、
汚染源と汚染範囲を特定し、図に示す汚染マップを作
成する。この際、各ボーリング地点における土壌中に存
在する微生物の種類と数、及び存在する微生物の周囲環
境、例えば温度、湿度、pHなども測定する。これら
は、前記汚染物質の種類及び濃度と共に、土壌の深度方
向の地層別に測定し、深度方向の分布状態をも把握して
おく。なお、地下水脈がある場合は、地下水に含まれる
汚染物質の種類及び濃度を測定する。
First, the pollution source and the range of pollutant content are specified. Drilling holes at each point of the soil and determining the type and concentration of pollutants in the holes by the Kimitsu method, pollution groundwater sampling method, suction pump gas chromatography method, ATD / GC / PID analysis method, etc. ,
The pollution source and the pollution range are specified, and the pollution map shown in FIG. 4 is created. At this time, the type and number of microorganisms existing in the soil at each boring point and the surrounding environment of the existing microorganisms, such as temperature, humidity and pH, are also measured. These are measured for each soil stratum in the depth direction together with the type and concentration of the pollutant, and the distribution state in the depth direction is also grasped. If there is a groundwater vein, measure the type and concentration of pollutants contained in the groundwater.

【0017】図において、A,B,C及びDで囲まれ
た領域(I)が汚染源であり、a,b,c,d,e及び
fで囲まれた領域が汚染土壌を含む地域(II)であ
る。また、ハは地下水脈の上流、イ及びロは地下水脈の
下流を示す。
In FIG. 4 , a region (I) surrounded by A, B, C and D is a pollution source, and a region surrounded by a, b, c, d, e and f contains a contaminated soil ( II). In addition, C indicates the upstream of the groundwater vein, and A and B indicate the downstream of the groundwater vein.

【0018】次に、図に示す汚染マップに基づき、汚
染源検査地点(A,B,C及びD)、汚染範囲検査地点
(a,b,c,d,e及びf)、地下水脈検査地点
(イ,ロ,ハ)をボーリングして、それぞれの穴に図1
に示すマイクロ検知装置を設置する。汚染対策結果の把
握は、地下水脈の上流ハおよび下流イ及びロの各水質を
検査し、土壌浄化の対策を実施することにより水質汚染
度を規準値以下にすることである。
Next, based on the pollution map shown in FIG. 4 , pollution source inspection points (A, B, C and D), pollution range inspection points (a, b, c, d, e and f), groundwater vein inspection points. Boring (a, b, c), each hole is shown in Figure 1.
Install the micro-detector shown in. To understand the results of pollution control, it is necessary to reduce the water pollution level to below the standard value by inspecting each of the upstream and downstream water quality of the groundwater vein and implementing the soil remediation measures.

【0019】挿入されたマイクロ検知装置を、上下移動
及び回転移動させて、壁面の土壌における微生物の生
育、活動状況を、テレビモニターで観察し、必要に応じ
微生物の繁殖、活動に必要な処置を施す。この処置とし
ては、例えば土壌中に微生物が存在している場合は、そ
の微生物に必要な栄養源を添加したり、pH調整剤や湿
度調整剤を添加して、該微生物の繁殖、活動に最適なp
H及び湿度に調整する処置などが行われる。なお、必要
ならば作用の活発な微生物を接種し、同様な処置を行っ
てもよい。また、土壌中に微生物が存在しない場合に
は、微生物を新たに添加し、前記と同様の処置を行う。
The inserted micro-detector is moved up and down and rotated to observe the growth and activity of microorganisms on the soil on the wall surface on a TV monitor, and if necessary, to reproduce the microorganisms and take necessary measures for the activity. Give. For this treatment, for example, when a microorganism is present in the soil, the nutrient source necessary for the microorganism is added, or a pH adjusting agent or a humidity adjusting agent is added to make it optimal for the reproduction and activity of the microorganism. Na p
Measures such as adjusting to H and humidity are performed. If necessary, a microorganism having a vigorous action may be inoculated and the same treatment may be performed. When the microorganism does not exist in the soil, the microorganism is newly added and the same treatment as described above is performed.

