JP3505111B2 - Operation method of sodium-sulfur battery - Google Patents

Operation method of sodium-sulfur battery

Info

Publication number
JP3505111B2
JP3505111B2 JP21833299A JP21833299A JP3505111B2 JP 3505111 B2 JP3505111 B2 JP 3505111B2 JP 21833299 A JP21833299 A JP 21833299A JP 21833299 A JP21833299 A JP 21833299A JP 3505111 B2 JP3505111 B2 JP 3505111B2
Authority
JP
Japan
Prior art keywords
internal resistance
charging
correction
sodium
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21833299A
Other languages
Japanese (ja)
Other versions
JP2000182662A (en
Inventor
啓一 森
富夫 玉越
俊明 久野
春実 高木
一人 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP21833299A priority Critical patent/JP3505111B2/en
Publication of JP2000182662A publication Critical patent/JP2000182662A/en
Application granted granted Critical
Publication of JP3505111B2 publication Critical patent/JP3505111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、ナトリウム−硫
黄電池を過放電又は過充電させることなく、許容される
限界まで放電又は充電させることを可能ならしめるナト
リウム−硫黄電池の運転方法に関する。
TECHNICAL FIELD The present invention relates to a method for operating a sodium-sulfur battery, which enables the sodium-sulfur battery to be discharged or charged to an allowable limit without being overdischarged or overcharged.

【0002】[0002]

【従来の技術】 ナトリウム−硫黄電池(以下、「Na
S電池」という。)は、昼夜間の格差の大きい電力需要
の平準化のための装置、特に夏期の電力需要の急増する
時間帯へ電力を供給するいわゆるピークカット用電力貯
蔵装置として、或いは自然災害時の非常用電源として、
その他各種用途に、その実用化が期待されている。
2. Description of the Related Art Sodium-sulfur batteries (hereinafter referred to as "Na
S battery ". ) Is a device for leveling power demand with a large difference between daytime and nighttime, especially as a so-called peak cut power storage device that supplies power during the time when the power demand in the summer is rapidly increasing, or for emergency use during natural disasters. As a power source
Practical applications are expected for various other uses.

【0003】 NaS電池は、実用的には複数の単電池
を直列に接続した単電池群(以下、「NaS電池ストリ
ング」という。)を、複数並列に接続してNaS電池ブ
ロックとし、更にNaS電池ブロックを複数接続してN
aS電池モジュールを形成し、インバータ等と共に回路
を構成することで、NaS電池電力貯蔵システムとして
使用される。
The NaS battery is a NaS battery block in which a plurality of unit cells in which a plurality of unit cells are connected in series (hereinafter, referred to as “NaS battery string”) are connected in parallel to form a NaS battery block. Connecting multiple blocks N
It is used as a NaS battery power storage system by forming an aS battery module and forming a circuit together with an inverter and the like.

【0004】 このようなNaS電池モジュールの運転
方法としては、従来から、夜間に所定時間充電し、昼間
の所定時間に放電する充放電サイクルを毎日繰り返す方
法が採られている。ここで、ピークカット用等の電力貯
蔵用電源としては、電池を損傷させない範囲で許容限界
まで電流を放電又は充電することが望ましい運転方法で
あるが、これまでそのような運転方法は見出されていな
い。そのため、電池を損傷させない安全な範囲で夜間に
所定時間、例えば10時間充電し、昼間に所定時間、例
えば8時間放電するといった充放電サイクルを繰り返す
運転方法が行われてきた。
As a method of operating such a NaS battery module, conventionally, there has been adopted a method in which a charging / discharging cycle of charging for a predetermined time at night and discharging for a predetermined time during the day is repeated every day. Here, as a power source for power storage such as peak cut, it is an operating method that is desirable to discharge or charge current to an allowable limit within a range that does not damage the battery, but such an operating method has been found so far. Not not. Therefore, an operation method has been performed in which a charging / discharging cycle is repeated such that the battery is charged for a predetermined time at night, for example, 10 hours, and discharged for a predetermined time, for example, 8 hours, in a safe range that does not damage the battery.

【0005】[0005]

【発明が解決しようとする課題】 ところで、NaS電
池においては、放電が進むと、個々の単電池の陽極側に
多硫化ナトリウム(以下、「Na2X」と記す。)が生
成し、陰極のナトリウムが欠乏するまで放電が進むと、
その後の充放電が不可能となる。また、放電が進み陽極
のNa2Xの組成がNa22.7になると350℃以下の
温度では固相が生じ、これ以上の放電が不可能となる。
更に、充電の際に金属ナトリウムとして陰極に戻らない
との問題も生じる。従って、通常は、陰極のナトリウム
が欠乏する直前、又はNa2Xの組成として例えばNa
23程度が放電の限界となる。
By the way, in the NaS battery, as the discharge progresses, sodium polysulfide (hereinafter, referred to as “Na 2 S X ”) is generated on the anode side of each unit cell, and the cathode. When the discharge progresses until the sodium is depleted,
The subsequent charge / discharge becomes impossible. When the discharge progresses and the composition of Na 2 S X of the anode becomes Na 2 S 2.7 , a solid phase is generated at a temperature of 350 ° C. or lower, and further discharge cannot be performed.
Further, there is a problem that metallic sodium does not return to the cathode during charging. Therefore, it is usually used just before the cathode is deficient in sodium or as a composition of Na 2 S x , for example, Na.
The discharge limit is about 2 S 3 .

【0006】 単電池の起電力はNa2Xの活量で決ま
るため、放電状態によりその値が異なるが、Na25
相当する放電深度より放電状態が浅い場合には、液相の
硫黄が存在し、硫黄の電位に相当する約2.08Vに一
定に保たれる。しかし、これより放電深度が深くなると
起電力は徐々に低くなり、放電末に相当する例えばNa
23では開路電圧は1.78Vになる。
Since the electromotive force of a single cell is determined by the activity of Na 2 S X , its value varies depending on the discharge state. However, when the discharge state is shallower than the discharge depth corresponding to Na 2 S 5 , the Sulfur is present and held constant at about 2.08 V, which corresponds to the sulfur potential. However, when the depth of discharge becomes deeper than this, the electromotive force gradually decreases, and for example, at the end of discharge, for example, Na
At 2 S 3 , the open circuit voltage is 1.78V.

【0007】 従って、単電圧の開路電圧が1.8Vに
達するまで放電できると考えられるが、実際に電力供給
用の電源において、放電中に放電を中止して開路電圧を
測定することはできない。また、放電時の作動電圧は、
開路電圧から内部抵抗と放電電流の積だけ低くなるが、
放電中の内部抵抗は温度等の種々の要因によって変化す
るため、放電中の作動電圧から相当する開路電圧を把握
することもできない。
Therefore, it is considered that discharging can be performed until the single-circuit open circuit voltage reaches 1.8 V. However, in a power supply for power supply, it is actually impossible to stop the discharge during discharging and measure the open circuit voltage. The operating voltage during discharge is
It becomes lower than the open circuit voltage by the product of internal resistance and discharge current,
Since the internal resistance during discharge changes due to various factors such as temperature, it is not possible to grasp the corresponding open circuit voltage from the operating voltage during discharge.

【0008】 更には、内部抵抗は陽極容器の腐食など
により経年変化するため、放電中の作動電圧から相当す
る開路電圧を把握することができない。このように、放
電中の作動電圧からどの時点で放電を停止すれば電池を
損傷させることなく許容限界まで放電できるかについて
の運転方法は、これまで見い出されていなかった。
Furthermore, since the internal resistance changes with time due to corrosion of the anode container, it is impossible to grasp the corresponding open circuit voltage from the operating voltage during discharge. As described above, no operating method has been found so far as to at what point from the operating voltage during discharging the discharging can be stopped up to the allowable limit without damaging the battery.

【0009】 一方、充電の場合も同様に、充電中の内
部抵抗が種々の要因で変化するため、過充電による電池
の損傷を招くことなく許容限界まで充電させる運転方法
は知られていなかった。
On the other hand, also in the case of charging, similarly, since the internal resistance during charging changes due to various factors, an operating method for charging to an allowable limit without causing damage to the battery due to overcharging has been known.

【0010】[0010]

【課題を解決するための手段】 本発明は上述した従来
の問題点に鑑みてなされたものであり、その目的とする
ところは、過放電、過充電させることなく許容限界まで
放電又は充電できるNaS電池の運転方法を提供するこ
とにある。
Means for Solving the Problems The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to discharge or charge NaS that can be discharged or charged to an allowable limit without being overdischarged or overcharged. It is to provide a method of operating a battery.

【0011】 即ち、本発明によれば、複数の単電池を
直列に接続してなるナトリウム−硫黄電池の放電に係る
運転方法であって、ナトリウム−硫黄電池の放電中の温
度を測定し、放電深度をカウントして、当該ナトリウム
−硫黄電池の放電中の両端間の作動電圧Vが、内部抵抗
の温度による補正及び放電深度による補正を加味した補
正電圧VLに達した時点で放電を停止することを特徴と
するナトリウム−硫黄電池の運転方法、が提供される。
ここで補正電圧VLは、VL=VO×N−I×R1×K1×
2、で表される。
That is, according to the present invention, there is provided an operating method for discharging a sodium-sulfur battery in which a plurality of unit cells are connected in series, in which the temperature during discharging of the sodium-sulfur battery is measured and discharge is performed. The depth is counted, and the discharge is stopped when the operating voltage V across both ends of the sodium-sulfur battery during discharging reaches a correction voltage V L that takes into account the temperature-dependent correction of the internal resistance and the correction of the discharge depth. A method for operating a sodium-sulfur battery is provided.
Here, the correction voltage V L is V L = V O × N−I × R 1 × K 1 ×
It is represented by K 2 .

【0012】 また、本発明によれば、複数の単電池を
直列に接続してなる単電池群を更に複数並列に接続して
なるナトリウム−硫黄電池の放電に係る運転方法であっ
て、ナトリウム−硫黄電池の放電中の温度を測定し、放
電深度をカウントし、更に故障した単電池を検出して、
当該ナトリウム−硫黄電池の放電中の両端間の作動電圧
Vが、内部抵抗の温度による補正と放電深度による補正
及び単電池の故障による並列数の変化による補正を加味
した補正電圧VLに達した時点で放電を停止することを
特徴とするナトリウム−硫黄電池の運転方法、が提供さ
れる。ここで補正電圧VLは、VL=VO×N−I×R1×
1×K2×K3、で表される。
Further, according to the present invention, there is provided an operating method for discharging a sodium-sulfur battery, in which a plurality of unit cells formed by connecting a plurality of unit cells in series are further connected in parallel. The temperature of the sulfur battery during discharge is measured, the depth of discharge is counted, and the defective cell is detected.
The operating voltage V across the sodium-sulfur battery during discharging has reached a correction voltage V L that takes into account the correction of the internal resistance due to the temperature and the depth of discharge, and the correction due to the change in the number of parallels due to the failure of the single battery. A method for operating a sodium-sulfur battery, characterized in that the discharge is stopped at a time point. Here, the correction voltage V L is V L = V O × N−I × R 1 ×
It is represented by K 1 × K 2 × K 3 .

