JP3504539B2 - X-ray diffractometer - Google Patents

X-ray diffractometer

Info

Publication number
JP3504539B2
JP3504539B2 JP19749399A JP19749399A JP3504539B2 JP 3504539 B2 JP3504539 B2 JP 3504539B2 JP 19749399 A JP19749399 A JP 19749399A JP 19749399 A JP19749399 A JP 19749399A JP 3504539 B2 JP3504539 B2 JP 3504539B2
Authority
JP
Japan
Prior art keywords
ray
receiving system
measurement
angle
opening angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19749399A
Other languages
Japanese (ja)
Other versions
JP2001021509A (en
Inventor
紀伊知 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19749399A priority Critical patent/JP3504539B2/en
Publication of JP2001021509A publication Critical patent/JP2001021509A/en
Application granted granted Critical
Publication of JP3504539B2 publication Critical patent/JP3504539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、X線回折装置にお
ける受光器部分の開口角の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an aperture angle of a light receiving portion in an X-ray diffractometer.

【0002】[0002]

【従来の技術】従来のX線回折装置はバルク材料および
簡単な多層薄膜、エピ膜の構造評価を念頭において設計
されていた。このため、X線受光器の設計はその検出感
度等にのみ注意が払われ、X線受光器は何度程度の開口
角度をもつことが望ましいか、という問題はほとんど無
視されてきた。実質的には2θ開口角度にして2度程度
あれば、従来のバルク材料および簡単な薄膜、エピ膜ピ
ークの評価上は問題が生じなかった。また、従来は開口
角度を広げて測る要求、必然性もほとんど認識されてい
なかった。むしろ、不要な散乱波をカットして測定感度
をよくするため、スリット等をX線受光器の前に設置し
て測定すること、すなわち開口角度を狭くする方向にの
み注意が払われていた。この傾向は近年のX線回折装置
の高分解能化に伴い、一層顕著になりつつある。
2. Description of the Related Art Conventional X-ray diffractometers have been designed with the structural evaluation of bulk materials, simple multilayer thin films and epi films in mind. For this reason, attention has been paid only to the detection sensitivity and the like of the design of the X-ray receiver, and the problem of how many opening angles the X-ray receiver desirably has has been neglected. Substantially no problem occurred in the evaluation of the conventional bulk material, simple thin film, and epi film peak as long as the 2θ opening angle is about 2 degrees. In the past, there was almost no recognition of the necessity or necessity of measuring with a wide opening angle. Rather, in order to improve the measurement sensitivity by cutting unnecessary scattered waves, attention has been paid only to the measurement in which a slit or the like is installed in front of the X-ray receiver, that is, to narrow the opening angle. This tendency is becoming more remarkable as the resolution of the X-ray diffractometer has been increased in recent years.

【0003】更に近年、新しいX線回折測定技術として
逆格子マッピング測定技術がよく用いられるようになっ
てきた。逆格子マッピング測定はX線受光器の前にスリ
ットの代わりにアナライザ結晶と呼ばれる極端に空間分
解能の高いフィルターを挿入することにより可能となる
測定である。アナライザ結晶の挿入は実質的に受光系の
2θ開口角度を極端に狭くすることに対応している。こ
れにより逆格子空間の測定分解能が飛躍的に向上しマッ
ピング測定が可能となる。
Further, in recent years, a reciprocal lattice mapping measurement technique has been often used as a new X-ray diffraction measurement technique. The reciprocal lattice mapping measurement can be performed by inserting an extremely high spatial resolution filter called an analyzer crystal in place of the slit in front of the X-ray receiver. The insertion of the analyzer crystal substantially corresponds to extremely narrowing the 2θ opening angle of the light receiving system. This dramatically improves the measurement resolution in the reciprocal lattice space and enables mapping measurement.

【0004】このようなマッピング測定を行うためには
測定したいピークの周辺に測定条件を上手く調整して選
ぶ必要がある。この作業を初めからアナライザ結晶を挿
入したX線受光系を用いて行うのは非常に手間のかかる
困難な作業となる。そこで通常はアナライザ結晶を挿入
しない状態、すなわちX線受光器のみ、あるいはX線受
光器とスリットを組み合わせた受光系を用いて大体の調
整をまず行う。その後、アナライザ結晶を挿入し所望の
X線受光系を構成し、微調整を行うことにより、測定し
たいピークの周辺に測定条件を選ぶことが可能となる。
さらにこの作業を更に効率化するため、粗調整用の第1
のX線受光器とスリットを組み合わせた第1のX線受光
系と、微調整および測定用の第2のX線受光器とアナラ
イザ結晶を組み合わせた第2のX線受光系、の2つの別
々の受光系を用意し、これらを同一の台上に乗せること
により、2つの副受光系をもつ一体化した受光系を構成
することが通常行われる。(例えばフィリップス(Ph
ilips)社X線回折装置X′pertMRD)この
一体化した受光系の位置2θを一定量シフトさせること
により、2つの副X線受光系のどちらを選択して使用す
るかを簡便に変更することができる。このため上記の調
整作業が著しくやりやすくなっている。このような形の
一体化した受光系においては、第1のX線受光系の開口
角度は通常の場合に比べてもさらに狭く設計される。具
体的には2θ開口角度にして1〜2度程度に設計され
る。この理由はこれまで開口角度を大きくとって測定す
べき要求があまりなかったためである。
In order to perform such a mapping measurement, it is necessary to adjust the measurement condition around the peak to be measured and select it. Performing this work from the beginning by using an X-ray receiving system in which an analyzer crystal is inserted is a very laborious and difficult work. Therefore, generally, the adjustment is first performed in a state in which the analyzer crystal is not inserted, that is, only the X-ray light receiver or the light receiving system in which the X-ray light receiver and the slit are combined. After that, an analyzer crystal is inserted to configure a desired X-ray receiving system, and fine adjustment is performed, whereby it becomes possible to select measurement conditions around the peak to be measured.
Furthermore, in order to make this work more efficient, the first for coarse adjustment
The first X-ray receiving system in which the X-ray receiving device and the slit are combined, and the second X-ray receiving system in which the second X-ray receiving device for fine adjustment and measurement and the analyzer crystal are combined are separately provided. It is usually practiced to construct an integrated light receiving system having two sub light receiving systems by preparing the light receiving system of No. 1 and mounting them on the same table. (For example, Phillips (Ph
X-ray diffractometer X'pert MRD), Inc.) By simply shifting the position 2θ of the integrated light receiving system by a certain amount, it is possible to easily change which of the two sub X-ray light receiving systems is to be used. You can Therefore, the above-mentioned adjustment work is extremely easy to perform. In such an integrated light receiving system, the opening angle of the first X-ray light receiving system is designed to be narrower than in the usual case. Specifically, it is designed to have a 2θ opening angle of about 1 to 2 degrees. The reason for this is that there has not been much demand for measurement with a large opening angle.