【0020】マイクロ検知装置による微生物の生育、活
動状況と、土壌浄化程度とを時系列的に記録し、汚染物
分解微生物の繁殖、活動に必要な処置を的確、かつ迅速
に施すのが効果的である。
It is effective to record the growth and activity status of microorganisms by the micro-detection device and the degree of soil purification in time series, and to appropriately and swiftly perform the necessary measures for reproduction and activity of microorganisms that decompose pollutants. Is.

【0021】[0021]

【発明の効果】本発明によると、簡便な微生物マイクロ
検知装置が提供され、これを用いると、ボーリング穴内
の土壌微生物の生育、活動状況を精密に観察しながら、
汚染物分解微生物を活発に繁殖、活動させる処置を迅速
かつ的確に施すことにより、汚染土壌から汚染物質を減
少させ、汚染土壌からの地下水脈中への汚染物質の流入
を抑制し、汚染された地下水脈を効率よく浄化すること
ができる。
According to the present invention, a simple microbe micro-detecting device is provided, and by using it , while observing the growth and activity of soil micro-organisms in a boring hole with precision,
Contaminants were polluted by reducing the pollutants from the polluted soil, suppressing the inflow of pollutants into the groundwater vein from the polluted soil, by rapidly and appropriately performing the measures to actively reproduce and activate the pollutant-degrading microorganisms. The groundwater vein can be efficiently purified.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のファイバースコープ方式マイクロ検
知装置の縦断面図
FIG. 1 is a fiberscope type microinspection system of the present invention .
Intelligent device vertical section

【図2】 同上の下面図 FIG. 2 is a bottom view of the above.

【図3】 本発明の固定撮像素子方式マイクロ検知装置
の縦断面図
FIG. 3 is a fixed image pickup device type micro-detector of the present invention .
Longitudinal section

【図4】 汚染水脈と汚染土壌領域及びボーリング穴の
穿設位置を示す平面図
[Fig. 4] Contaminated water vein, contaminated soil area and boring hole
Plan view showing the drilling position

【図5】 ボーリング穴を穿設した領域の土地断面図 [Fig. 5] Land cross-section of the area where the boring hole is drilled

【符号の説明】[Explanation of symbols]

1 対物レンズ 1´固定撮像素子 2 隙間センサ 3 照明ランプ 4 内視筒 5 軸継ぎ手機構 6 支持部材 8 光ファイバ束 14 接眼レンズ 16 ボーリング穴 1 Objective lens 1'fixed image sensor 2 Gap sensor 3 lighting lamps 4 Endoscope 5 shaft joint mechanism 6 Support members 8 optical fiber bundle 14 eyepiece 16 boring holes

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G02B 23/26 (72)発明者 重森 典久 東京都港区西新橋2丁目8番11号 第7 東洋海事ビル8階 財団法人地球環境産 業技術研究機構内 (72)発明者 小野澤 由夏 東京都港区西新橋2丁目8番11号 第7 東洋海事ビル8階 財団法人地球環境産 業技術研究機構内 (72)発明者 蜂谷 昌彦 東京都港区西新橋2丁目8番11号 第7 東洋海事ビル8階 財団法人地球環境産 業技術研究機構内 (72)発明者 鈴木 喜計 千葉県君津市久保2丁目13番1号 千葉 県君津市役所内 (56)参考文献 特開 平4−254692(JP,A) 特開 平3−132590(JP,A) 特開 平2−157391(JP,A) 特開 平2−101283(JP,A) 特開 平1−308906(JP,A) 特開 平1−210594(JP,A) 特開 平7−57577(JP,A) 特表 平4−501231(JP,A) 特表 平7−508324(JP,A) (58)調査した分野(Int.Cl.7,DB名) B09C 1/10 C02F 3/00 E21B 47/00 G02B 23/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI G02B 23/26 (72) Inventor Norihisa Shigemori 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building 8F Foundation Institute for Global Environmental Technology (72) Inventor Yuka Onozawa 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building 8th floor Institute for Global Environmental Technology (72) Inventor Hachiya Masahiko 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building 8th floor, Research Institute for Global Environmental Science and Technology (72) Inventor Kikei Suzuki 2-13-1 Kubo, Kimitsu-shi, Chiba Chiba Kimitsu City Hall, prefecture (56) References JP-A-4-254692 (JP, A) JP-A-3-132590 (JP, A) JP-A-2-157391 (JP, A) JP-A-2-101283 (JP , A) 1-308906 (JP, A) JP-A 1-210594 (JP, A) JP-A 7-57577 (JP, A) Special Table 4-501231 (JP, A) Special Table 7-508324 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B09C 1/10 C02F 3/00 E21B 47/00 G02B 23/24