【0013】 また、本発明によれば、複数の単電池を
直列に接続してなる単電池群を更に複数並列に接続して
なるナトリウム−硫黄電池の放電に係る運転方法であっ
て、ナトリウム−硫黄電池の放電中の温度を測定し、放
電深度をカウントし、故障した単電池を検出し、更に充
放電回数及び/又は運転日数をカウントして、当該ナト
リウム−硫黄電池の放電中の両端間の作動電圧Vが、内
部抵抗の温度による補正と放電深度による補正と単電池
の故障による並列数の変化による補正及び充放電回数及
び/又は運転日数による補正を加味した補正電圧VL
達した時点で放電を停止することを特徴とするナトリウ
ム−硫黄電池の運転方法、が提供される。ここで補正電
圧VLは、VL=VO×N−I×R1×K1×K2×K3×
(K4もしくはK5又はK4×K5))、で表され、内部抵
抗の充放電回数による補正係数K4及び/又は内部抵抗
の運転日数による補正係数K5としては、R=A×D1/2
+R1から求められる補正係数を用いることが好まし
い。
Further, according to the present invention, there is provided an operating method for discharging a sodium-sulfur battery, which is formed by connecting a plurality of unit cells formed by connecting a plurality of unit cells in series, in parallel with each other. The temperature during discharging of the sulfur battery is measured, the depth of discharge is counted, the defective single battery is detected, and the number of charge / discharge and / or the number of operating days is further counted, and the both ends of the sodium-sulfur battery during discharging are counted. The operating voltage V has reached the correction voltage V L , in which the correction by the temperature of the internal resistance, the correction by the depth of discharge, the correction by the change in the number of parallels due to the failure of the unit cell, and the correction by the number of charge / discharge and / or the number of operating days are taken into consideration. A method for operating a sodium-sulfur battery, characterized in that the discharge is stopped at a time point. Here the correction voltage V L is, V L = V O × N -I × R 1 × K 1 × K 2 × K 3 ×
(K 4 or K 5 or K 4 × K 5 )), and R = A × as a correction coefficient K 4 according to the number of charging / discharging times of the internal resistance and / or a correction coefficient K 5 according to the number of operating days of the internal resistance. D 1/2
It is preferable to use the correction coefficient obtained from + R 1 .

【0014】 また、本発明によれば、複数の単電池を
直列に接続してなるナトリウム−硫黄電池の充電に係る
運転方法であって、ナトリウム−硫黄電池の充電中の温
度を測定し、充電深度をカウントして、当該ナトリウム
−硫黄電池の充電中の両端間の作動電圧Vが、内部抵抗
の温度による補正と充電深度による補正を加味した補正
電圧VHに達した時点で充電を停止することを特徴とす
るナトリウム−硫黄電池の運転方法、が提供される。こ
こで補正電圧VHは、VH=Vh×N+I×R1×K1×
C、で表される。
Further, according to the present invention, there is provided an operating method for charging a sodium-sulfur battery, which is formed by connecting a plurality of unit cells in series, wherein the temperature during charging of the sodium-sulfur battery is measured and charging is performed. counting the depth, sodium the - sulfur operating voltage V across the charging of the battery stops charging when it reaches the correction voltage V H obtained by adding the correction by the correction state of charge according to the temperature of the internal resistance A method for operating a sodium-sulfur battery is provided. Here, the correction voltage V H is V H = V h × N + I × R 1 × K 1 ×
It is represented by C.

【0015】 また、本発明によれば、複数の単電池を
直列に接続してなる単電池群を更に複数並列に接続して
なるナトリウム−硫黄電池の充電に係る運転方法であっ
て、ナトリウム−硫黄電池の充電中の温度とを測定し、
充電深度をカウントし、故障した単電池を検出して、当
該ナトリウム−硫黄電池の充電中の両端間の作動電圧V
が、内部抵抗の温度による補正と充電深度による補正及
び単電池の故障による並列数の変化による補正を加味し
た補正電圧VHに達した時点で充電を停止することを特
徴とするナトリウム−硫黄電池の運転方法、が提供され
る。ここで、補正電圧VHは、VH=Vh×N+I×R1×
1×C×K3、で表される。
Further, according to the present invention, there is provided an operating method for charging a sodium-sulfur battery, which is formed by connecting a plurality of unit cells in which a plurality of unit cells are connected in series to each other in parallel. Measure the temperature during charging of the sulfur battery,
The depth of charge is counted, a defective single cell is detected, and the operating voltage V across the sodium-sulfur battery during charging is detected.
However, the charging is stopped when the correction voltage V H is reached, which takes into account the correction of the internal resistance according to the temperature, the correction of the depth of charge, and the correction of the change in the number of parallels due to the failure of the single battery. Driving method is provided. Here, the correction voltage V H is V H = V h × N + I × R 1 ×
It is represented by K 1 × C × K 3 .

【0016】 また、本発明によれば、複数の単電池を
直列に接続してなる単電池群を更に複数並列に接続して
なるナトリウム−硫黄電池の充電に係る運転方法であっ
て、ナトリウム−硫黄電池の充電中の温度を測定し、充
電深度をカウントし、故障した単電池を検出し、更に充
放電回数及び/又は運転日数をカウントして、当該ナト
リウム−硫黄電池の充電中の両端間の作動電圧Vが、内
部抵抗の温度による補正と充電深度による補正と単電池
の故障による並列数の変化による補正及び充放電回数及
び/又は運転日数による補正を加味した補正電圧VH
達した時点で充電を停止することを特徴とするナトリウ
ム−硫黄電池の運転方法、が提供される。ここで補正電
圧VHは、VH=Vh×N+I×R1×K1×C×K3×(K
4もしくはK5又はK4×K5)、で表され、内部抵抗の充
放電回数による補正係数K4及び/又は内部抵抗の運転
日数による補正係数K5としては、R=A×D1/ 2+B×
D+R1から求められる補正係数を用いることがより好
ましい。
Further, according to the present invention, a plurality of unit cells are provided.
Connect more than one unit cell group connected in series in parallel
Is the operating method for charging a sodium-sulfur battery
Measure the temperature during charging of the sodium-sulfur battery and
The depth of electricity is counted, the defective cell is detected, and
By counting the number of discharges and / or the number of operating days,
The operating voltage V across the lithium-sulfur battery during charging is
Compensation by temperature of part resistance and compensation by depth of charge and unit cell
And charge / discharge frequency
And / or correction voltage V with correction based on the number of operating daysHTo
Naturi, characterized by stopping charging when it reaches
A method of operating a Mu-Sulfur battery is provided. Correction voltage here
Pressure VHIs VH= VhXN + IxR1× K1× C × K3× (K
FourOr KFiveOr KFour× KFive), Is represented by
Correction coefficient K depending on the number of dischargesFourAnd / or internal resistance operation
Correction coefficient K depending on the number of daysFiveAs R = A × D1 / 2+ Bx
D + R1It is better to use the correction factor obtained from
Good

【0017】 また、本発明によれば、複数の単電池を
直列に接続してなるナトリウム−硫黄電池の充電に係る
運転方法であって、ナトリウム−硫黄電池の充電中の温
度を測定して、当該ナトリウム−硫黄電池の充電中の両
端間の作動電圧Vが、内部抵抗の温度による補正及び充
電末分極電圧補正を加味した補正電圧VHに達した時点
で充電を停止することを特徴とするナトリウム−硫黄電
池の運転方法、が提供される。ここで補正電圧VHは、
H=(Vh+α)×N+I×R1×K 1、で表される。
Further, according to the present invention, a plurality of unit cells are provided.
Relating to the charging of sodium-sulfur batteries connected in series
The operating method, which is the temperature during charging of the sodium-sulfur battery
Of the battery during the charging of the sodium-sulfur battery.
The operating voltage V between the ends is corrected and charged by the temperature of the internal resistance.
Correction voltage V with the addition of voltage correctionHWhen reached
Sodium-sulfur battery characterized by stopping charging at
A method of operating the pond is provided. Here, the correction voltage VHIs
VH= (Vh+ Α) × N + I × R1× K 1It is represented by.

【0018】 また、本発明によれば、複数の単電池を
直列に接続してなる単電池群を更に複数並列に接続して
なるナトリウム−硫黄電池の充電に係る運転方法であっ
て、ナトリウム−硫黄電池の充電中の温度を測定し、故
障した単電池を検出して、当該ナトリウム−硫黄電池の
充電中の両端間の作動電圧Vが、内部抵抗の温度による
補正と充電末分極電圧補正及び単電池の故障による並列
数の変化による補正を加味した補正電圧VHに達した時
点で充電を停止することを特徴とするナトリウム−硫黄
電池の運転方法、が提供される。ここで補正電圧V
Hは、VH=(Vh+α)×N+I×R1×K1×K3、で表
される。
Further, according to the present invention, there is provided an operating method for charging a sodium-sulfur battery, which is formed by connecting a plurality of unit cells formed by connecting a plurality of unit cells in series, in parallel with each other. The temperature during charging of the sulfur battery is measured, and a defective single battery is detected, and the operating voltage V across the sodium-sulfur battery during charging is corrected by the internal resistance temperature and the end-of-charge polarization voltage correction. There is provided a method for operating a sodium-sulfur battery, characterized in that the charging is stopped when the correction voltage VH , which takes into account the correction due to the change in the number of parallels due to the failure of the single battery, is reached. Here, the correction voltage V
H is represented by V H = (V h + α) × N + I × R 1 × K 1 × K 3 .

【0019】 また、本発明によれば、複数の単電池を
直列に接続してなる単電池群を更に複数並列に接続して
なるナトリウム−硫黄電池の充電に係る運転方法であっ
て、ナトリウム−硫黄電池の充電中の温度を測定し、故
障した単電池を検出し、更に充放電回数及び/又は運転
日数をカウントして、当該ナトリウム−硫黄電池の充電
中の両端間の作動電圧Vが、内部抵抗の温度による補正
と充電末分極電圧補正と単電池の故障による並列数の変
化による補正及び充放電回数及び/又は運転日数による
補正を加味した補正電圧VHに達した時点で充電を停止
することを特徴とするナトリウム−硫黄電池の運転方
法、が提供される。ここで補正電圧VHは、VH=(Vh
+α)×N+I×R1×K1×K3×(K4もしくはK5
はK4×K5)、で表され、内部抵抗の充放電回数による
補正係数K4及び/又は内部抵抗の運転日数による補正
係数K5としては、R=A×D1/2+B×D+R1から求
められる補正係数を用いることが好ましい。
Further, according to the present invention, there is provided an operating method for charging a sodium-sulfur battery, which is formed by connecting a plurality of unit cells in which a plurality of unit cells are connected in series to each other in parallel. The temperature during charging of the sulfur battery is measured, the defective single battery is detected, and the number of charging / discharging times and / or the number of operating days is further counted, so that the operating voltage V across the sodium-sulfur battery during charging is Charging is stopped at the time when the correction voltage V H , which takes into account the correction of the internal resistance with temperature, the correction of the polarization voltage at the end of charging, the correction with the change in the number of parallels due to the failure of the unit cell, and the correction with the number of charge / discharge and / or the number of operating days A method for operating a sodium-sulfur battery is provided. Here, the correction voltage V H is V H = (V h
+ Α) × N + I × R 1 × K 1 × K 3 × (K 4 or K 5 or K 4 × K 5 ), and the correction coefficient K 4 and / or the operation of the internal resistance depending on the number of charging and discharging of the internal resistance. As the correction coefficient K 5 based on the number of days, it is preferable to use the correction coefficient obtained from R = A × D 1/2 + B × D + R 1 .

【0020】 上述したこれらのナトリウム−硫黄電池
の運転方法における補正電圧VHもしくはVLを求めるに
当たって使用される各種のパラメータは、VO:単電池
の放電末設計開路電圧、N:単電池直列数、I:電流、
1:初期内部抵抗、K1:内部抵抗の温度依存による補
正係数、K2:内部抵抗の放電深度による補正係数、
3:単電池群の並列総数と故障単電池を含まない単電
池群数との比、K4:内部抵抗の充放電回数による補正
係数、K5:内部抵抗の運転日数による補正係数、R:
内部抵抗、A及びB:定数、D:充放電回数(K4の場
合)若しくは運転日数(K5の場合)、Vh:単電池の充
電末設計開路電圧、C:内部抵抗の充電深度による補正
係数、α(充電末分極補正電圧):0.01V〜0.1
V、をそれぞれ示している。
Various parameters used in obtaining the correction voltage V H or V L in the above-described operating methods of the sodium-sulfur battery are as follows: V O : discharge end design open circuit voltage of a single battery, N: single battery series Number, I: current,
R 1 : initial internal resistance, K 1 : correction coefficient of internal resistance depending on temperature, K 2 : correction coefficient of internal resistance depending on discharge depth,
K 3: The ratio of the unit cell number group not including a parallel total number a fault cell in the cells groups, K 4: correction coefficient by the number of times of charge and discharge of the internal resistance, K 5: correction coefficient by the driver days internal Resistance, R :
Internal resistance, A and B: constants, D: number of times of charging / discharging (in the case of K 4 ) or number of operating days (in the case of K 5 ), V h : open circuit voltage at the end of charging of single cells, C: depending on the charging depth of the internal resistance Correction coefficient, α (polarization correction voltage after charging): 0.01 V to 0.1
V is shown respectively.