【0005】[0005]

【発明が解決しようとする課題】上記[従来の技術]の
項で述べた従来のX線受光系の開口角度の設計には従来
は問題点はないと思われていたが、次のような観点から
見れば問題が存在することが判ってきた。まず、測定試
料の多様化が問題の発端としてあげられる。すなわち、
従来のバルク材料および簡単な薄膜、エピ膜ピークの評
価だけでなく、種々の(大きな格子不整合をもつ)ヘテ
ロエピ膜、種々の材料系を組み合わせた(歪み)超格子
構造などの多彩な構造をもつ試料がX線回折評価のター
ゲットとなる。これらの試料からのX線回折ピークは多
種多彩であり、逆格子空間の広い範囲にわたって分布し
ている。このような広い範囲を上記[従来の技術]の項
で述べたような方法で上記の狭い開口角度条件の下に探
索し、測定に必要な条件を試料ごとに見つけだすのは容
易でない。さらにこのような広い範囲にわたって分布し
ている一連のX線回折ピークを従来の逆格子マッピング
測定のみですべて評価するのは、測定時間が著しく増大
し、非効率的である。したがって、より効率的な方法が
必要であるという問題点が顕在化してきた。
The conventional design of the aperture angle of the X-ray receiving system described in the section [Prior Art] above was considered to have no problem in the past, but From a point of view, it has become clear that there are problems. First of all, the diversification of measurement samples is the origin of the problem. That is,
Not only conventional bulk materials and simple thin films, evaluation of epi film peaks, but also various structures such as hetero epi films (having large lattice mismatch) and (strain) superlattice structure combining various material systems The sample that has become a target for X-ray diffraction evaluation. The X-ray diffraction peaks from these samples are diverse and distributed over a wide range of the reciprocal lattice space. It is not easy to search such a wide range under the above-mentioned narrow opening angle condition by the method as described in the above [Prior Art] and find out the condition necessary for measurement for each sample. Furthermore, it is inefficient to evaluate all of a series of X-ray diffraction peaks distributed over such a wide range only by the conventional reciprocal lattice mapping measurement, because the measurement time increases significantly. Therefore, the problem that a more efficient method is required has become apparent.

【0006】このような複雑な構造をもつ試料をX線回
折により効率的に評価する際に有効となるような方法が
近年本発明者らによって提案され、その有効性が報告さ
れている。(K.Nakashima and H.S
ugiura,Jpn.J.Appl.Phys.Pa
rt 1,36,5351(1997)およびK.Na
kashima and H.Sugiura,J.A
ppl.Crystallogr.,30,1002
(1997)など)これらの方法では指数(hkl)を
変えて種々のX線プロファイル(profile)を測
定し、得られたデータを解析する。この際、特に指数
(hkl)測定においてはX線受光系の開口角度が何度
の条件で測定するかという点が極めて重要となる。この
場合逆格子空間内でのスキャン方向と回折スポットが存
在する方向が一般には一致しないため、X線受光系の開
口角度を広くとって測定することが要求される。しかる
に従来のX線受光系の開口角度設計はこれらの点はまっ
たく考慮されていない。また現実の測定装置においても
十分要求をみたす開口角度にはなっていないという問題
点がこれらの研究過程で明確になってきた。さらに、こ
れらの観点から開口角度をどう設計しておけばよいかに
ついてもこれまで明確な指針はなかった。
In recent years, the present inventors have proposed a method that is effective in efficiently evaluating a sample having such a complicated structure by X-ray diffraction, and reported its effectiveness. (K. Nakashima and H.S.
ugiura, Jpn. J. Appl. Phys. Pa
rt 1,36,5351 (1997) and K. Na
Kashima and H.M. Sugiura, J .; A
ppl. Crystallogr. , 30, 1002
(1997, etc.) In these methods, the index (hkl) is changed, various X-ray profiles are measured, and the obtained data is analyzed. At this time, particularly in the index (hkl) measurement, it is extremely important to determine how many conditions the aperture angle of the X-ray receiving system should measure. In this case, since the scan direction in the reciprocal lattice space and the direction in which the diffraction spot exists generally do not match, it is required to measure with a wide aperture angle of the X-ray receiving system. However, these points are not taken into consideration at all in the conventional aperture angle design of the X-ray receiving system. In addition, the problem that the aperture angle does not satisfy the requirements even in actual measuring devices has become clear during these research processes. Furthermore, there has been no clear guideline on how to design the opening angle from these viewpoints.