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下端部分を軸継ぎ手機構(5)により屈
曲自在とし、中央適所にボーリング穴(16)に取り付
けるための支持部材(6)と上下移動用及び回転用駆動
機構(10,11)を備えた内視筒(4)と内視筒下端
開口部(7)に配設された対物レンズ(1)又は固体撮
像素子(1´)及び照明ランプ(3)、内視筒上端開口
(15)に配設された接眼レンズ(14)、対物レン
(1)と接眼レンズ(14)を連結するため内視筒
(4)に内蔵された光ファイバ束(8)から構成され、
かつボーリング穴(16)の壁面と対物レンズとの間の
距離を制御するための、前記軸継ぎ手機構(5)と連動
する隙間センサ(2)を備えたことを特徴とする微生物
観察用マイクロ検知装置。
1. A support member (6) for attaching a lower end portion to a boring hole (16) in a central position in a freely bendable manner by a shaft coupling mechanism (5) , and a drive mechanism (10, 11) for vertical movement and rotation. Objective lens (1) or solid-state imaging device (1 ') and illumination lamp (3) arranged in an endoscope barrel (4) and an endoscope barrel lower end opening (7) , and an endoscope barrel upper end opening An eyepiece (14) arranged in (15) , an endoscope for connecting the objective lens (1) and the eyepiece (14)
The optical fiber bundle (8) built in (4) ,
A micro-sensor for observing microorganisms, characterized by further comprising a gap sensor (2) interlocking with the shaft coupling mechanism (5) for controlling the distance between the wall surface of the boring hole (16) and the objective lens. apparatus.
【請求項2】 対物レンズの代りに固定撮像素子を有す
る請求項記載の微生物観察用マイクロ検知装置。
2. A microorganism observing micro detecting device according to claim 1, wherein in a fixed image pickup device instead of the objective lens.
【請求項3】 汚染された地下水脈を浄化するに当り、
地下水脈の上流に位置する汚染土壌領域の複数個所にボ
ーリング穴を穿設し、このボーリング穴を介して汚染物
質を栄養源とする微生物を汚染土壌に接種したのち、各
ボーリング穴に請求項1又は2記載の微生物観察用マイ
クロ検知装置を取り付け、周囲壁面の微生物の生育及び
繁殖状態を経時的に検知し、得られた情報に基づいて、
微生物の生育及び繁殖条件を的確に制御することにより
汚染物質を減少させ、地下水脈への汚染物質の流入を抑
制することを特徴とする汚染された地下水脈の浄化方
法。
3. In purifying a contaminated groundwater vein,
Drilled the borehole at a plurality of contaminated soil region located upstream of the underground water vein, claim 1 contaminants through the bore hole after the microorganisms to nutrient was inoculated into contaminated soil, each bore hole Or , the micro-detection device for observing microorganisms according to 2 is attached, and the growth and reproduction state of microorganisms on the surrounding wall surface are detected over time, and based on the obtained information,
A method for purifying a contaminated groundwater vein, which comprises controlling the growth and reproduction conditions of microorganisms to reduce the pollutants and suppress the inflow of the pollutants into the groundwater vein.
【請求項4】 微生物の生育及び繁殖状態が良好なボー
リング穴から採取した微生物を、微生物の生育及び繁殖
状態が不良のボーリング穴へ接種する請求項記載の浄
化方法。
4. The purification method according to claim 3 , wherein the microorganism collected from a borehole in which the growth and reproduction of the microorganism is good is inoculated into the borehole in which the growth and reproduction of the microorganism is poor.
【請求項5】 ボーリング穴を介して汚染土壌に、微生
物の繁殖を促進するための栄養源を供給する請求項3又
は4に記載の浄化方法。
5. A contaminated soil through the borehole, according to claim 3 also supplies the nutrients for promoting the growth of microorganisms
Is the purification method described in 4 .
JP08425895A 1995-04-10 1995-04-10 Micro-detection device for microbial observation and method for purifying contaminated groundwater vein using the same Expired - Lifetime JP3505260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08425895A JP3505260B2 (en) 1995-04-10 1995-04-10 Micro-detection device for microbial observation and method for purifying contaminated groundwater vein using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08425895A JP3505260B2 (en) 1995-04-10 1995-04-10 Micro-detection device for microbial observation and method for purifying contaminated groundwater vein using the same