【0021】 さて、上述した本発明のNaS電池の運
転方法においては、組み立て後、即ち未使用のNaS電
池モジュールに、定格電流を30〜60分間放電した時
点で測定した内部抵抗を初期内部抵抗とすることが好ま
しい。また、ナトリウム−硫黄電池モジュールの定期点
検時に測定した内部抵抗を初期内部抵抗としてもよい。
更に、種々の要因による内部抵抗の変化量を予測して、
充電時又は放電時の電圧/電流制御に組み入れ、充放電
を行うと、より精密な制御を行うことができ、好まし
い。
In the NaS battery operating method of the present invention described above, the internal resistance measured after assembly, that is, when the unused NaS battery module is discharged at the rated current for 30 to 60 minutes is referred to as the initial internal resistance. Preferably. Further, the internal resistance measured during the periodic inspection of the sodium-sulfur battery module may be used as the initial internal resistance.
Furthermore, by predicting the amount of change in internal resistance due to various factors,
It is preferable to incorporate the voltage / current control during charging or discharging and perform charging / discharging because more precise control can be performed.

【0022】 なお、これらの本発明において、単電池
もしくは単電池群の「直列に接続」又は「並列に接続」
は、電気的な直列接続、並列接続を意味する。また、上
述の通り、本発明のNaS電池の運転方法は、NaS電
池ストリング、NaS電池ブロックについての運転方法
であるが、これらの運転方法が、NaS電池モジュール
の運転にあたって、その構成要素たるNaS電池ストリ
ング及び/又はNaS電池ブロックを制御するためにも
用いられることは言うまでもない。
In these inventions, the unit cell or unit cell group is “connected in series” or “connected in parallel”.
Means electrical series connection and parallel connection. Further, as described above, the operating method of the NaS battery of the present invention is the operating method for the NaS battery string and the NaS battery block, and these operating methods are the constituent elements of the NaS battery when operating the NaS battery module. It goes without saying that it can also be used to control strings and / or NaS battery blocks.

【0023】[0023]

【発明の実施の形態】 以下、本発明のNaS電池の運
転方法を説明するにあたり、図1(a)の回路図に示し
たような、単電池1を10本ほど直列に接続したストリ
ング3を更に10列ほど並列に接続した、計100本の
単電池1を用いたNaS電池ブロック4(10直列×1
0並列)を、断熱容器2内に収容してなるNaS電池5
を考える。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in explaining the operation method of the NaS battery of the present invention, a string 3 in which about 10 unit cells 1 are connected in series as shown in the circuit diagram of FIG. 1A is used. An NaS battery block 4 (10 series × 1) using 100 cells 1 connected in parallel for about 10 rows
0 parallel) is stored in the heat insulating container 2 NaS battery 5
think of.

【0024】 このNaS電池5を用いた電力貯蔵用装
置6の構成を示す回路図を図1(b)に示す。電力貯蔵
用装置6は、NaS電池の直流系統と交流系統をインバ
ータを介して放電又は充電する装置を示し、その構成
は、NaS電池5の両端間の電圧を測定する電圧計8、
NaS電池5の温度を測定する温度計9、放電又は充電
中の電流を測定する電流計10、電流と放電時間又は電
流と充電時間の積をカウントする深度カウント計(図示
せず)、充放電回数(充放電サイクルの回数を指す。)
カウント計(図示せず)又は運転日数カウント計(図示
せず)及び故障した単電池を検知する検知計(図示せ
ず)と、これら各種の計器からの情報を入力して所定の
演算式に基づいて計算し、インバータの作動を制御する
制御装置15から構成されている。
FIG. 1B is a circuit diagram showing the configuration of the power storage device 6 using the NaS battery 5. The power storage device 6 is a device that discharges or charges the direct current system and the alternating current system of the NaS battery through an inverter, and its configuration is a voltmeter 8 that measures the voltage across the NaS battery 5,
Thermometer 9 for measuring the temperature of NaS battery 5, Ammeter 10 for measuring the current during discharging or charging, Depth counter (not shown) for counting the product of current and discharging time or current and charging time, charging / discharging Number of times (refers to the number of charge / discharge cycles)
A counter (not shown) or a number of operating days counter (not shown) and a detector (not shown) for detecting a failed cell, and information from these various instruments are input into a predetermined calculation formula. It is composed of a control device 15 which calculates based on the above and controls the operation of the inverter.

【0025】 次に、電力貯蔵用装置6の充放電1サイ
クルにおける作動電圧V及び開路電圧の挙動を図2に示
す。運転開始時(a点)の開路電圧Vaは、放電開始と
同時に運転開始時の温度に対応する内部抵抗Rと運転開
始時の電流I1との積だけドロップした放電開始時の作
動電圧Vb(b点)になり、放電が進むにつれて作動電
圧Vは徐々に降下し、放電末の作動電圧VC(c点)に
達した時点で放電を中止する。
Next, FIG. 2 shows behaviors of the operating voltage V and the open circuit voltage in one cycle of charging / discharging of the power storage device 6. The open circuit voltage V a at the start of operation (point a) is the operating voltage V at the start of discharge obtained by dropping the product of the internal resistance R corresponding to the temperature at the start of operation and the current I 1 at the start of operation at the same time as the start of discharge. The operating voltage V gradually decreases as the discharge progresses to b (point b), and the discharge is stopped when the operating voltage V C at the end of discharge (point c) is reached.

【0026】 続く休止時の開路電圧Vdは、放電末の
設計開路電圧に近似した電圧であり、単電池の放電末設
計開路電圧VOと直列単電池数Nの積(VO×N)、即
ち、この場合は10VOに近似した電圧となる。そし
て、充電開始とともに運転開始時(e点)の充電作動電
圧Veは充電開始時の電池の温度に対応する内部抵抗R
と充電開始時の電流I2との積だけ上昇する。充電が進
み充電末の作動電圧Vfに達した時点(f点)で充電を
停止する。
The open circuit voltage V d at the time of the rest is a voltage that is close to the design open circuit voltage at the end of discharge, and is the product of the discharge end designed open circuit voltage V O of the unit cell and the number N of series cells (V O × N). That is, in this case, the voltage is close to 10V O. The charging operation voltage V e at the start of operation (point e) at the start of charging is the internal resistance R corresponding to the temperature of the battery at the start of charging.
And the current I 2 at the start of charging increase. When the charging progresses and the operating voltage V f at the end of charging is reached (point f), the charging is stopped.

【0027】 このような充放電1サイクルにおいて、
作動電圧Vが放電末の作動電圧VCに達したか否かを判
定するにあたっては、まず、放電開始から順次所定の時
間間隔で放電中の作動電圧V及び電池の温度を測定し、
放電深度をカウントする。そして、初期内部抵抗R1
基準にして、温度(内部抵抗の温度依存による補正係数
をK1とする。)及び放電深度(内部抵抗の放電深度に
よる補正係数をK2とする。)により、内部抵抗をR1×
1×K2と補正し、更に補正電圧V LをVL=VO×N−
I×R1×K1×K2により求める。そして、作動電圧V
が補正電圧VLに一致したときは、作動電圧Vが放電末
の作動電圧VCに到達したことを意味する。また、この
ことは作動電圧Vが単電池の放電末設計開路電圧VO
到達していることを意味している。
In one cycle of such charging and discharging,
The operating voltage V is the operating voltage V at the end of dischargeCWhether or not
When determining the discharge, first of all
Measure the operating voltage V and the temperature of the battery during discharge at intervals,
Count the depth of discharge. And the initial internal resistance R1To
As a reference, temperature (correction coefficient due to temperature dependence of internal resistance)
To K1And ) And the depth of discharge (in the depth of discharge of the internal resistance
Correction coefficient by K2And ), The internal resistance is1×
K1× K2And the correction voltage V LTo VL= VO× N-
IxR1× K1× K2Ask by. And the operating voltage V
Is the correction voltage VLWhen the operating voltage V reaches the end of discharge
Operating voltage VCMeans that you have reached. Also this
The fact is that the operating voltage V is the open circuit voltage V at the end of discharge of the cell.OTo
It means that it has reached.

【0028】 ここで、温度による内部抵抗の補正につ
いて、更に詳しく説明する。図3は初期内部抵抗R1
ついて、電池温度を種々変化させた場合の内部抵抗R1
の変化を測定した結果を示している。補正電圧VLの算
出方法は前述の通りであるが、具体的には、放電開始後
の最初の測定点(b+1)における電池の温度T(b+1)
を測定し、T(b+1)に対応した内部抵抗R(b+1)を図3か
ら求めると、測定点(b+1)における温度による内部
抵抗の補正係数K1はK1=R(b+1)/R1となる。
Here, the correction of the internal resistance due to the temperature will be described in more detail. Figure 3 is the initial internal resistance R 1, the internal resistance R 1 when was varied battery temperature
The result of measuring the change of is shown. The method of calculating the correction voltage V L is as described above, but specifically, the temperature T (b + 1) of the battery at the first measurement point (b + 1) after the start of the discharge.
When the internal resistance R (b + 1) corresponding to T (b + 1) is obtained from FIG. 3, the correction coefficient K 1 of the internal resistance due to the temperature at the measurement point (b + 1) is K 1 = R (b +1) / R 1 .

【0029】 引き続き次の測定点(b+2)における
電池の温度T(b+2)を測定し、T(b+2)に対応する内部抵
抗R(b+2)を図3から求めると、測定点(b+2)にお
ける温度による内部抵抗の補正係数K1はK1=(R
(b+1)/R1)×(R(b +2)/R(b+1))=R(b+2)/R1
なる。以下、順次各測定点の温度を測定し、図3より対
応する内部抵抗を求め、各測定点における温度による内
部抵抗の補正係数を求めて、温度による補正を行うので
ある。
At the next measurement point (b + 2)
Battery temperature T(b + 2)To measure T(b + 2)Internal resistance corresponding to
Anti-R(b + 2)Is calculated from Fig. 3, the measurement point (b + 2)
Correction coefficient K of internal resistance due to temperature1Is K1= (R
(b + 1)/ R1) × (R(b +2)/ R(b + 1)) = R(b + 2)/ R1When
Become. Below, measure the temperature at each measurement point in sequence,
Calculate the internal resistance corresponding to the
Since the correction coefficient for the partial resistance is calculated and the correction is performed according to the temperature,
is there.

【0030】 次に、放電深度による内部抵抗の補正に
ついて詳細に説明する。内部抵抗Rは放電が進むにつれ
て変化するが、これは陽極室に生成するNa2Xが、組
成によって異なる抵抗を示すためである。実用に供する
NaS電池は生産の際、各単電池の品質管理が厳しく行
われているため、各単電池間の品質のバラツキは極めて
小さい。従って電池の放電深度による内部抵抗の補正に
ついては単電池で放電深度と内部抵抗の関係を予め測定
し、その結果を実際の電池に当てはめることが可能であ
る。
Next, the correction of the internal resistance based on the depth of discharge will be described in detail. The internal resistance R changes as the discharge progresses, because the Na 2 S X generated in the anode chamber exhibits different resistance depending on the composition. Since the quality control of each unit cell is strictly performed at the time of production of a practically used NaS battery, the variation in quality among the unit cells is extremely small. Therefore, regarding the correction of the internal resistance depending on the depth of discharge of the battery, it is possible to measure the relationship between the depth of discharge and the internal resistance in a single cell in advance and apply the result to the actual battery.