【0007】本発明は上記の事情に鑑みてなされたもの
で、X線受光系の開口角度を3度以上に広く設定できる
ようにすることにより、一般の指数(hkl)反射測定
をより簡便におこなえ、また、複雑な構造をもつ多用な
試料に対して、簡便に解析を行うための指数(hkl)
依存性を用いた種々の解析法をより簡便に適用できるX
線回折装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and makes it possible to more easily perform general index (hkl) reflection measurement by making it possible to set the aperture angle of the X-ray receiving system to be wider than 3 degrees. An index (hkl) for easy analysis of various samples with complex structures.
Various analysis methods using dependency can be applied more easily X
An object is to provide a line diffraction device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明のX線回折装置は、X線回折装置中の、X線受
光器と該受光器の前に置かれるスリットが挿入されるス
リット挿入用補助治具を合わせ持つことにより、該受光
器の開口角度を制限することが可能であるような一体化
されたX線受光系であって、該スリットを除いて測定す
る場合の該受光器開口角度が、2θ見込み角度にして3
度以上の広い2θ開口角度を有する一体化されたX線受
光系を具備することを特徴とするものである。
In order to achieve the above object, an X-ray diffractometer according to the present invention comprises an X-ray receiver in an X-ray diffractometer.
A slit is inserted in front of the optical device and the optical receiver.
By holding an auxiliary jig for lit insertion,
Integrated such that it is possible to limit the opening angle of the vessel
X-ray receiving system, which measures without the slit
If the aperture angle of the receiver is 2θ
Integrated X-ray receiver with a wide 2θ opening angle of more than 1 degree
It is characterized by having an optical system.

【0009】[0009]

【0010】また本発明のX線回折装置は、X線回折装
置中において、第1のX線受光器と該第1の受光器の前
にスリットを置く補助的治具からなる第1のX線受光系
と、第2のX線受光器と該第2の受光器の前に結晶を多
重個ブラッグ(Bragg)条件を満たすように配置し
たアナライザ結晶からなる第2のX線受光系の2つのX
線受光系をさらに一体化して1つの大きな受光系を形成
し、該大きな受光系の位置2θを一定量シフトさせるこ
とにより前記2つのX線受光系のどちらかを選択して使
用できるようにした一体化されたX線受光系であって、
第1のX線受光系において該スリットを除いて測定する
場合の該受光器開口角度が、2θ見込み角度にして3度
以上の広い2θ開口角度を有する一体化されたX線受光
系を具備することを特徴とするものである。
Further, the X-ray diffractometer of the present invention comprises, in the X-ray diffractometer, a first X-ray photoreceiver and a first X-ray photodetector and an auxiliary jig for placing a slit in front of the first photoreceiver. 2 of the X-ray receiving system, which is composed of a line receiving system, a second X-ray receiving unit, and an analyzer crystal in which crystals are arranged in front of the second receiving unit so as to satisfy a Bragg condition. Two x
The line light receiving system is further integrated to form one large light receiving system, and the position 2θ of the large light receiving system is shifted by a certain amount so that either of the two X-ray light receiving systems can be selected and used. An integrated X-ray receiving system,
The first X-ray receiving system is provided with an integrated X-ray receiving system having a wide 2θ opening angle of 3 ° or more in terms of the 2θ expected angle when the measurement is performed by removing the slit. It is characterized by that.

【0011】[0011]

【発明の実施の形態】以下図面を参照して本発明の実施
形態例を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0012】X線受光系の開口角度の広い条件での測定
を簡便に行えるような受光系の構造にしておくことが不
可欠となる。またこの際従来考慮されていた開口角度の
狭い条件での測定も併せて行え、どの開口角度条件で測
定するかを自由に選べるようにしておくことが必要とな
る。これらの要求をみたすための手段として本発明では
以下のことを考える。
It is indispensable to have a structure of a light-receiving system that allows easy measurement under a wide opening angle condition of the X-ray light-receiving system. At this time, it is necessary to perform the measurement under the condition that the opening angle is narrow, which has been conventionally considered, so that it is necessary to be able to freely select which opening angle condition is used for the measurement. The present invention considers the following as means for satisfying these requirements.

【0013】(1) 測定試料の位置からX線受光器を
見た場合の受光器本体の開口角度が、2θ見込み角度に
して3度以上の広い2θ開口角度を有するように、受光
器本体の開口部面積および試料から受光器本体までの距
離を設定する。以下に具体的に説明する。図1は本発明
に係るX線回折装置におけるX線受光器の構造および周
辺との位置関係、2θ開口角度の模式図を示す。図1に
示すように、試料11の位置を中心として測ったX線受
光器(受光系)12の開口部分のなす角度2Δθが2θ
開口角度である。したがって、上記の条件は2Δθが3
度以上になるようにすることを意味している。今、X線
受光器12の開口部の半径をr、試料11からX線受光
器12までの距離をRとすると、Δθ≒r/Rの関係式
が近似的に成立する。このことから上記の条件を満たす
ようにrとRの比をとればこの条件は実現できる。13
はX線源である。
(1) When the X-ray receiver is viewed from the position of the sample to be measured, the opening angle of the receiver main body has a wide 2θ opening angle of 3 ° or more in terms of the 2θ prospective angle. Set the aperture area and the distance from the sample to the receiver body. This will be specifically described below. FIG. 1 shows a schematic view of the structure of the X-ray photoreceiver in the X-ray diffraction apparatus according to the present invention and the positional relationship with the surroundings, and the 2θ opening angle. As shown in FIG. 1, the angle 2Δθ formed by the opening of the X-ray receiver (light receiving system) 12 measured around the position of the sample 11 is 2θ.
The opening angle. Therefore, under the above conditions, 2Δθ is 3
It means to be more than once. Now, assuming that the radius of the opening of the X-ray receiver 12 is r and the distance from the sample 11 to the X-ray receiver 12 is R, the relational expression of Δθ≈r / R approximately holds. From this, this condition can be realized by taking the ratio of r and R so as to satisfy the above condition. Thirteen
Is an X-ray source.