Publications (2)

Publication Number Publication Date
JPH08281282A JPH08281282A (en) 1996-10-29
JP3505260B2 true JP3505260B2 (en) 2004-03-08

Family

ID=13825436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08425895A Expired - Lifetime JP3505260B2 (en) 1995-04-10 1995-04-10 Micro-detection device for microbial observation and method for purifying contaminated groundwater vein using the same

Country Status (1)

Country Link
JP (1) JP3505260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599185B2 (en) * 2015-09-14 2019-10-30 株式会社不動テトラ Purification method using microorganisms

Also Published As

Publication number Publication date
JPH08281282A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
Anguish et al. Computer-assisted laser scanning and video microscopy for analysis of Cryptosporidium parvum oocysts in soil, sediment, and feces
Huettel et al. Degradation of Deepwater Horizon oil buried in a Florida beach influenced by tidal pumping
Entry et al. The influence of vegetation in riparian filterstrips on coliform bacteria: II. Survival in soils
Coppellotti et al. Ciliate colonization of artificial substrates in the Lagoon of Venice
CN112974497B (en) Agricultural heavy metal pollution farmland soil repair system
JP3491929B2 (en) Purification method of groundwater contaminated by soil contamination
JP3505260B2 (en) Micro-detection device for microbial observation and method for purifying contaminated groundwater vein using the same
CN1759187A (en) Method and apparatus for environmental monitoring and bioprospecting
Geller et al. Flow dynamics and potential for biodegradation of organic contaminants in fractured rock vadose zones
JP3831235B2 (en) Soil packed column test system
CN111644457B (en) Bioremediation method for metal pollution treatment
Wohanka et al. Importance and characterization of the biological component in slow filters
JPH0999282A (en) Method for purifying polluted ground water vein by using model
JPH0839083A (en) Formation of original position bacteria decomposition region
Korhola et al. Marked early 20th century pollution and the subsequent recovery of Töölö Bay, central Helsinki, as indicated by subfossil diatom assemblage changes
JPH05172728A (en) Hydrosphere observation, surveillance and purification system
Camann et al. Microorganism levels in air near spray irrigation of municipal wastewater: the Lubbock infection surveillance study
JP3402699B2 (en) Soil remediation method using microorganisms
Thomas et al. Field demonstration of mycoremediation for removal of fecal coliform bacteria and nutrients in the Dungeness watershed, Washington. Final Report
Steele et al. Behavioural assessment of the sublethal effects of aquatic pollutants
JP4743438B2 (en) Soil purification method
KR100368864B1 (en) Submerged microscope
KR20180134266A (en) Device for collecting solid matrix samples from an animal carcass disposal facility
JP2007144364A (en) Pollution treatment system and pollution treatment method
JPH09267082A (en) Method for purifying contaminated soil

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

EXPY Cancellation because of completion of term