【0031】 そこで、単電池で測定して得られた放電
深度と内部抵抗との関係を図4に示す。放電が進むと内
部抵抗は徐々に上昇し、p点で極大値を示した以後低下
しており、内部抵抗の温度依存性と比較して複雑な挙動
を示している。ここで、p点における陽極室の活物質は
Na25であると推定される。
Therefore, FIG. 4 shows the relationship between the depth of discharge and the internal resistance obtained by measuring with a single cell. As the discharge progresses, the internal resistance gradually rises, reaches a maximum value at the point p, and then decreases, showing a complicated behavior as compared with the temperature dependence of the internal resistance. Here, the active material in the anode chamber at the point p is presumed to be Na 2 S 5 .

【0032】 このように放電深度と内部抵抗の関係を
単電池で予め測定しておいた上で、前述の通りにして補
正電圧VLを求める。具体的には、放電開始と共に放電
深度(電流×時間)をカウントし、放電開始後の最初の
測定点(b+1)における放電深度に対応した内部抵抗
(b+1)を図4から求める。但し、図4は単電池につい
ての値であるから、電池全体の内部抵抗r(b+1)は単電
池の直列数、並列数に基づいて計算する必要がある。各
単電池の内部抵抗は極めて近似した値を有すると仮定で
きることから、測定点(b+1)における放電深度によ
る内部抵抗の補正係数K2は、K2=r(b+1)/R1で表す
ことができる。
As described above, after the relationship between the depth of discharge and the internal resistance is measured in advance in the unit cell, the correction voltage V L is obtained as described above. Specifically, the discharge depth (current × time) is counted with the start of discharge, and the internal resistance r (b + 1) corresponding to the discharge depth at the first measurement point (b + 1) after the start of discharge is obtained from FIG. However, since FIG. 4 shows the values for a single battery, it is necessary to calculate the internal resistance r (b + 1) of the whole battery based on the number of series and parallel numbers of the single battery. Since it can be assumed that the internal resistance of each unit cell has a very approximate value, the correction coefficient K 2 of the internal resistance due to the depth of discharge at the measurement point (b + 1) is expressed by K 2 = r (b + 1) / R 1 . be able to.

【0033】 引き続き次の測定点(b+2)における
放電深度に対応する内部抵抗r(b+2)を図4から求め
る。測定点(b+2)における放電深度による内部抵抗
の補正係数K2はK2=(r(b+1)/R1)×(r(b+2)
(b+1))=r(b+2)/R1となる。以下、順次各測定点
の放電深度に対応する内部抵抗を求め、各測定点におけ
る放電深度による内部抵抗の補正係数を求めて放電深度
による補正を行う。
Subsequently, the internal resistance r (b + 2) corresponding to the discharge depth at the next measurement point (b + 2) is obtained from FIG. The correction coefficient K 2 of the internal resistance due to the depth of discharge at the measurement point (b + 2) is K 2 = (r (b + 1) / R 1 ) × (r (b + 2) /
r (b + 1)) = a r (b + 2) / R 1. Hereinafter, the internal resistance corresponding to the depth of discharge at each measurement point is sequentially obtained, the correction coefficient of the internal resistance due to the depth of discharge at each measurement point is obtained, and the correction based on the depth of discharge is performed.

【0034】 このように、本発明のNaS電池の運転
方法における一つの放電方法は、放電中、所定の時間間
隔で、初期内部抵抗を基準にして、温度及び放電深度に
よる補正を加味したIRドロップを求め、NaS電池ス
トリングの放電設計回路電圧(VO×N)から前記補正
されたIRドロップ分(I×R1×K1×K2)を差し引
いた補正電圧VLに、NaS電池ストリングの放電中の
作動電圧Vが達した時点で放電を停止することを特徴と
している。
As described above, one discharging method in the operating method of the NaS battery of the present invention is an IR drop including a correction based on the initial internal resistance at a predetermined time interval during discharging, with reference to the temperature and the depth of discharge. Of the NaS battery string to the correction voltage V L obtained by subtracting the corrected IR drop (I × R 1 × K 1 × K 2 ) from the discharge design circuit voltage (V O × N) of the NaS battery string. The feature is that the discharge is stopped when the operating voltage V during the discharge reaches.

【0035】 なお、充電の場合に、充電時の作動電圧
Vが、充電末の作動電圧Vfに達したか否かを判別する
方法は、上述した放電の場合と同様の方法で求めること
ができる。即ち、NaS電池の充電中の温度を測定し、
充電深度をカウントする。初期内部抵抗R1を基準にし
て、温度による補正(内部抵抗の温度依存による補正係
数をK1とする。)、充電深度による補正(内部抵抗の
充電深度による補正係数をCとする。)により内部抵抗
をR1×K1×Cと算出し、充電の際の補正電圧VHを、
H=Vh×N+I×R1×K1×Cにより求める。ここ
で、作動電圧Vが補正電圧VHと一致した時点が充電末
の作動電圧Vfに達したこと、つまり充電を停止する電
圧であることを意味し、即ちこのことは、作動電圧V
が、単電池の充電末設計開路電圧Vhに到達することを
意味する。
In the case of charging, the method of determining whether or not the operating voltage V at the time of charging has reached the operating voltage V f at the end of charging can be obtained by the same method as in the case of discharging described above. it can. That is, the temperature during charging of the NaS battery is measured,
Count the charging depth. Based on the initial internal resistance R 1 , correction by temperature (correction coefficient by temperature dependence of internal resistance is K 1 ) and correction by depth of charge (correction coefficient by internal charge depth is C). The internal resistance is calculated as R 1 × K 1 × C, and the correction voltage V H at the time of charging is
V H = V h × N + I × R 1 × K 1 × C Here, it means that the time when the operating voltage V coincides with the correction voltage V H reaches the operating voltage V f at the end of charging, that is, the voltage at which charging is stopped, that is, this means that the operating voltage V f
Means that the designed open circuit voltage V h at the end of charging of the unit cell is reached.

【0036】 なお、放電に係る補正電圧VLを求める
に当たって内部抵抗と放電深度との関係を調べたよう
に、充電に係る補正電圧VHを求めるためには、内部抵
抗と充電深度との関係を予め知る必要がある。図5は、
単電池において、放電末の作動電圧に達した後に充電を
開始し、内部抵抗と充電深度の関係を測定した結果であ
る。内部抵抗は充電が進むにつれて複雑な変化を示して
いるが、この変化の様子を補正電圧VHを算出する基礎
に用いることが可能である。
It should be noted that, as the relationship between the internal resistance and the depth of discharge was examined in obtaining the correction voltage V L related to discharge, in order to obtain the correction voltage V H related to charging, the relationship between the internal resistance and the depth of charge was obtained. Need to know in advance. Figure 5
This is the result of measuring the relationship between the internal resistance and the depth of charge by starting charging in a single cell after the operating voltage at the end of discharge is reached. The internal resistance shows a complicated change as the charging progresses, and the state of this change can be used as a basis for calculating the correction voltage V H.

【0037】 このように、本発明のNaS電池の運転
方法における一つの充電方法は、充電中、所定の時間間
隔で初期内部抵抗を基準にして温度及び放電深度による
補正を加味したIRドロップを求め、NaS電池ストリ
ングの充電末設計開路電圧(Vh×N)にIRドロップ
を加えた補正電圧VHに、充電中のNaS電池ストリン
グの作動電圧Vが達した時点で充電を停止することを特
徴としている。
As described above, one charging method in the operation method of the NaS battery of the present invention is to obtain an IR drop which is corrected at a predetermined time interval during charging with reference to the initial internal resistance and the temperature and the depth of discharge. , Characterized in that charging is stopped when the operating voltage V of the NaS battery string during charging reaches the correction voltage V H obtained by adding IR drop to the open circuit voltage (V h × N) at the end of charging of the NaS battery string. I am trying.

【0038】 尚、充電深度による補正を省略して、単
電池の充電圧設計開路電圧Vhより更に0.01〜0.
1Vの範囲で深く充電すれば、単電池のβアルミナ管を
破損させずに深く充電することができる。このような充
電末分極補正電圧を、以下「α」と表す。
[0038] Incidentally, by omitting the correction by charging depth, even more charging voltage design open circuit voltage V h of the cell from 0.01 to 0.
If it is deeply charged in the range of 1 V, it can be deeply charged without damaging the β-alumina tube of the single cell. Such a charge-end polarization correction voltage will be referred to as “α” hereinafter.

【0039】 つまり、この場合の充電方法は、NaS
電池ストリングの充電末設計開路電圧(Vh×N)に、
0.01〜0.1Vの範囲の所定値αと単電池直列数N
との積を加算して得られる電圧と、初期内部抵抗R1
温度補正して求めたIRドロップとを加算して求めた補
正電圧VHに、充電中のNaS電池ストリングの作動電
圧Vが達した時点で充電を停止することを特徴とする。
従って、この場合のVHは、VH=(Vh+α)×N+I
×R1×K1、と表される。
That is, the charging method in this case is NaS
For the open circuit voltage (V h × N) at the end of charging of the battery string,
Predetermined value α in the range of 0.01 to 0.1 V and the number N of unit cells in series
A voltage obtained by adding the product of the initial internal resistance R 1 in the correction voltage V H obtained by adding the IR drop obtained by temperature compensation, operating voltage V of the NaS battery strings during charging It is characterized by stopping the charging when it reaches.
Therefore, V H in this case is V H = (V h + α) × N + I
It is expressed as × R 1 × K 1 .

【0040】 さて、次に、図1に示したNaS電池ブ
ロック4において、単電池1が何らかの要因で故障した
場合についての運転方法について説明する。故障した単
電池1を含んだまま回路内に接続状態にした場合には故
障単電池を含むNaSストリング3が開放故障になり、
回路から電気的に遮断される。その結果、並列数の変化
に伴いNaS電池ブロック4の内部抵抗が変化する。従
って、放電中又は充電中における補正電圧を求める際
に、この要因による補正が必要となる。
Next, an operation method for the NaS battery block 4 shown in FIG. 1 in the case where the unit cell 1 fails for some reason will be described. When the circuit is connected to the circuit including the failed unit cell 1, the NaS string 3 including the failed unit cell becomes an open failure,
Electrically disconnected from the circuit. As a result, the internal resistance of the NaS battery block 4 changes as the number of parallel connections changes. Therefore, when obtaining the correction voltage during discharging or charging, correction due to this factor is necessary.

【0041】 この場合の補正係数K3は、K3=(単電
池群の並列総数)/(故障単電池を含まない単電池群の
並列数)で示される。図1の場合に、全ての単電池が故
障していないときは、K3=10/10=1となり、単
電池が1個故障した場合はK3=10/9となる。
The correction coefficient K 3 in this case is represented by K 3 = (total number of parallel cell groups) / (number of parallel cell groups not including failed cell). In the case of Figure 1, when all of the cells not failed, when the K 3 = 10/10 = 1, and the is a single cell fails one becomes K 3 = 10/9.

【0042】 放電運転の場合には、初期内部抵抗R1
を基準として、内部抵抗の温度による補正と放電深度に
よる補正及び並列数の変化による補正を行い、NaS電
池ブロックの放電中の両端間の作動電圧Vが、補正電圧
Lに達した時点で放電を停止するとよい。この場合の
補正電圧VLは、VL=VO×N−I×R1×K1×K2×K
3で与えられる。
In the discharge operation, the initial internal resistance R 1
The internal resistance is corrected by temperature, the depth of discharge is corrected, and the parallel number is changed, and the operating voltage V across the NaS battery block during discharging reaches the correction voltage V L. Good to stop. Correction voltage V L in this case, V L = V O × N -I × R 1 × K 1 × K 2 × K
Given in 3 .