【0014】(2) 図2は本発明に係るX線受光器と
スリット挿入用補助治具を一体化したX線受光系におけ
る2θ開口角度の模式図である。X線受光器12の前に
スリット14を置くスリット挿入用補助治具15をそな
えたX線受光系の場合は、上記(1)に述べた受光器本
体の構造に関する条件以外に、スリット14を抜いて最
も広い開口角度で測定する場合の条件として2θ見込み
角度にして3度以上の広い2θ開口角度を有するように
する。これはスリット14を置くためのスリット挿入用
補助治具15により開口角度が制限を受けることのない
構造にX線受光系をすることに対応する。すなわち、図
2に示すように図1のX線受光器12自身の開口角度の
かわりに、スリット挿入用補助治具15により制限され
る開口角度をとって(1)の場合と同様に考えればよ
い。これにより、3度以上の最も広い開口角度条件で測
定できることが保証され、かつ挿入するスリット14の
幅を変えることにより、3度以下の任意の開口角度に設
定して測定することも可能となる。すなわち、上述の要
求条件を満たすことがわかる。
(2) FIG. 2 is a schematic view of a 2θ opening angle in an X-ray receiving system in which an X-ray receiving device according to the present invention and an auxiliary jig for slit insertion are integrated. In the case of an X-ray receiving system provided with a slit insertion auxiliary jig 15 in which the slit 14 is placed in front of the X-ray receiver 12, in addition to the condition relating to the structure of the receiver main body described in (1) above, the slit 14 is installed. As a condition in the case of pulling out and measuring at the widest opening angle, a wide 2θ opening angle of 3 ° or more is set as a 2θ prospective angle. This corresponds to providing an X-ray receiving system in a structure in which the slit insertion auxiliary jig 15 for placing the slit 14 does not limit the opening angle. That is, as shown in FIG. 2, instead of the opening angle of the X-ray receiver 12 of FIG. 1, the opening angle limited by the slit insertion auxiliary jig 15 is taken and considered in the same manner as in the case of (1). Good. This guarantees that measurement can be performed under the widest opening angle condition of 3 degrees or more, and by changing the width of the slit 14 to be inserted, it is also possible to set and measure the arbitrary opening angle of 3 degrees or less. . That is, it can be seen that the above requirements are satisfied.

【0015】(3) 先に[従来の技術]の項で触れ
た、逆格子マッピング測定のための2つの副受光系をも
つ一体化されたX線受光系の場合は、(2)で述べた構
造を粗調整用の第1のX線受光系の構造として採用すれ
ばよい。さらに第2のX線受光系(結晶を多重個ブラッ
グ(Bragg)条件を満たすように配置したアナライ
ザ結晶など)が第1のX線受光系の開口角度を阻害しな
いように、第1、第2のX線受光系を選択するためのシ
フト量を大きくとるような構造も一体化のための設定条
件として必要となる。
(3) In the case of the integrated X-ray light receiving system having two sub-light receiving systems for reciprocal lattice mapping measurement, which was mentioned in the section [Prior Art] above, described in (2). The above structure may be adopted as the structure of the first X-ray receiving system for rough adjustment. Further, the first and second X-ray receiving systems are arranged so that the second X-ray receiving system (such as an analyzer crystal in which multiple crystals are arranged so as to satisfy the Bragg condition) does not obstruct the opening angle of the first X-ray receiving system. A structure that requires a large amount of shift for selecting the X-ray receiving system is also required as a setting condition for integration.

【0016】尚、上記(1)〜(3)において開口角度
の条件である3度以上という条件は本発明の基となる検
討の結果初めて明確になった値である。
In the above (1) to (3), the condition of the opening angle of 3 degrees or more is a value that has been clarified for the first time as a result of the study on which the present invention is based.

【0017】本発明は、X線回折装置におけるX線受光
系部分の開口角度の構造を改良することにより、特に従
来考慮されていなかった広い開口角度の条件に関する問
題点を解決するものである。本発明により従来の受光系
では測定できなかった広い開口角度の条件での測定が可
能となる。この改善により、近年試料の多様化、複雑化
に伴い、要求が増している種々の指数(hkl)を用い
た測定がより簡便に行えるようになる。さらに逆格子マ
ッピング測定用の2つの副受光系をもつ一体化されたX
線受光系に本発明を適用することにより、従来に比べ逆
格子マッピング測定が著しく簡便に行えるようになる。
The present invention solves the problems relating to a wide aperture angle condition, which has not been considered in the past, by improving the structure of the aperture angle of the X-ray receiving system portion in the X-ray diffractometer. The present invention enables measurement under a wide aperture angle condition that cannot be measured by the conventional light receiving system. Due to this improvement, measurement using various indices (hkl), which have been increasingly required in recent years with the diversification and complexity of samples, can be performed more easily. In addition, an integrated X with two sub-receiver systems for reciprocal lattice mapping measurements
By applying the present invention to a line receiving system, reciprocal lattice mapping measurement can be performed significantly more easily than in the past.

【0018】次に、本発明の具体例について説明する。Next, a specific example of the present invention will be described.

【0019】逆格子マッピング測定用の2つの副受光系
をもつ一体化されたX線受光系での第1の副受光系での
具体例を以下に示す。X線回折測定にはInGaAsP
系歪超格子試料を用いた。
A specific example of the first sub-light-receiving system in the integrated X-ray light-receiving system having two sub-light-receiving systems for reciprocal lattice mapping measurement is shown below. InGaAsP for X-ray diffraction measurement
System strained superlattice samples were used.

【0020】まず比較のため(400)反射測定の結果
を図3に示す。この測定の際には受光器の前に1/4m
m幅のスリットを挿入して測定した。この場合は2θ見
込み角度にして0.5度以下の狭い開口角度条件になっ
ている。(400)反射測定の場合は開口角度の影響が
ないため、狭い開口角度条件にもかかわらず、高次のサ
テライトピークまで多数のピークが明瞭に観測されてい
る。
First, for comparison, the result of (400) reflection measurement is shown in FIG. 1 / 4m in front of the receiver during this measurement
The measurement was performed by inserting an m-width slit. In this case, the narrow opening angle condition is 0.5 ° or less in terms of the 2θ expected angle. In the case of (400) reflection measurement, since there is no influence of the aperture angle, a large number of peaks up to satellite peaks of high order are clearly observed despite the narrow aperture angle condition.