【0043】 つまり、NaS電池ブロックの放電にお
いて、いずれかのNaS電池ストリングに単電池の故障
が発生した場合の運転方法は、前述した温度及び放電深
度による初期内部抵抗R1の補正に加えて、NaS電池
ストリングの数の変化による補正も加えたIRドロップ
を求め、これをNaS電池ストリングの放電末設計電圧
(VO×N)から差し引いた補正電圧VLに、NaS電池
ブロックの作動電圧Vが達した時に放電を停止すること
を特徴とする。
In other words, in discharging the NaS battery block, the operating method when a failure of a single battery occurs in any of the NaS battery strings, in addition to the correction of the initial internal resistance R 1 by the temperature and the depth of discharge described above, The IR drop including the correction due to the change in the number of NaS battery strings is also obtained, and the operating voltage V of the NaS battery block is added to the correction voltage V L obtained by subtracting the IR drop from the discharge end design voltage (V O × N) of the NaS battery string. It is characterized by stopping the discharge when it reaches.

【0044】 なお、いずれかのNaS電池ストリング
に単電池の故障が発生した場合の充電の方法についても
同様に考えることができる。つまり、充電中のNaS電
池の温度を測定し、充電深度をカウントし、故障した単
電池を検出して、NaS電池ブロックの充電中の両端間
の作動電圧Vが、内部抵抗の温度による補正と放電深度
による補正及び単電池の故障による並列数の変化による
補正を行って得られた補正電圧VHに達した時点で充電
を停止する。このとき、補正電圧VHは、VH=Vh×N
+I×R1×K1×C×K3で表すことができる。
It should be noted that the charging method when a failure of a single battery occurs in any of the NaS battery strings can be considered in the same manner. That is, the temperature of the NaS battery during charging is measured, the depth of charge is counted, the defective single battery is detected, and the operating voltage V across the NaS battery block during charging is corrected by the temperature of the internal resistance. Charging is stopped when the correction voltage V H obtained by the correction based on the depth of discharge and the correction based on the change in the parallel number due to the failure of the unit cell is reached. At this time, the correction voltage V H is V H = V h × N
It can be represented by + I × R 1 × K 1 × C × K 3 .

【0045】 また、前述したように、充電深度による
補正を省略して、単電池の充電圧設計開路電圧Vhより
更に充電末分極補正電圧α(0.01〜0.1V)の範
囲で深く充電する方法に、この補正係数K3を考慮して
用いることが可能である。
Further, as described above, the correction by the charging depth is omitted, and the charging end polarization correction voltage α (0.01 to 0.1 V) is deeper than the charging voltage design open circuit voltage V h of the unit cell. It is possible to use the correction coefficient K 3 in the charging method.

【0046】 この場合の充電方法は、NaS電池ブロ
ックの充電末設計開路電圧(Vh×N)に、0.01〜
0.1Vの範囲の所定値と単電池直列数Nとの積を加算
して得られる電圧と、初期内部抵抗R1の温度による補
正及び単電池の故障による並列数の変化による補正を行
って求めたIRドロップとを加算して求めた補正電圧V
Hに、NaS電池ブロックの充電中の作動電圧Vが達し
た時点で充電を停止すればよい。従って、この場合のV
Hは、VH=(Vh+α)×N+I×R1×K1×K3、で表
される。
The charging method in this case is 0.01 to the designed open circuit voltage (V h × N) at the end of charge of the NaS battery block.
The voltage obtained by adding the product of the predetermined value in the range of 0.1 V and the number N of cells in series and the temperature of the initial internal resistance R 1 and the change in the number of parallels due to the failure of the cells are corrected. Correction voltage V obtained by adding the obtained IR drop
Charging may be stopped when the operating voltage V during charging of the NaS battery block reaches H. Therefore, V in this case
H is represented by V H = (V h + α) × N + I × R 1 × K 1 × K 3 .

【0047】 次に、NaS電池の経時的な抵抗特性の
変化に着目した場合の運転方法について説明する。実用
のNaS電池モジュールでは、約2500サイクル迄の
充放電サイクルに耐用し、耐用年数としては約15年で
ある。ここで、充放電サイクルが進むにつれ、或いは運
転日数が増すにつれて、電池の内部抵抗は増大する。従
って、内部抵抗の充放電回数による補正及び/又は内部
抵抗の運転日数による補正を行うことが好ましい。
Next, an operation method in the case of paying attention to a change in resistance characteristic of the NaS battery with time will be described. A practical NaS battery module can withstand up to about 2500 charge / discharge cycles, and has a useful life of about 15 years. Here, the internal resistance of the battery increases as the charging / discharging cycle progresses or as the number of operating days increases. Therefore, it is preferable to correct the internal resistance based on the number of times of charging and discharging and / or to correct the internal resistance based on the number of operating days.

【0048】 図6は内部抵抗と充放電回数との関係を
示し、また、図7は充放電時の内部抵抗の簡易化された
経年変化を示す説明図である。内部抵抗が充放電回数や
運転日数によって増大する主要要因は、陽極容器内周面
の腐食の進行、或いは、陽極室内のNa2Xの容器底部
への沈降による電池反応に寄与しないNa 2Xの発生等
によるものと推定される。
FIG. 6 shows the relationship between the internal resistance and the number of times of charging and discharging.
FIG. 7 shows the simplified internal resistance during charging and discharging.
It is explanatory drawing which shows a secular change. The internal resistance depends on the number of charge and discharge
The main factor that increases with the number of operating days is the inner surface of the anode container.
Of corrosion of Na, or Na in the anode chamber2SXBottom of container
That does not contribute to the battery reaction due to sedimentation to Na 2SXOccurrence of
It is estimated that

【0049】 そこで、内部抵抗の充放電回数による補
正係数をK4とし、また、運転日数による補正係数をK5
として、これらの値を図6、図7に基づいて求め、更
に、補正電圧VL又はVHを求め、放電中又は充電中の作
動電圧Vが補正電圧VL又はVHに達した時点で放電又は
充電を停止する。
Therefore, the correction coefficient based on the number of times of charging and discharging the internal resistance is set to K 4, and the correction coefficient based on the number of operating days is set to K 5
As a result, these values are obtained based on FIGS. 6 and 7, and the correction voltage V L or V H is further obtained, and when the operating voltage V during discharging or charging reaches the correction voltage V L or V H Stop discharging or charging.

【0050】 換言すれば、長期にわたってNaS電池
モジュールを運転した際に、電池の内部抵抗が充放電サ
イクル又は運転日数によって変化することに着眼する
と、放電方法にあっては、温度、放電深度、単電池が故
障した場合のNaS電池ストリング数の変化による補正
に加えて、充放電サイクル及び/又は運転日数による補
正を加えたIRドロップを求め、NaS電池ストリング
の放電末設計電圧(VO×N)から、このIRドロップ
を差し引いて得られる補正電圧VLに、NaS電池ブロ
ックの作動電圧Vが達した時に放電を停止すると好まし
い。
In other words, when the NaS battery module is operated for a long period of time, the internal resistance of the battery changes depending on the charging / discharging cycle or the number of operating days. In addition to the correction due to the change in the number of NaS battery strings when the battery has failed, the IR drop which is corrected according to the charge / discharge cycle and / or the number of operating days is obtained, and the design voltage (V O × N) at the end of discharge of the NaS battery string is obtained. Therefore, it is preferable to stop the discharge when the operating voltage V of the NaS battery block reaches the correction voltage V L obtained by subtracting this IR drop.

【0051】 ここで、充放電回数による補正係数K4
及び/又は運転日数による補正係数K5の算出は、従
来、放電時と充電時のいずれの場合においても、図7に
示したように、内部抵抗(R)は経年数に比例して一次
関数的に増加するものと簡易化して行っていた。このよ
うな補正係数K4、K5の算出方法は、ある範囲の短い期
間では十分に有効であり、また、運転上、これまで大き
な支障を生ずることはなかった。しかし、より効率的な
NaS電池の運転条件を確立する為には、より正確に内
部抵抗の経年変化を把握する必要が生ずる。
Here, the correction coefficient K 4 according to the number of times of charging and discharging
The calculation of the correction coefficient K 5 based on the number of operating days and / or the number of operating days is conventionally performed as shown in FIG. 7 in which the internal resistance (R) is a linear function in proportion to the elapsed time in both cases of discharging and charging. It was carried out in a simplified manner with the increase in number. Such a method of calculating the correction coefficients K 4 and K 5 is sufficiently effective in a short period of a certain range, and has not caused any serious trouble in operation until now. However, in order to establish a more efficient NaS battery operating condition, it is necessary to more accurately grasp the secular change of the internal resistance.

【0052】 そこで、内部抵抗の経年変化をより精密
に分析した結果、より詳細には、放電時における内部抵
抗と運転日数との関係は図8(a)に示されるように、
また充電時における内部抵抗と運転日数との関係は図8
(b)に示されるように、それぞれ異なる挙動を示すこ
とが明らかとなった。そして、放電時における内部抵抗
と充放電回数との関係が図8(a)と同様に表され、充
電時における内部抵抗と充放電回数との関係が図8
(b)同様に表されることも明らかとなった。従って、
充放電の各場合に応じた補正係数を求めることが好まし
く、放電時の充放電回数による補正係数K4及び/又は
運転日数による補正係数K5は、そのグラフの形に表さ
れるように、R=A×D1/2+R1(R:内部抵抗、A:
定数、D:充放電回数(K4の場合)若しくは運転日数
(K5の場合)、R1:初期内部抵抗)から求めることが
好ましい。
Therefore, as a result of a more precise analysis of the secular change in the internal resistance, more specifically, the relationship between the internal resistance at the time of discharge and the number of operating days is as shown in FIG. 8 (a).
Fig. 8 shows the relationship between the internal resistance and the number of operating days during charging.
As shown in (b), it became clear that they exhibited different behaviors. The relationship between the internal resistance at the time of discharging and the number of times of charging / discharging is represented as in FIG. 8A, and the relationship between the internal resistance at the time of charging and the number of times of charging / discharging is shown in FIG.
(B) It was also clarified that it is expressed in the same manner. Therefore,
It is preferable to obtain a correction coefficient corresponding to each case of charging / discharging, and the correction coefficient K 4 depending on the number of times of charging / discharging at the time of discharging and / or the correction coefficient K 5 depending on the number of operating days are as shown in the form of the graph, R = A × D 1/2 + R 1 (R: internal resistance, A:
It is preferable to obtain it from a constant, D: number of times of charging and discharging (for K 4 ) or number of operating days (for K 5 ), and R 1 : initial internal resistance.

【0053】 こうして、NaS電池の放電中の温度を
測定し、放電深度をカウントし、故障した単電池を検出
し、更に充放電回数又は運転日数をカウントして、Na
S電池の放電中の両端間の作動電圧Vが、内部抵抗の温
度による補正と放電深度による補正と故障した単電池に
よる並列数の変化による補正及び充放電回数及び/又は
運転日数による補正を行って算出した補正電圧VLに達
した時点で、放電を停止するときには、補正電圧V
Lは、VL=VO×N−I×R1×K1×K2×K3×(K4
しくはK5又はK4×K5)で表される。
In this way, the temperature during discharging of the NaS battery is measured, the depth of discharge is counted, the defective unit cell is detected, and the number of charge / discharge or operating days is counted to
The operating voltage V across both ends of the S battery during discharging is corrected by the temperature of the internal resistance, the depth of discharge, the change in the number of parallels due to the defective cell, and the number of charge / discharge and / or the number of operating days. At the time when the correction voltage V L calculated by
L is expressed by V L = V O × N- I × R 1 × K 1 × K 2 × K 3 × (K 4 or K 5 or K 4 × K 5).

【0054】 充電の場合も同様である。NaS電池の
充電中の温度を測定し、充電深度をカウントし、故障し
た単電池を検出し、更に充放電回数及び/又は運転日数
をカウントして、NaS電池の充電中の両端間の作動電
圧Vが、内部抵抗の温度による補正と充電深度による補
正と並列数の変化とによる補正及び充放電回数及び/又
は運転日数による補正を行って算出した補正電圧VH
達した時点で充電を停止することが好ましい。この場合
の補正電圧VHは、VH=Vh×N+I×R1×K1×C×
3×(K4もしくはK5又はK4×K5)、で表される。
ここでの補正係数K4及び/又はK5の算出は、図8
(b)に示された、R=A×D1/ 2+B×D+R1(R:
内部抵抗、A及びB:定数、D:充放電回数(K4の場
合)若しくは運転日数(K5の場合)、R1:初期内部抵
抗)から求めることが好ましい。
The same applies to charging. Of NaS battery
Measure the temperature during charging, count the charging depth, and
The number of charged and discharged cells and / or the number of operating days
Is counted and the operating voltage across the NaS battery is being charged during charging.
The pressure V is corrected by the temperature of the internal resistance and compensated by the depth of charge.
Correction by positive and change in parallel number and charge / discharge frequency and / or
Is the correction voltage V calculated by performing correction according to the number of operating daysHTo
It is preferable to stop the charging when it reaches. in this case
Correction voltage VHIs VH= VhXN + IxR1× K1× C ×
K3× (KFourOr KFiveOr KFour× KFive), Is represented by.
Correction factor K hereFourAnd / or KFiveIs calculated as shown in FIG.
R = A × D shown in (b)1 / 2+ B × D + R1(R:
Internal resistance, A and B: constant, D: charge / discharge frequency (KFourPlace
Or driving days (KFiveIn the case of), R1: Initial internal resistance
It is preferable to obtain it from (anti).

【0055】 なお、充電に際しては、充電深度による
補正を省略して、単電池の充電圧設計開路電圧Vhより
更に0.01〜0.1Vの充電末分極補正電圧αの範囲
で深く充電することができることを先に述べた。従っ
て、補正係数K4もしくはK5を用いた場合にも、このよ
うな考え方を導入することが可能である。
When charging, the correction based on the charging depth is omitted, and the charging is performed deeper within the range of the charging end polarization correction voltage α of 0.01 to 0.1 V than the charging voltage design open circuit voltage V h of the unit cell. I mentioned earlier that you can. Therefore, even when the correction coefficient K 4 or K 5 is used, such an idea can be introduced.

【0056】 即ち、NaS電池の充電中の温度を測定
し、故障した単電池を検出し、更に充放電回数及び/又
は運転日数をカウントして、NaS電池の充電中の両端
間の作動電圧Vが、内部抵抗の温度による補正と充電末
分極補正と単電池の故障による並列数の変化による補正
及び充放電回数及び/又は運転日数による補正を行って
算出した補正電圧VHに達した時点で充電を停止する方
法も好ましい。この場合の補正電圧VHは、VH=(Vh
+α)×N+I×R1×K1×K3×(K4もしくはK5
はK4×K5)で表される。
That is, the temperature during charging of the NaS battery is measured, the defective single battery is detected, and the number of charging / discharging times and / or the number of operating days is counted to determine the operating voltage V across the NaS battery during charging. However, when the correction voltage V H calculated by performing the correction by the temperature of the internal resistance, the polarization correction at the end of charge, the correction by the change in the number of parallels due to the failure of the unit cell, and the correction by the number of charge / discharge and / or the operation days is reached. A method of stopping charging is also preferable. The correction voltage V H in this case is V H = (V h
+ Α) × N + I × R 1 × K 1 × K 3 × (K 4 or K 5 or K 4 × K 5 ).

【0057】 さて、上述した本発明のNaS電池の運
転方法においては、組み立て後、即ち未使用のNaS電
池モジュールに定格電流を30〜60分間放電した時点
で測定した内部抵抗を初期内部抵抗とすることが好まし
い。このことは、NaS電池ストリング又はNaS電池
ブロックの初期内部抵抗として、それぞれ直並列に組み
立てられた後に放電を開始して、30〜60分経過した
時点の内部抵抗を測定して得られた値を用いることが好
ましいことと同義である。
In the operation method of the NaS battery of the present invention described above, the internal resistance measured after assembly, that is, when the unused NaS battery module is discharged at the rated current for 30 to 60 minutes is taken as the initial internal resistance. It is preferable. This means that as the initial internal resistance of the NaS battery string or NaS battery block, the value obtained by measuring the internal resistance at the time when 30 to 60 minutes have elapsed after starting discharge after being assembled in series and parallel, respectively. It is synonymous with that it is preferable to use.

【0058】 このような内部抵抗の初期化手段は、初
期内部抵抗は単電池製作時に単電池が有する固有の内部
抵抗であって、単電池製作後放電した初期において放電
深度とともに若干変動するが、定格電流で放電してから
30〜60分間経過時の内部抵抗はほぼ一定で変動が少
ないことから見出された。
In the internal resistance initializing means as described above, the initial internal resistance is a specific internal resistance of the unit cell at the time of manufacturing the unit cell, and the initial internal resistance slightly varies with the discharge depth in the initial stage of discharging after the unit cell is manufactured. It was found from the fact that the internal resistance after 30 to 60 minutes from the discharge at the rated current is almost constant and has little fluctuation.

【0059】 一方、NaS電池モジュールの定期点検
時に測定したNaS電池ストリング及び/又はNaS電
池ブロックの内部抵抗をそれぞれ初期内部抵抗としても
よい。初期内部抵抗の経年変化を定期点検後に再設定し
て、初期内部抵抗基準値とすることにより更に正確に適
切な充電末又は充電末におけるNaS電池モジュールの
運転制御が可能となる。
On the other hand, the internal resistance of the NaS battery string and / or the NaS battery block measured during the regular inspection of the NaS battery module may be used as the initial internal resistance. By resetting the secular change of the initial internal resistance after the periodic inspection and setting it as the initial internal resistance reference value, it becomes possible to more accurately perform proper operation control of the NaS battery module at the end of charging or at the end of charging.

【0060】 なお、種々の要因による内部抵抗の変化
量を予測して、充電時又は放電時の電圧/電流制御に組
み入れること、つまり、n回目の充放電を行う場合に、
予め充放電回数や経年劣化等による内部抵抗の変化を見
込んで、n回目の充放電中における内部抵抗を予測、設
定した状態で充放電制御を行うことにより、安全性を損
なうことなく、しかも深い放電深度、浅い充電深度まで
の充放電を行うことが可能となる。
In addition, when predicting the amount of change in internal resistance due to various factors and incorporating it in the voltage / current control during charging or discharging, that is, when performing the nth charging / discharging,
By predicting the change in internal resistance due to the number of times of charge and discharge and deterioration over time, and predicting the internal resistance during the nth charge and discharge, and performing charge and discharge control in the set state, safety is not compromised and deep It is possible to charge and discharge up to the depth of discharge and the shallow depth of charge.

【0061】[0061]

【発明の効果】 上述の通り、本発明のNaS電池の運
転方法によれば、ピークカット用などの電力貯蔵用電源
として電池を損傷させることなく許容限界まで電流を放
電又は充電することができる。その結果、エネルギー密
度の高い電力貯蔵用電源となるとともに、建設コストの
低減が図られ、更に、電力コストの低減が実現される
等、極めて優れた効果を奏する。
As described above, according to the operating method of the NaS battery of the present invention, it is possible to discharge or charge the current to the allowable limit without damaging the battery as a power source for power storage such as peak cut. As a result, a power source for storing electric power with high energy density is obtained, construction cost is reduced, and further reduction in electric power cost is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 NaS電池ブロックの構成を示す説明図であ
り、(a)はNaS電池の構成を示す回路図であり、
(b)はNaS電池を用いた電力貯蔵用装置の回路図で
ある。
FIG. 1 is an explanatory diagram showing a configuration of a NaS battery block, (a) is a circuit diagram showing a configuration of a NaS battery,
(B) is a circuit diagram of a power storage device using a NaS battery.

【図2】 NaS電池電力貯蔵用装置の充放電1サイク
ルにおける作動電圧、開路電圧の挙動を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing behaviors of an operating voltage and an open circuit voltage in one cycle of charging / discharging of a device for storing electric power of a NaS battery.

【図3】 NaS電池における内部抵抗と温度との相関
を示す説明図である。
FIG. 3 is an explanatory diagram showing a correlation between internal resistance and temperature in a NaS battery.

【図4】 NaS電池における内部抵抗と放電深度との
相関を示す説明図である。
FIG. 4 is an explanatory diagram showing a correlation between internal resistance and depth of discharge in a NaS battery.

【図5】 NaS電池における内部抵抗と充電深度との
相関を示す説明図である。
FIG. 5 is an explanatory diagram showing a correlation between internal resistance and depth of charge in a NaS battery.

【図6】 NaS電池における内部抵抗と充放電回数と
の相関を示す説明図である。
FIG. 6 is an explanatory diagram showing a correlation between internal resistance and the number of times of charging and discharging in a NaS battery.

【図7】 NaS電池における内部抵抗の経年変化の簡
易化された様子を示す説明図である。
FIG. 7 is an explanatory diagram showing a simplified state of the secular change in internal resistance of a NaS battery.

【図8】 NaS電池の、(a)は放電時における、
(b)は充電時における内部抵抗と運転日数との関係を
示す説明図である。
FIG. 8 (a) of the NaS battery is at the time of discharging,
(B) is an explanatory view showing the relationship between the internal resistance during charging and the number of operating days.

【符号の説明】[Explanation of symbols]

1…単電池、2…断熱容器、3…NaS電池ストリン
グ、4…NaS電池ブロック、5…NaS電池、6…電
力貯蔵用装置、7…インバータ、8…電圧計、9…温度
計、10…電流計、15…制御装置。
DESCRIPTION OF SYMBOLS 1 ... Single battery, 2 ... Insulation container, 3 ... NaS battery string, 4 ... NaS battery block, 5 ... NaS battery, 6 ... Power storage device, 7 ... Inverter, 8 ... Voltmeter, 9 ... Thermometer, 10 ... Ammeter, 15 ... Control device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H02J 7/00 302 H02J 7/00 302D 7/02 7/02 H (72)発明者 久野 俊明 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式会社内 (72)発明者 高木 春実 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式会社内 (72)発明者 古田 一人 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式会社内 (56)参考文献 特開 平8−50930(JP,A) 特開 平9−322417(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 H01M 10/44 H01M 10/48 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI H02J 7/00 302 H02J 7/00 302D 7/02 7/02 H (72) Inventor Toshiaki Kuno Suda Town, Mizuho-ku, Nagoya City, Aichi Prefecture No. 2-56 Insulator of Japan Incorporated (72) Inventor Harumi Takagi 2-56 Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Prefecture In-insulator of Japan Incorporated (72) Furuta One, 2 Suda-cho, Mizuho-ku, Nagoya-shi, Aichi No. 56 in Nippon Insulators Co., Ltd. (56) Reference JP-A-8-50930 (JP, A) JP-A-9-322417 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) H01M 10/39 H01M 10/44 H01M 10/48