【0021】しかるに、一般の指数(hkl)反射測定
では開口角度の影響が顕著に現れる。ここでは(42
2)反射測定を例にとって示す。まず、従来の比較的狭
い開口角度の構造をもつ(第1の副)受光系を用いてス
リットを除いた条件で測定したX線回折測定結果を図4
(a)に示す。ここでは非対称反射配置による測定をお
こなった。この測定での受光系開口角度は2θ見込み角
度にして1度である。原理的には(422)反射測定プ
ロファイルにも(400)反射測定プロファイルと類似
のサテライトピークプロファイルが観測されるはずであ
る。したがって、図3の結果とあわせると図4(a)に
おいても高次まで多数のサテライトピークが観測される
はずである。しかるに、図4(a)では基板ピーク近傍
の数本の低次のサテライトピークのみが観測され、高次
のピークは全く観測されていない。これは開口角度が狭
いため、高次ピークはX線受光系に入らないような位置
に回折されているためと考えられる。このことをさらに
確認するため同様の測定を受光器の前に1/4mm幅の
スリットを挿入して測定した。得られた結果を図4
(b)に示す。この場合は2θ見込み角度にして0.5
度以下の、図4(a)に比べてさらに狭い開口角度条件
になっている。図4(b)では図4(a)に比べて、観
測されるサテライトピークの数が更に少なくなっている
ことがわかる。この結果から、高次のピークが全く観測
されない原因が従来のX線受光系のもつ開口角度が狭す
ぎることによることが確認された。これらの結果より、
従来の比較的狭い開口角度の構造をもつ受光系では測定
上問題が生じることが判明した。
However, in general index (hkl) reflection measurement, the influence of the aperture angle appears remarkably. Here (42
2) An example of reflection measurement is shown. First, FIG. 4 shows an X-ray diffraction measurement result obtained by using a conventional (first sub) light-receiving system having a structure with a relatively narrow aperture angle and measuring conditions under which a slit is removed.
It shows in (a). Here, the measurement was performed by the asymmetric reflection arrangement. The opening angle of the light receiving system in this measurement is 1 degree in terms of the 2θ expected angle. In principle, a satellite peak profile similar to the (400) reflection measurement profile should be observed in the (422) reflection measurement profile. Therefore, when combined with the results of FIG. 3, many satellite peaks should be observed up to high order in FIG. 4 (a). However, in FIG. 4A, only some low-order satellite peaks near the substrate peak are observed, and high-order peaks are not observed at all. It is considered that this is because the aperture angle is narrow and the higher-order peaks are diffracted to a position where they do not enter the X-ray receiving system. In order to further confirm this, a similar measurement was performed by inserting a slit having a width of 1/4 mm in front of the light receiver. Figure 4 shows the results obtained.
It shows in (b). In this case, the estimated angle of 2θ is 0.5
The opening angle condition is smaller than that, which is narrower than that in FIG. It can be seen that the number of observed satellite peaks is further reduced in FIG. 4B as compared with FIG. 4A. From this result, it was confirmed that the reason why no higher-order peak was observed was that the aperture angle of the conventional X-ray receiving system was too narrow. From these results,
It was found that the conventional light receiving system having a structure with a relatively narrow aperture angle causes a problem in measurement.

【0022】一方、本発明により開口角度を広げてやれ
ば、このような高次ピークもX線受光系の開口内に入る
ようになるため、観測可能となる。図5に(第1の副)
受光系の開口角度を2θ見込み角度にして3度にとった
受光系(スリットなしの条件)を用いた装置で測定し
た、同試料の(422)反射測定の結果を示す。ここで
は対称反射配置を用いた。図5では図1に類似した一連
のサテライトピークが高次まで明瞭に観測されているこ
とがわかる。すなわち、開口角度を広くとった効果によ
り(422)反射測定が問題なくおこなえており、図4
における問題点は解決されていることがわかる。また一
般の指数(hkl)反射測定の場合も受光系の開口角度
を2θ見込み角度にして3度以上にとっておけばほぼ問
題なく測定できることが、同様にして実験的に確認でき
る。
On the other hand, if the aperture angle is widened according to the present invention, such higher-order peaks also come into the aperture of the X-ray receiving system, so that they can be observed. Figure 5 (first vice)
The result of the (422) reflection measurement of the same sample measured by the apparatus using the light receiving system (condition without slit) in which the aperture angle of the light receiving system is set to 3 ° and the angle is set to 3 ° is shown. A symmetrical reflection arrangement was used here. In FIG. 5, it can be seen that a series of satellite peaks similar to those in FIG. 1 are clearly observed up to higher orders. That is, due to the effect of widening the opening angle, the (422) reflection measurement can be performed without any problem.
It turns out that the problem in is solved. Also, in the case of a general index (hkl) reflection measurement, it can be experimentally confirmed in the same manner that the measurement can be performed without any problem if the aperture angle of the light receiving system is set to 3 ° or more with an estimated angle of 2θ.

【0023】以上の具体例から、本発明により一般の指
数(hkl)反射測定がより簡便に行えるようになって
いることがわかる。
From the above specific examples, it can be seen that the present invention allows the general index (hkl) reflection measurement to be performed more easily.