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の単電池を直列に接続してなるナト
リウム−硫黄電池の放電に係る運転方法であって、 ナトリウム−硫黄電池の放電中の温度を測定し、放電深
度をカウントして、 当該ナトリウム−硫黄電池の放電中の両端間の作動電圧
Vが、内部抵抗の温度による補正及び放電深度による補
正を加味した補正電圧VL(VL=VO×N−I×R1×K
1×K2、但し、VO:単電池の放電末設計開路電圧、
N:単電池直列数、I:電流、R1:初期内部抵抗、
1:内部抵抗の温度依存による補正係数、K 2:内部抵
抗の放電深度による補正係数)に達した時点で放電を停
止することを特徴とするナトリウム−硫黄電池の運転方
法。
1. A NAT comprising a plurality of unit cells connected in series.
A method for operating a lithium-sulfur battery discharge, comprising: Measure the temperature of the sodium-sulfur battery during discharge to determine the discharge depth.
Count the degree, Operating voltage across the sodium-sulfur battery during discharge
V is the correction of the internal resistance due to the temperature and the compensation due to the depth of discharge.
Correction voltage V with positiveL(VL= VOXN-IxR1× K
1× K2However, VO: Designed open circuit voltage at discharge end of unit cell,
N: Number of unit cells in series, I: Current, R1: Initial internal resistance,
K1: Correction coefficient due to temperature dependence of internal resistance, K 2: Internal resistance
The discharge is stopped when the
How to operate a sodium-sulfur battery characterized by stopping
Law.
【請求項2】 複数の単電池を直列に接続してなる単電
池群を更に複数並列に接続してなるナトリウム−硫黄電
池の放電に係る運転方法であって、 ナトリウム−硫黄電池の放電中の温度を測定し、放電深
度をカウントし、更に故障した単電池を検出して、 当該ナトリウム−硫黄電池の放電中の両端間の作動電圧
Vが、内部抵抗の温度による補正と放電深度による補正
及び単電池の故障による並列数の変化による補正を加味
した補正電圧VL(VL=VO×N−I×R1×K1×K2×
3、但し、VO:単電池の放電末設計開路電圧、N:単
電池直列数、I:電流、R1:初期内部抵抗、K1:内部
抵抗の温度依存による補正係数、K2:内部抵抗の放電
深度による補正係数、K3:単電池群の並列総数と故障
単電池を含まない単電池群数との比)に達した時点で放
電を停止することを特徴とするナトリウム−硫黄電池の
運転方法。
2. A method of operating a sodium-sulfur battery discharge, comprising a plurality of single battery cells connected in series and further connected in parallel, the method comprising: The temperature is measured, the depth of discharge is counted, the defective single cell is detected, and the operating voltage V across the sodium-sulfur battery during discharge is corrected by the internal resistance temperature and the depth of discharge. A correction voltage V L (V L = V O × N−I × R 1 × K 1 × K 2 ×) that takes into account the correction due to the change in the number of parallels due to the failure of the unit cell.
K 3 , where V O is the open circuit voltage at the end of discharge of the unit cell, N is the number of unit cells in series, I is the current, R 1 is the initial internal resistance, K 1 is the correction coefficient depending on the temperature of the internal resistance, K 2 : Correction coefficient of internal resistance depending on the depth of discharge, K 3 : ratio of the total number of parallel cell groups to the number of cell groups not including the failed cell), sodium-sulfur is characterized in that the discharge is stopped How to operate the battery.
【請求項3】 複数の単電池を直列に接続してなる単電
池群を更に複数並列に接続してなるナトリウム−硫黄電
池の放電に係る運転方法であって、 ナトリウム−硫黄電池の放電中の温度を測定し、放電深
度をカウントし、故障した単電池を検出し、更に充放電
回数及び/又は運転日数をカウントして、 当該ナトリウム−硫黄電池の放電中の両端間の作動電圧
Vが、内部抵抗の温度による補正と放電深度による補正
と単電池の故障による並列数の変化による補正及び充放
電回数及び/又は運転日数による補正を加味した補正電
圧VL(VL=V O×N−I×R1×K1×K2×K3×(K4
もしくはK5又はK4×K5)、但し、VO:単電池の放電
末設計開路電圧、N:単電池直列数、I:電流、R1
初期内部抵抗、K1:内部抵抗の温度依存による補正係
数、K2:内部抵抗の放電深度による補正係数、K3:単
電池群の並列総数と故障単電池を含まない単電池群数と
の比、K4:内部抵抗の充放電回数による補正係数、
5:内部抵抗の運転日数による補正係数)に達した時
点で放電を停止することを特徴とするナトリウム−硫黄
電池の運転方法。
3. A single cell formed by connecting a plurality of cells in series.
Sodium-sulfur battery consisting of multiple ponds connected in parallel
A method for operating a pond discharge, Measure the temperature of the sodium-sulfur battery during discharge to determine the discharge depth.
Counts, detects a failed cell, and then charges and discharges
Count the number of times and / or the number of operating days, Operating voltage across the sodium-sulfur battery during discharge
V is the correction of the internal resistance due to the temperature and the depth of discharge
And charge and discharge due to changes in the number of parallels due to battery and unit cell failure
Corrected voltage with correction based on the number of times and / or the number of operating days
Pressure VL(VL= V OXN-IxR1× K1× K2× K3× (KFour
Or KFiveOr KFour× KFive), But VO: Discharge of single battery
Designed open circuit voltage, N: Number of series cells, I: Current, R1:
Initial internal resistance, K1: Correction factor due to temperature dependence of internal resistance
Number, K2: Correction coefficient of internal resistance according to depth of discharge, K3:single
The total number of cells in parallel and the number of cells without faulty cells
Ratio of KFour: Correction coefficient for internal resistance charging / discharging times,
KFive: When the internal resistance correction coefficient by the number of operating days) is reached
Sodium-sulfur characterized by stopping discharge at a point
How to operate the battery.
【請求項4】 前記内部抵抗の充放電回数による補正係
数K4及び/又は前記内部抵抗の運転日数による補正係
数K5が、R=A×D1/2+R1(但し、R:内部抵抗、
A:定数、D:充放電回数(K4の場合)若しくは運転
日数(K5の場合)、R1:初期内部抵抗)から求められ
る値であることを特徴とする請求項3記載のナトリウム
−硫黄電池の運転方法。
4. The correction coefficient K 4 according to the number of charging / discharging times of the internal resistance and / or the correction coefficient K 5 according to the number of operating days of the internal resistance is R = A × D 1/2 + R 1 (where R: internal resistance ,
4. The sodium according to claim 3, wherein A is a constant, D is the number of times of charge and discharge (in the case of K 4 ) or the number of operating days (in the case of K 5 ), and R 1 is the initial internal resistance. How to operate a sulfur battery.
【請求項5】 複数の単電池を直列に接続してなるナト
リウム−硫黄電池の充電に係る運転方法であって、 ナトリウム−硫黄電池の充電中の温度を測定し、充電深
度をカウントして、当該ナトリウム−硫黄電池の充電中
の両端間の作動電圧Vが、内部抵抗の温度による補正と
充電深度による補正を加味した補正電圧VH(VH=Vh
×N+I×R1×K1×C、但し、Vh:単電池の充電末
設計開路電圧、N:単電池直列数、I:電流、R1:初
期内部抵抗、K1:内部抵抗の温度依存による補正係
数、C:内部抵抗の充電深度による補正係数)に達した
時点で充電を停止することを特徴とするナトリウム−硫
黄電池の運転方法。
5. An operating method for charging a sodium-sulfur battery, which comprises connecting a plurality of cells in series, wherein the temperature during charging of the sodium-sulfur battery is measured and the depth of charge is counted, The operating voltage V across the sodium-sulfur battery during charging is a correction voltage V H (V H = V h), which takes into account the correction of the internal resistance with temperature and the correction of the charging depth.
× N + I × R 1 × K 1 × C, where V h is the open circuit voltage at the end of charging of the single cell, N is the number of series cells, I is the current, R 1 is the initial internal resistance, and K 1 is the temperature of the internal resistance. The method for operating a sodium-sulfur battery is characterized in that charging is stopped when a correction coefficient by dependence, C: correction coefficient by the depth of charge of the internal resistance) is reached.
【請求項6】 複数の単電池を直列に接続してなる単電
池群を更に複数並列に接続してなるナトリウム−硫黄電
池の充電に係る運転方法であって、 ナトリウム−硫黄電池の充電中の温度とを測定し、充電
深度をカウントし、故障した単電池を検出して、 当該ナトリウム−硫黄電池の充電中の両端間の作動電圧
Vが、内部抵抗の温度による補正と充電深度による補正
及び単電池の故障による並列数の変化による補正を加味
した補正電圧VH(VH=Vh×N+I×R1×K1×C×
3、但し、Vh:単電池の充電末設計開路電圧、N:単
電池直列数、I:電流、R1:初期内部抵抗、K1:内部
抵抗の温度依存による補正係数、C:内部抵抗の充電深
度による補正係数、K3:単電池群の並列総数と故障単
電池を含まない単電池群数との比)に達した時点で充電
を停止することを特徴とするナトリウム−硫黄電池の運
転方法。
6. A method for operating a sodium-sulfur battery, which comprises a plurality of unit cells connected in series and further connected in parallel, the method comprising: The operating voltage V between both ends during the charging of the sodium-sulfur battery is measured by measuring the temperature and the charging depth, detecting the defective cell, and correcting the internal resistance by the temperature and the charging depth. Correction voltage V H (V H = V h × N + I × R 1 × K 1 × C ×) that takes into account the correction due to the change in the number of parallels due to the failure of the unit cell
K 3 , where V h is the open circuit voltage at the end of charging of the single cell, N is the number of series cells, I is the current, R 1 is the initial internal resistance, K 1 is the temperature dependent correction coefficient of the internal resistance, and C is the internal. correction coefficient by the state of charge of the resistor, K 3: sodium, characterized in that to stop the charging when it reaches the ratio) between the unit cell number group not including a parallel total number a fault cell in the cells groups - sulfur battery Driving method.
【請求項7】 複数の単電池を直列に接続してなる単電
池群を更に複数並列に接続してなるナトリウム−硫黄電
池の充電に係る運転方法であって、 ナトリウム−硫黄電池の充電中の温度を測定し、充電深
度をカウントし、故障した単電池を検出し、更に充放電
回数及び/又は運転日数をカウントして、 当該ナトリウム−硫黄電池の充電中の両端間の作動電圧
Vが、内部抵抗の温度による補正と充電深度による補正
と単電池の故障による並列数の変化による補正及び充放
電回数及び/又は運転日数による補正を加味した補正電
圧VH(VH=V h×N+I×R1×K1×C×K3×(K4
もしくはK5又はK4×K5)、但し、Vh:単電池の充電
末設計開路電圧、N:単電池直列数、I:電流、R1
初期内部抵抗、K1:内部抵抗の温度依存による補正係
数、C:内部抵抗の充電深度による補正係数、K3:単
電池群の並列総数と故障単電池を含まない単電池群数と
の比、K4:内部抵抗の充放電回数による補正係数、
5:内部抵抗の運転日数による補正係数)に達した時
点で充電を停止することを特徴とするナトリウム−硫黄
電池の運転方法。
7. A single cell formed by connecting a plurality of cells in series.
Sodium-sulfur battery consisting of multiple ponds connected in parallel
A driving method for charging a pond, Measure the temperature of the sodium-sulfur battery during charging to determine the charging depth.
Counts, detects a failed cell, and then charges and discharges
Count the number of times and / or the number of operating days, Operating voltage across the sodium-sulfur battery during charging
V is the correction of the internal resistance due to the temperature and the correction of the depth of charge
And charge and discharge due to changes in the number of parallels due to battery and unit cell failure
Corrected voltage with correction based on the number of times and / or the number of operating days
Pressure VH(VH= V hXN + IxR1× K1× C × K3× (KFour
Or KFiveOr KFour× KFive), But Vh: Battery charging
Designed open circuit voltage, N: Number of series cells, I: Current, R1:
Initial internal resistance, K1: Correction factor due to temperature dependence of internal resistance
Number, C: Correction coefficient of internal resistance depending on charging depth, K3:single
The total number of cells in parallel and the number of cells without faulty cells
Ratio of KFour: Correction coefficient for internal resistance charging / discharging times,
KFive: When the internal resistance correction coefficient by the number of operating days) is reached
Sodium-sulfur characterized by stopping charging at points
How to operate the battery.
【請求項8】 複数の単電池を直列に接続してなるナト
リウム−硫黄電池の充電に係る運転方法であって、 ナトリウム−硫黄電池の充電中の温度を測定して、 当該ナトリウム−硫黄電池の充電中の両端間の作動電圧
Vが、内部抵抗の温度による補正及び充電末分極電圧補
正を加味した補正電圧VH(VH=(Vh+α)×N+I
×R1×K1、但し、Vh:単電池の充電末設計開路電
圧、α(充電末分極補正電圧):0.01V〜0.1
V、N:単電池直列数、I:電流、R1:初期内部抵
抗、K1:内部抵抗の温度依存による補正係数)に達し
た時点で充電を停止することを特徴とするナトリウム−
硫黄電池の運転方法。
8. A method for operating a sodium-sulfur battery, which comprises connecting a plurality of cells in series, wherein the temperature during charging of the sodium-sulfur battery is measured to measure the temperature of the sodium-sulfur battery. The operating voltage V between both ends during charging is a correction voltage V H (V H = (V h + α) × N + I) in which correction by the temperature of the internal resistance and polarization correction at the end of charging are taken into consideration.
× R 1 × K 1 , where V h is the open circuit voltage at the end of charging of the single battery, α (polarization correction voltage at the end of charging): 0.01 V to 0.1
V, N: number of cells in series, I: current, R 1 : initial internal resistance, K 1 : correction coefficient due to temperature dependence of internal resistance).
How to operate a sulfur battery.
【請求項9】 複数の単電池を直列に接続してなる単電
池群を更に複数並列に接続してなるナトリウム−硫黄電
池の充電に係る運転方法であって、 ナトリウム−硫黄電池の充電中の温度を測定し、故障し
た単電池を検出して、 当該ナトリウム−硫黄電池の充電中の両端間の作動電圧
Vが、内部抵抗の温度による補正と充電末分極電圧補正
及び単電池の故障による並列数の変化による補正を加味
した補正電圧VH(VH=(Vh+α)×N+I×R1×K
1×K3、但し、Vh:単電池の充電末設計開路電圧、α
(充電末分極補正電圧):0.01V〜0.1V、N:
単電池直列数、I:電流、R1:初期内部抵抗、K1:内
部抵抗の温度依存による補正係数、K3:単電池群の並
列総数と故障単電池を含まない単電池群数との比)に達
した時点で充電を停止することを特徴とするナトリウム
−硫黄電池の運転方法。
9. A method for operating a sodium-sulfur battery, which comprises a plurality of unit cells connected in series and further connected in parallel, comprising: The temperature is measured and the defective single cell is detected, and the operating voltage V across the sodium-sulfur battery during charging is corrected by the temperature of the internal resistance and the polarization voltage at the end of charge correction and the parallel operation due to the failure of the single cell. Corrected voltage V H (V H = (V h + α) × N + I × R 1 × K, which takes into account the correction due to the change in the number
1 × K 3 , where V h is the open circuit voltage at the end of charging of a single cell, α
(Polarization correction voltage after charging): 0.01 V to 0.1 V, N:
Number of series of single cells, I: current, R 1 : initial internal resistance, K 1 : correction coefficient due to temperature dependence of internal resistance, K 3 : total number of parallel single cells and number of single cells without faulty single cells The method for operating a sodium-sulfur battery is characterized in that charging is stopped when the ratio reaches.
【請求項10】 複数の単電池を直列に接続してなる単
電池群を更に複数並列に接続してなるナトリウム−硫黄
電池の充電に係る運転方法であって、 ナトリウム−硫黄電池の充電中の温度を測定し、故障し
た単電池を検出し、更に充放電回数及び/又は運転日数
をカウントして、 当該ナトリウム−硫黄電池の充電中の両端間の作動電圧
Vが、内部抵抗の温度による補正と充電末分極電圧補正
と単電池の故障による並列数の変化による補正及び充放
電回数及び/又は運転日数による補正を加味した補正電
圧VH(VH=(Vh+α)×N+I×R1×K1×K3×
(K4もしくはK5又はK4×K5)、但し、Vh:単電池
の充電末設計開路電圧、α(充電末分極補正電圧):
0.01V〜0.1V、N:単電池直列数、I:電流、
1:初期内部抵抗、K1:内部抵抗の温度依存による補
正係数、K3:単電池群の並列総数と故障単電池を含ま
ない単電池群数との比、K4:内部抵抗の充放電回数に
よる補正係数、K5:内部抵抗の運転日数による補正係
数)に達した時点で充電を停止することを特徴とするナ
トリウム−硫黄電池の運転方法。
10. A method of operating a sodium-sulfur battery, which comprises a plurality of unit cells connected in series and further connected in parallel, the method comprising: The temperature is measured, the defective single cell is detected, and the number of charging / discharging times and / or the number of operating days is further counted, so that the operating voltage V across the sodium-sulfur battery during charging is corrected by the temperature of the internal resistance. And the correction voltage V H (V H = (V h + α) × N + I × R 1 ) in which the polarization voltage correction at the end of charge and the correction due to the change in the number of parallels due to the failure of the unit cell and the correction according to the number of charge / discharge and / or the number of operating days are taken into consideration. × K 1 × K 3 ×
(K 4 or K 5 or K 4 × K 5 ), where V h is the open circuit voltage at the end of charging of the single cell, α (polarization correction voltage at the end of charging):
0.01V to 0.1V, N: number of single cell series, I: current,
R 1 : initial internal resistance, K 1 : correction coefficient of internal resistance due to temperature dependence, K 3 : ratio of parallel total number of single battery groups to number of single battery groups not including failed cells, K 4 : charging of internal resistance The method for operating a sodium-sulfur battery is characterized in that the charging is stopped when a correction coefficient according to the number of discharges, K 5 : a correction coefficient according to the number of operating days of the internal resistance) is reached.
【請求項11】 前記内部抵抗の充放電回数による補正
係数K4及び/又は前記内部抵抗の運転日数による補正
係数K5が、R=A×D1/2+B×D+R1(但し、R:
内部抵抗、A及びB:定数、D:充放電回数(K4の場
合)若しくは運転日数(K5の場合)、R1:初期内部抵
抗)から求められる値であることを特徴とする請求項7
又は10記載のナトリウム−硫黄電池の運転方法。
11. A correction coefficient K 4 according to the number of charging / discharging times of the internal resistance and / or a correction coefficient K 5 according to the number of operating days of the internal resistance is R = A × D 1/2 + B × D + R 1 (where R:
A value obtained from internal resistance, A and B: constants, D: number of times of charging / discharging (for K 4 ) or number of operating days (for K 5 ,), R 1 : initial internal resistance. 7
Or the operating method of the sodium-sulfur battery according to 10.
【請求項12】 未使用のナトリウム−硫黄電池モジュ
ールに、定格電流で30〜60分間放電した時点で測定
した内部抵抗を初期内部抵抗とすることを特徴とする請
求項1〜11のいずれか一項に記載のナトリウム−硫黄
電池の運転方法。
12. The initial internal resistance is defined as the internal resistance measured at the time of discharging an unused sodium-sulfur battery module at a rated current for 30 to 60 minutes. Item 7. A method for operating a sodium-sulfur battery according to the item.
【請求項13】 ナトリウム−硫黄電池モジュールの定
期点検時に測定した内部抵抗を初期内部抵抗とすること
を特徴とする請求項1〜11のいずれか一項に記載のナ
トリウム−硫黄電池の運転方法。
13. The method for operating a sodium-sulfur battery according to claim 1, wherein an internal resistance measured during a periodic inspection of the sodium-sulfur battery module is used as an initial internal resistance.
【請求項14】 内部抵抗の変化量を予測して、充電時
又は放電時の電圧/電流制御に組み入れ、充放電を行う
ことを特徴とする請求項1〜13のいずれか一項に記載
のナトリウム−硫黄電池の運転方法。
14. The charging / discharging according to claim 1, wherein the amount of change in internal resistance is predicted and incorporated into voltage / current control during charging or discharging to perform charging / discharging. How to operate a sodium-sulfur battery.
JP21833299A 1998-10-07 1999-08-02 Operation method of sodium-sulfur battery Expired - Lifetime JP3505111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21833299A JP3505111B2 (en) 1998-10-07 1999-08-02 Operation method of sodium-sulfur battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28539798 1998-10-07
JP10-285397 1998-10-07
JP21833299A JP3505111B2 (en) 1998-10-07 1999-08-02 Operation method of sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JP2000182662A JP2000182662A (en) 2000-06-30
JP3505111B2 true JP3505111B2 (en) 2004-03-08