【0024】さらに、上記の効果は、逆格子マッピング
測定用の2つの副受光系をもつ一体化されたX線受光系
での第1の副受光系に本発明を適用した場合には、逆格
子マッピング測定の上でも著しい差異を生む。これを以
下に説明する。逆格子マッピング測定では通常第1の副
受光系を用いて回折パターンの概略を予めθ−2θモー
ドスキャンにより測定しておき、得られた回折パターン
を基にどの部分を実際に逆格子マッピング測定するかを
決定する。逆格子マッピング測定は通常θ−2θモード
スキャンとωモードスキャンを組み合わせた2軸スキャ
ンを用いて行われ、測定範囲の指定は各θ−2θ、ωモ
ードごとの範囲を指定することにより決定される。また
実際の逆格子マッピング測定では第2の副受光系に切り
替えて行われる。この切り替え作業を効率的に行うため
2つの副受光系を一体化した構造が不可欠となってい
る。このような一体化した受光系において第1の副受光
系を用いて回折パターンの概略をとった具体例が先に示
した図4および図5に対応する。すなわち図4は第1の
副受光系として従来の狭い開口角度をもつ場合のθ−2
θモード測定による回折パターンであり、図5は本発明
による開口角度を3度以上に広くとった場合のθ−2θ
モード測定による回折パターンに対応する。
Further, the above effect is reversed when the present invention is applied to the first sub-light-receiving system in the integrated X-ray light-receiving system having two sub-light-receiving systems for reciprocal lattice mapping measurement. It also makes a significant difference on the grid mapping measurements. This will be explained below. In the reciprocal lattice mapping measurement, an outline of the diffraction pattern is usually measured in advance by θ-2θ mode scanning using the first sub-light-receiving system, and which part is actually reciprocal lattice mapped based on the obtained diffraction pattern. Decide The reciprocal lattice mapping measurement is usually performed using a biaxial scan that is a combination of the θ-2θ mode scan and the ω mode scan, and the measurement range is specified by specifying the range for each θ-2θ and ω mode. . Further, in the actual reciprocal lattice mapping measurement, switching to the second sub-light receiving system is performed. In order to perform this switching work efficiently, a structure in which two sub-light receiving systems are integrated is essential. A specific example of the outline of the diffraction pattern obtained by using the first sub-light receiving system in such an integrated light receiving system corresponds to FIGS. 4 and 5 described above. That is, FIG. 4 shows θ-2 when the first sub-light receiving system has a conventional narrow aperture angle.
FIG. 5 is a diffraction pattern by θ mode measurement, and FIG. 5 shows θ-2θ when the opening angle according to the present invention is widened to 3 degrees or more.
Corresponds to the diffraction pattern by mode measurement.

【0025】これらの回折パターンから逆格子マッピン
グの測定範囲を設定する際に2つの場合で著しい差が生
じる。従来の図4の場合には基板ピーク周辺の±1度程
度のθの範囲に数本のピークしか現れていない。この結
果を基に、逆格子マッピング測定の際のθ−2θモード
スキャン範囲を基板ピーク周辺の±1度程度に選んでし
まうと、実際にはその外側の範囲に存在するピークを観
測できないことになる。図4において外側の観測にかか
っていない部分まで逆格子マッピングで測定したい場合
には±1度程度よりすっと広いスキャン範囲を設定する
ことが必要となる。しかるに、図4の回折パターンデー
タからはこの測定条件の設定が事実上できない。このよ
うな場合には通常ある程度測定範囲を広めにとってみて
試行錯誤的に測定を繰り返すことが行われる。しかる
に、逆格子マッピングは時間のかかる測定法であるた
め、むやみに広いスキャン範囲を設定することは測定時
間の著しい増大につながり、非能率的で実際には避ける
べきである。以上のことから従来の狭い開口角度をもつ
第1の副受光系では、逆格子マッピングの測定範囲を設
定する上で問題があることが結論できる。
There is a significant difference between the two cases in setting the reciprocal lattice mapping measurement range from these diffraction patterns. In the case of FIG. 4 of the related art, only a few peaks appear in the range of θ of about ± 1 degree around the peak of the substrate. On the basis of this result, if the θ-2θ mode scan range for reciprocal lattice mapping measurement is selected to be ± 1 degree around the substrate peak, it is impossible to actually observe peaks outside the range. Become. In FIG. 4, when it is desired to measure the area outside the observation by reciprocal lattice mapping, it is necessary to set a scan range that is much wider than about ± 1 degree. However, it is virtually impossible to set the measurement conditions from the diffraction pattern data of FIG. In such a case, the measurement range is usually widened to some extent and the measurement is repeated by trial and error. However, since reciprocal lattice mapping is a time-consuming measurement method, setting a large scan range unnecessarily leads to a significant increase in measurement time, which is inefficient and should be avoided in practice. From the above, it can be concluded that the conventional first sub-light receiving system having a narrow aperture angle has a problem in setting the measurement range of reciprocal lattice mapping.

【0026】しかるに、本発明の具体例である図5にお
いては、開口角度を広げた効果により、回折ピークはす
べて観測できている。すなわち、図5に観測されている
ピーク以外のピークは存在しないと考えてよい。この効
果により、逆格子マッピング測定の際のθ−2θモード
スキャン範囲を設定する上では、図5のデータだけから
効率よく決定できることが重要である。たとえば、図5
の結果から、すべてのピークを観測できるようにするた
めには、逆格子マッピング測定の際のθ−2θモードス
キャン範囲を基板ピーク周辺の±2度程度に設定すれば
十分であり、これ以上スキャン範囲を広げても意味のあ
るピークは決して得られないことが判る。また、基板ピ
ークから離れた位置にある特定のピークの周辺のみ逆格
子マッピング測定したいような場合も、図5をもとにス
キャン範囲を基板ピークからどの程度離れた位置に選べ
ばよいかを容易に設定できる。これらの例から、図5の
測定データを予めとっておくことにより、逆格子マッピ
ング測定の際のθ−2θモードスキャン範囲を効率的に
設定することが可能となる。すなわち、従来法の図4の
場合に説明したような試行錯誤的に測定を繰り返して決
定する労力を著しく軽減できる。また、スキャン範囲を
必要最小限にとれることに起因して、逆格子マッピング
測定の測定時間を著しく短縮できることも本発明により
得られる重要な効果である。図6に本具体例において上
述の手順により測定した(422)反射逆格子マッピン
グ測定の1例を示す。得られるピークに対してスキャン
範囲が効率的に選ばれていることが判る。
In FIG. 5, which is a specific example of the present invention, however, all diffraction peaks can be observed due to the effect of widening the aperture angle. That is, it can be considered that there are no peaks other than the peaks observed in FIG. Due to this effect, in setting the θ-2θ mode scan range at the time of reciprocal lattice mapping measurement, it is important to be able to determine efficiently from only the data in FIG. For example, in FIG.
From the results, it is sufficient to set the θ-2θ mode scan range at the time of the reciprocal lattice mapping measurement to about ± 2 degrees around the substrate peak in order to be able to observe all the peaks. It can be seen that a meaningful peak can never be obtained even if the range is widened. Also, when it is desired to measure the reciprocal lattice mapping only around a specific peak located away from the substrate peak, it is easy to determine how far away from the substrate peak the scanning range should be based on FIG. Can be set to. From these examples, by preliminarily storing the measurement data of FIG. 5, it is possible to efficiently set the θ-2θ mode scan range at the time of reciprocal lattice mapping measurement. That is, it is possible to remarkably reduce the labor for repeating the determination by trial and error as described in the case of FIG. 4 of the conventional method. Further, it is also an important effect obtained by the present invention that the measurement time of the reciprocal lattice mapping measurement can be remarkably shortened due to the fact that the scan range can be minimized. FIG. 6 shows an example of the (422) reflection reciprocal lattice mapping measurement measured by the above procedure in this example. It can be seen that the scan range is efficiently selected for the obtained peak.