Family

ID=26522508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21833299A Expired - Lifetime JP3505111B2 (en) 1998-10-07 1999-08-02 Operation method of sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3505111B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567317B2 (en) * 2003-11-18 2010-10-20 日本碍子株式会社 NAS battery power storage system
JP5096018B2 (en) 2007-02-23 2012-12-12 日本碍子株式会社 Sodium-sulfur battery control system
JP5201863B2 (en) * 2007-03-29 2013-06-05 日本碍子株式会社 Control method of sodium-sulfur battery
JP5288463B2 (en) * 2008-10-29 2013-09-11 日本碍子株式会社 Sodium-sulfur battery charging method
EP2395595B1 (en) 2009-02-06 2014-07-23 NGK Insulators, Ltd. Method for determining drop in capacity of sodium-sulfur battery
JP5416770B2 (en) * 2009-06-29 2014-02-12 日本碍子株式会社 End discharge voltage correction device and end discharge voltage correction method
JP5549148B2 (en) * 2009-08-20 2014-07-16 トヨタ自動車株式会社 Voltage adjustment method for secondary battery
JP6177763B2 (en) 2011-08-19 2017-08-09 日本碍子株式会社 Storage battery control method, storage battery control device, and power control system
DE102012210262A1 (en) * 2011-11-18 2013-05-23 Robert Bosch Gmbh Battery with a battery cell with external and integrated temperature sensor and method of operation of the battery
JP6112094B2 (en) 2014-10-22 2017-04-12 トヨタ自動車株式会社 All solid state battery system
WO2017154112A1 (en) * 2016-03-08 2017-09-14 株式会社東芝 Battery monitoring device and method
EP3869607A4 (en) 2018-10-18 2022-08-31 NGK Insulators, Ltd. Power storage battery control device and power storage battery control method
JP2024123305A (en) * 2023-03-01 2024-09-12 植 千葉 Safe NAS battery

Also Published As

Publication number Publication date
JP2000182662A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
US7132832B2 (en) Self-diagnosis system for an energy storage device
EP3338337B1 (en) Monitoring and balancing capacity in lithium sulfur cells arranged in series
JP3505111B2 (en) Operation method of sodium-sulfur battery
US8957640B2 (en) Method for accurately and precisely calculating state of charge of a sodium-sulfur battery
WO2002027343A1 (en) Method of detecting residual capacity of secondary battery
JP5684117B2 (en) Method for calculating number of healthy strings of sodium-sulfur battery, and failure detection method using the same
CN110462916B (en) Power storage element management device and power storage element management method
WO2019225032A1 (en) Method for ascertaining capacity of storage battery, and capacity-monitoring device
US9026388B2 (en) Method for determining drop in capacity of sodium—sulfur battery
US10067086B2 (en) Method for the in-situ recalibration of a comparison electrode incorporated into an electrochemical system
WO2019017411A1 (en) Estimation device, power storage device, estimation method, and computer program
US20230184846A1 (en) Method for diagnosing and predicting the lifespan of lead-based batteries, especially lead-based batteries intended to store standby power
JP4754509B2 (en) Storage battery state measuring device, storage battery deterioration determination method, storage battery deterioration determination program
JP5201863B2 (en) Control method of sodium-sulfur battery
JP2008196852A (en) Storage battery condition measuring device, storage battery degradation determination method, storage battery degradation determination program
KR101742737B1 (en) Method for controlling sodium based secondary battery
WO1998043310A1 (en) Sodium-sulfur secondary cell system and method for controlling the same
JP2001015178A (en) Battery pack and measuring device for its voltage balance
Matsushima et al. Residual capacity estimation of stationary lithium-ion secondary cells in telecommunications systems using a brief discharge
US20220352736A1 (en) Charging/discharging control device and charging/discharging control method
Matsushima Residual capacity estimation of stationary lithium‐ion secondary battery based on its discharge voltage characteristics

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031212

R150 Certificate of patent or registration of utility model

Ref document number: 3505111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term