【0027】[0027]

【発明の効果】従来の開口角度の比較的狭いX線受光系
をもつX線回折装置を用いて一般の指数(hkl)反射
測定を行った場合、基板ピークから離れたピーク(高次
のサテライトピークなど)は観測にかからないという問
題があった。本発明により、X線受光系の開口角度を3
度以上に広く設定できるようにすることにより、この問
題を解決し、一般の指数(hkl)反射測定をより簡便
におこなえるようになった。この発明の効果により、逆
格子マッピング測定等の開口角度を極端に狭くして測定
する方法をおこなうための条件設定を、より簡便に行え
るようになる。また、複雑な構造をもつ多用な試料に対
して、簡便に解析を行うための指数(hkl)依存性を
用いた種々の解析法をより簡便に適用できるようにな
る、などの効果が期待できる。
When a general index (hkl) reflection measurement is performed using an X-ray diffractometer having a conventional X-ray receiving system with a relatively narrow aperture angle, a peak (higher-order satellite) apart from the substrate peak is measured. There was a problem that observations (such as peaks) did not take place. According to the present invention, the opening angle of the X-ray receiving system is set to 3
By allowing the setting to be wider than that, it has become possible to solve this problem and perform general index (hkl) reflection measurement more easily. Due to the effect of the present invention, it becomes possible to more easily set the conditions for performing the method of performing the measurement such as the reciprocal lattice mapping measurement with the aperture angle extremely narrowed. In addition, it is expected that various analysis methods using exponential (hkl) dependence for easy analysis can be more easily applied to various samples having a complicated structure. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るX線回折装置におけるX線受光器
の構造および周辺との位置関係、2θ開口角度の一例を
示す模式図である。
FIG. 1 is a schematic diagram showing an example of a structure of an X-ray photoreceiver in an X-ray diffraction device according to the present invention and a positional relationship between the X-ray photoreceiver and its surroundings, and a 2θ opening angle.

【図2】本発明に係るX線受光器とスリット挿入用補助
治具を一体化した受光系における2θ開口角度の一例を
示す模式図である。
FIG. 2 is a schematic diagram showing an example of a 2θ opening angle in a light receiving system in which an X-ray light receiver according to the present invention and a slit insertion auxiliary jig are integrated.

【図3】本発明の具体例に用いたInGaAsP/In
GaAsP歪超格子試料の(400)X線回折プロファ
イルを示す特性図である。測定の際には受光器の前に1
/4mm幅のスリットを挿入して測定した。この条件は
2θ見込み角度にして0.5度以下の狭い開口角度条件
になっている。
FIG. 3 shows InGaAsP / In used in an embodiment of the present invention.
FIG. 6 is a characteristic diagram showing a (400) X-ray diffraction profile of a GaAsP strained superlattice sample. 1 in front of the receiver when measuring
The measurement was performed by inserting a slit having a width of / 4 mm. This condition is a narrow opening angle condition with an estimated 2θ angle of 0.5 degrees or less.

【図4】図3に用いたInGaAsP/InGaAsP
歪超格子試料の従来法測定による(422)反射θ−2
θスキャン測定結果を示す特性図である。 (a)第1の副受光器の前にスリットを置かずに測定し
た場合。この測定での第1の副受光系開口角度は2θ見
込み角度にして1度である。 (b)第1の副受光器の前に1/4mm幅のスリットを
挿入して測定した場合。この場合は2θ見込み角度にし
て0.5度以下の、(a)に比べてさらに狭い開口角度
条件になっている。
FIG. 4 is the InGaAsP / InGaAsP used in FIG.
(422) reflection θ-2 of a strained superlattice sample measured by a conventional method
It is a characteristic view which shows a (theta) scan measurement result. (A) In the case of measurement without a slit in front of the first sub-light receiver. The opening angle of the first sub-light-receiving system in this measurement is 1 degree, which is a 2θ expected angle. (B) A case in which a slit having a width of 1/4 mm is inserted in front of the first sub-light receiver for measurement. In this case, the angle of 2θ is 0.5 ° or less, which is a narrower opening angle condition than that of (a).

【図5】本発明の具体例である、開口角度を2θ見込み
角度にして3度にとった第1の副受光系(スリットな
し)を用いた装置で測定した、図3の試料の(422)
反射θ−2θスキャン測定の結果を示す特性図である。
対称反射配置で測定。
5 is a specific example of the present invention, which is measured by an apparatus using a first sub-light receiving system (without slit) in which an opening angle is set to 2θ prospective angle and set to 3 degrees (422 of the sample of FIG. )
It is a characteristic view which shows the result of reflection (theta) -2 (theta) scan measurement.
Measured with symmetrical reflection arrangement.

【図6】本発明の具体例による(422)反射逆格子マ
ッピング測定の1例を示す特性図である。
FIG. 6 is a characteristic diagram showing an example of a (422) reflection reciprocal grating mapping measurement according to a specific example of the present invention.

【符号の説明】[Explanation of symbols]

11 試料 12 X線受光器 13 X線源 14 スリット 15 スリット挿入用補助治具 11 samples 12 X-ray receiver 13 X-ray source 14 slits 15 Auxiliary jig for slit insertion

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 23/00 - 23/227 G21K 1/00 - 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 23/00-23/227 G21K 1/00-1/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線回折装置中の、X線受光器と該受光
器の前に置かれるスリットが挿入されるスリット挿入用
助治具を合わせ持つことにより、該受光器の開口角度
を制限することが可能であるような一体化されたX線受
光系であって、該スリットを除いて測定する場合の該受
光器開口角度が、2θ見込み角度にして3度以上の広い
2θ開口角度を有する一体化されたX線受光系を具備す
ることを特徴とするX線回折装置。
1. A in the X-ray diffraction apparatus by slits placed in front of the X-ray light receiver and the light receiving unit has combined slit insertion <br/> auxiliary Sukeji instrument is inserted, the light receiving unit a integrated X-ray light receiving system such that it is possible to limit the opening angle of, the light receiving unit opening angle when measuring except the slit, at least three times in the 2θ prospective angle An X-ray diffraction apparatus comprising an integrated X-ray receiving system having a wide 2θ opening angle.
【請求項2】 X線回折装置中において、第1のX線受
光器と該第1の受光器の前にスリットを置く補助的治具
からなる第1のX線受光系と、第2のX線受光器と該第
2の受光器の前に結晶を多重個ブラッグ(Bragg)
条件を満たすように配置したアナライザ結晶からなる第
2のX線受光系の2つのX線受光系をさらに一体化して
1つの大きな受光系を形成し、該大きな受光系の位置2
θを一定量シフトさせることにより前記2つのX線受光
系のどちらかを選択して使用できるようにした一体化さ
れたX線受光系であって、第1のX線受光系において該
スリットを除いて測定する場合の該受光器開口角度が、
2θ見込み角度にして3度以上の広い2θ開口角度を有
する一体化されたX線受光系を具備することを特徴とす
るX線回折装置。
2. An X-ray diffractometer, comprising: a first X-ray receiving system comprising a first X-ray receiving device and an auxiliary jig for placing a slit in front of the first light receiving device; Multiple crystals in front of the X-ray receiver and the second receiver Bragg
The two X-ray receiving systems of the second X-ray receiving system composed of analyzer crystals arranged so as to satisfy the conditions are further integrated to form one large receiving system, and the position 2 of the large receiving system is set.
An integrated X-ray receiving system in which one of the two X-ray receiving systems can be selected and used by shifting θ by a certain amount, and the slit is provided in the first X-ray receiving system. When the measurement is performed excluding, the aperture angle of the receiver is
An X-ray diffraction device comprising an integrated X-ray receiving system having a wide 2θ opening angle of 3 ° or more in terms of a 2θ prospective angle.
JP19749399A 1999-07-12 1999-07-12 X-ray diffractometer Expired - Fee Related JP3504539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19749399A JP3504539B2 (en) 1999-07-12 1999-07-12 X-ray diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19749399A JP3504539B2 (en) 1999-07-12 1999-07-12 X-ray diffractometer

Publications (2)

Publication Number Publication Date
JP2001021509A JP2001021509A (en) 2001-01-26
JP3504539B2 true JP3504539B2 (en) 2004-03-08

Family

ID=16375398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19749399A Expired - Fee Related JP3504539B2 (en) 1999-07-12 1999-07-12 X-ray diffractometer

Country Status (1)

Country Link
JP (1) JP3504539B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257192B2 (en) 2004-07-15 2007-08-14 Rigaku Corporation Method and apparatus for X-ray reflectance measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257192B2 (en) 2004-07-15 2007-08-14 Rigaku Corporation Method and apparatus for X-ray reflectance measurement

Also Published As

Publication number Publication date
JP2001021509A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
US7769135B2 (en) X-ray diffraction wafer mapping method for rhombohedral super-hetero-epitaxy
US7372016B1 (en) Calibration standard for a dual beam (FIB/SEM) machine
JP6871629B2 (en) X-ray analyzer and its optical axis adjustment method
AU2916789A (en) Differential ellipsometer
US20140192959A1 (en) Method and apparatus for surface mapping using in-plane grazing incidence diffraction
JP3504539B2 (en) X-ray diffractometer
Konya X-ray thin-film measurement techniques
Tanner et al. Advanced X-ray scattering techniques for the characterization of semiconducting materials
Misumi et al. 25 nm pitch comparison between a traceable x-ray diffractometer and a metrological atomic force microscope
Fewster et al. Applications of multiple-crystal diffractometry
Tao et al. Non-destructive evaluation of residual stresses in thin films via x-ray diffraction topography methods
JP3837132B2 (en) Sample evaluation method, evaluation substrate, and evaluation substrate formation method
Vincent et al. Structure of AlGaAs/GaAs multilayers imaged in superlattice reflections
US20080067370A1 (en) Electron microscope and scanning probe microscope calibration device
Halliwell X-ray diffraction solutions to heteroepitaxial growth problems
Romanov et al. Separation of the diffuse contribution to the specular x-ray scattering of multilayer films
JP5165498B2 (en) Crystal structure analysis method
JP2905659B2 (en) X-ray apparatus and evaluation analysis method using the apparatus
Madsen et al. Assessment of MgO (1 0 0) and (1 1 1) substrate quality by X-ray diffraction
JP2008197025A (en) Crystal structure analysis method and crystal structure analyzer
US5418829A (en) Method for determining unknown structure of crystal
JP5350124B2 (en) Crystal structure analysis method
Nakahara et al. Simple method for determining the absolute sense of image rotation in a transmission electron microscope
Baker Semiconductor wafer inspection
Shih et al. The use of the Fresnel method for the characterisation of a short-period strained Ge/Si multilayer: I. Measurement of the average Ge/Si volume ratio

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees