JP2008197025A - Crystal structure analysis method and crystal structure analyzer - Google Patents

Crystal structure analysis method and crystal structure analyzer Download PDF

Info

Publication number
JP2008197025A
JP2008197025A JP2007034289A JP2007034289A JP2008197025A JP 2008197025 A JP2008197025 A JP 2008197025A JP 2007034289 A JP2007034289 A JP 2007034289A JP 2007034289 A JP2007034289 A JP 2007034289A JP 2008197025 A JP2008197025 A JP 2008197025A
Authority
JP
Japan
Prior art keywords
sample
ray
diffracted
intensity
target sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007034289A
Other languages
Japanese (ja)
Inventor
Kiichi Nakajima
紀伊知 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007034289A priority Critical patent/JP2008197025A/en
Publication of JP2008197025A publication Critical patent/JP2008197025A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately analyze a crystal structure by using X-ray diffraction measurement. <P>SOLUTION: The intensity of diffracted X rays, which are diffracted by an object specimen when applying X rays to the object specimen, is detected on a wide opening angle condition and on a narrow opening angle condition, with a relative ratio between the two taken as "a diffracted X-ray intensity ratio of the object specimen". Further, the intensity of diffracted X rays, which are diffracted by a reference specimen when X rays are applied to the reference specimen with its crystal completeness assured, is detected on a wide opening angle condition and on a narrow opening angle condition, with a relative ratio between the two taken as "a diffracted X-ray intensity ratio of the reference specimen". A reflection index used in X-ray analysis on the reference specimen is selected independently of a reflection index used in X-ray analysis on the object specimen. A value obtained by dividing "the intensity ratio of the object specimen" by "the intensity ratio of the reference specimen" is taken as "a standardized diffracted X-ray intensity ratio" to analyze a crystalline state from this value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バルク結晶、または半導体薄膜結晶や多重量子井戸構造の構造解析をするのに適用して有用な、結晶の構造解析方法および結晶の構造解析装置に関する発明である。本発明は、特に格子不整合の大きいヘテロエピタキシャル成長薄膜結晶の不完全性、歪を含むエピタキシャル薄膜および歪超格子格子の構造劣化の有無およびその程度、特徴等を調べる上で有用である。   The present invention relates to a crystal structure analysis method and a crystal structure analysis apparatus useful for structural analysis of bulk crystals, semiconductor thin film crystals, and multiple quantum well structures. The present invention is particularly useful for examining the incompleteness of heteroepitaxially grown thin film crystals having a large lattice mismatch, the presence / absence of structural deterioration of strained epitaxial thin films and strained superlattice lattices, the extent and characteristics thereof, and the like.

従来、InGaAs/GaAs、Si/SiGeなどの材料系を用いた歪系エピタキシャル層、歪超格子構造の作製においては「臨界膜厚」(あるいは「臨界歪」)という量の重要性がよく知られており、臨界膜厚の評価、および臨界膜厚をこえた領域での格子緩和過程の評価は重要な評価対象であった。X線回折法は、PL測定法、TEM解析法などとともに、これら臨界膜厚の評価、格子緩和過程の評価に従来からよく用いられてきた。   Conventionally, the importance of the quantity “critical film thickness” (or “critical strain”) is well known in the production of strained epitaxial layers and strained superlattice structures using materials such as InGaAs / GaAs and Si / SiGe. The evaluation of critical film thickness and the evaluation of the lattice relaxation process in the region beyond the critical film thickness were important evaluation targets. The X-ray diffraction method has been frequently used for evaluation of critical film thickness and lattice relaxation process, as well as PL measurement method and TEM analysis method.

しかるにこれらの各種評価法で評価された臨界膜厚値は一般には一致せず、その不一致の原因の1つとし、従来のX線回折評価が他の評価手法に比べて、構造劣化に対する検出感度が劣る点が指摘されていた(I.J.Fritz, P.L.Gourley, and L.R.Dawson, Appl.Phys.Lett.51.1004-1006(1987)およびP.L.Gourley, I.J.Fritz, and L.R.Dawson, Appl.Phys.Lett.52,377-379(1988)。   However, the critical film thickness values evaluated by these various evaluation methods generally do not coincide with each other, which is one of the causes of the inconsistency, and the conventional X-ray diffraction evaluation is more sensitive to structural degradation than other evaluation methods. (IJFritz, PLGourley, and LRDawson, Appl.Phys.Lett.51.1004-1006 (1987) and PLGourley, IJFritz, and LRDawson, Appl.Phys.Lett.52,377- 379 (1988).

すなわちX線回折法により得られた臨界膜厚値は他のPL値等から得られた臨界膜厚値に比べて大きな値になり、正しい値が得られないことが指摘され、欠陥等の密度が小さい場合の初期的構造劣化の検出には不向きであることが報告されていた。また、「なぜX線回折法では検出感度がとれないのか?」という点に対しての更なる検討例も少なく、X線回折法の立場からの検出感度の向上の方法等はこれまで全く検討されてこなかった。   That is, the critical film thickness value obtained by the X-ray diffraction method is larger than the critical film thickness value obtained from other PL values, and it is pointed out that a correct value cannot be obtained, and the density of defects, etc. It has been reported that it is unsuitable for detection of initial structural degradation in the case of small. In addition, there are few further studies on the question “Why X-ray diffractometry does not provide detection sensitivity?”, And methods for improving detection sensitivity from the standpoint of X-ray diffractometry have been completely studied so far. It has never been done.

上記におけるX線回折評価ではrocking curve 測定法を用いた評価が主であったのに対し、その後逆格子mapping測定などの方法が開発されたが、これらの新しく開発された手法においても、上記の「他の測定法に比べての構造劣化の検出感度」という問題点に関しては、目立った改善効果、詳細検討は見られなかった。   In the above X-ray diffraction evaluation, the rocking curve measurement method was mainly used, but methods such as reciprocal lattice mapping were later developed. However, in these newly developed methods as well, Concerning the problem of “detection sensitivity of structural deterioration compared with other measurement methods”, no remarkable improvement effect and detailed examination were found.

このような中、最近本願発明者らによってこの検出感度問題を改善する新しいX線回折法を用いた評価解析法が提出された(K. Nakashima and K. Tateno, J. Appl. Crystallogr.37,14-23(2004)。この方法は2種類の測定条件で測定した回折プロファイルを基準ピークをそろえて重ねて表示し、回折強度差を比較することにより、検出感度よく構造劣化の有無およびその程度を判定する評価方法である。   Under such circumstances, the present inventors have recently submitted an evaluation analysis method using a new X-ray diffraction method that improves this detection sensitivity problem (K. Nakashima and K. Tateno, J. Appl. Crystallogr. 37, 14-23 (2004) In this method, diffraction profiles measured under two different measurement conditions are displayed with reference peaks superimposed, and the difference in diffraction intensity is compared to determine the presence and extent of structural degradation with good detection sensitivity. Is an evaluation method for determining

しかるにこの方法を適用できるためには、測定プロファイル中に解析対象ピーク以外にreferenceとなる基準ピークが観測できることが必要であった。しかるに、バルク結晶、または格子不整合度の大きいヘテロエピタキシャル成長薄膜結晶などでは、基準ピークとなるようなピークが解析対象ピークの近傍に観測できないような場合が頻繁に現れ、このような一般の場合には上記の手法は適用できなかった。   However, in order to be able to apply this method, it was necessary to be able to observe a reference peak serving as a reference in addition to the analysis target peak in the measurement profile. However, in bulk crystals or heteroepitaxially grown thin film crystals with a large degree of lattice mismatch, a peak that becomes a reference peak often appears in the vicinity of the peak to be analyzed. The above method could not be applied.

I.J.Fritz, P.L.Gourley, and L.R.Dawson, Appl.Phys.Lett.51.1004-1006(1987)I.J.Fritz, P.L.Gourley, and L.R.Dawson, Appl.Phys.Lett. 51.1004-1006 (1987) P.L.Gourley, I.J.Fritz, and L.R.Dawson, Appl.Phys.Lett.52,377-379(1988)P.L.Gourley, I.J.Fritz, and L.R.Dawson, Appl.Phys.Lett.52,377-379 (1988) K. Nakashima and K. Tateno, J. Appl. Crystallogr.37,14-23(2004)K. Nakashima and K. Tateno, J. Appl.Crystallogr. 37, 14-23 (2004)

歪系エピタキシャル層、歪超格子構造の作製において重要となる、臨界膜厚の評価、および臨界膜厚をこえた領域での格子緩和過程の評価などの構造劣化をX線回折法を用いて評価する際に従来問題となっていた、他のPL測定法などを用いた場合と比べて検出感度が悪い、という課題を解決し、X線回折法を用いた構造劣化を評価する上で、従来法と比較して検出感度が向上するような新しい評価解析手法を提供する。   Evaluation of structural degradation using the X-ray diffraction method, which is important in the fabrication of strained epitaxial layers and strained superlattice structures, such as evaluation of critical film thickness and evaluation of lattice relaxation processes in regions beyond the critical film thickness In order to solve the problem of poor detection sensitivity compared to the case of using other PL measurement methods, which has been a problem in the past, and to evaluate structural deterioration using the X-ray diffraction method, A new evaluation and analysis method that improves detection sensitivity compared with the method is provided.

特に、従来提案されていた方法が適用できないような場合、すなわち、バルク結晶、または格子不整合度の大きいヘテロエピタキシャル成長薄膜結晶などで、基準ピークとなるようなピークが解析対象ピークの近傍に観測できないような場合にも適用できる新しい評価解析手法を提供する。   In particular, when a conventionally proposed method cannot be applied, that is, in a bulk crystal or a heteroepitaxially grown thin film crystal having a large degree of lattice mismatch, a peak that becomes a reference peak cannot be observed in the vicinity of the analysis target peak. A new evaluation analysis method that can be applied to such cases is provided.

なお、結晶構造の劣化としては、転位、欠陥、結晶方位の分布、結晶組成の乱れ等が考えられる。   Note that the deterioration of the crystal structure may be dislocations, defects, crystal orientation distribution, disorder of crystal composition, and the like.

上記課題を解決する本発明の結晶の構造解析方法の構成は
試料に対してX線を照射したときに、前記試料にて回折した回折X線の強度をX線検出器により検出して前記試料の結晶の構造を解析する方法であって、
試料として解析対象となる対象試料を用い、この対象試料と前記X線検出器との間に開口絞り手段を配置しないようにした第1測定条件にて、対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度を、広開口角での対象試料の回折X線強度とする工程と、
前記対象試料と前記X線検出器との間に開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度を、狭開口角での対象試料の回折X線強度とする工程と、
狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度との相対比を求め、この相対比を対象試料の回折X線強度比とする工程と、
試料として結晶の完全性が保証された参照試料を用い、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度を、広開口角での参照試料の回折X線強度とする工程と、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度を、狭開口角での参照試料の回折X線強度とする工程と、
狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度との相対比を求め、この相対比を参照試料の回折X線強度比とする工程と、
対象試料の回折X線強度比と参照試料の回折X線強度比との相対比を求め、この相対比を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする。
The structure of the crystal structure analysis method of the present invention that solves the above-described problem is that when the sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the sample is detected by an X-ray detector, A method for analyzing the crystal structure of
Using a target sample to be analyzed as a sample and irradiating the target sample with X-rays under a first measurement condition in which no aperture stop means is disposed between the target sample and the X-ray detector, Detecting the intensity of the diffracted X-ray diffracted by the target sample with the X-ray detector, and setting the detected intensity as the diffracted X-ray intensity of the target sample at a wide aperture angle;
An aperture stop means is disposed between the target sample and the X-ray detector, but the other measurement conditions are the same as the first measurement conditions, and the target sample is irradiated with X-rays. The intensity of the diffracted X-ray diffracted by the target sample and passing through the aperture stop means is detected by the X-ray detector, and this detected intensity is set as the diffracted X-ray intensity of the target sample at a narrow aperture angle. Process,
Obtaining a relative ratio between the X-ray intensity of the target sample at a narrow aperture angle and the X-ray intensity of the target sample at a wide aperture angle, and setting this relative ratio as the diffraction X-ray intensity ratio of the target sample;
A reference sample with guaranteed crystal integrity is used as the sample, and the reflection index is independently selected with respect to the first measurement condition, but the other measurement conditions are the same. The sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the reference sample is detected by the X-ray detector, and the detected intensity is set as the diffracted X-ray intensity of the reference sample at a wide aperture angle. Process,
The reference sample is irradiated with X-rays under the fourth measurement condition in which the reflection index is the reflection index selected in the third measurement condition but the other measurement conditions are the same with respect to the second measurement condition. Detecting the intensity of the diffracted X-rays diffracted at the aperture stop means by the X-ray detector and setting the detected intensity as the diffracted X-ray intensity of the reference sample at a narrow aperture angle; ,
Obtaining a relative ratio between the X-ray intensity of the reference sample at a narrow aperture angle and the X-ray intensity of the reference sample at a wide aperture angle, and setting this relative ratio as the diffraction X-ray intensity ratio of the reference sample;
The relative ratio between the diffracted X-ray intensity ratio of the target sample and the diffracted X-ray intensity ratio of the reference sample is obtained, and this relative ratio is defined as a normalized diffracted X-ray intensity ratio. The crystal structure state of the target sample is determined.

また本発明の結晶の構造解析方法の構成は、
試料に対してX線を照射したときに、前記試料にて回折した回折X線の強度をX線検出器により検出して前記試料の結晶の構造を解析する方法であって、
試料として解析対象となる対象試料を用い、この対象試料と前記X線検出器との間に開口絞り手段を配置しないようにした第1測定条件にて、入射角度を徐々に変化させつつ対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度の中からピークとなる強度を、広開口角での対象試料の回折X線強度とする工程と、
前記対象試料と前記X線検出器との間に開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、入射角度を徐々に変化させつつ対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度の中からピークとなる強度を、狭開口角での対象試料の回折X線強度とする工程と、
狭開口角での対象試料のX線強度を広開口角での対象試料のX線強度にて除算し、この除算値を対象試料の回折X線強度比とする工程と、
試料として結晶の完全性が保証された参照試料を用い、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて入射角度を徐々に変化させつつ参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度の中からピークとなる強度を、広開口角での参照試料の回折X線強度とする工程と、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて入射角度を徐々に変化させつつ参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度の中からピークとなる強度を、狭開口角での参照試料の回折X線強度とする工程と、
狭開口角での参照試料のX線強度を広開口角での参照試料のX線強度にて除算し、この除算値を参照試料の回折X線強度比とする工程と、
対象試料の回折X線強度比を参照試料の回折X線強度比にて除算し、この除算値を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする。
The structure of the crystal structure analysis method of the present invention is as follows.
A method of analyzing the crystal structure of the sample by detecting the intensity of diffracted X-rays diffracted by the sample with an X-ray detector when the sample is irradiated with X-rays;
A target sample to be analyzed is used as a sample, and the target sample is gradually changed under the first measurement condition in which an aperture stop means is not disposed between the target sample and the X-ray detector. The X-ray detector detects the intensity of the diffracted X-ray diffracted by the target sample, and the peak intensity among the detected intensities of the target sample at a wide aperture angle is detected. A step of diffracted X-ray intensity;
An aperture stop means is arranged between the target sample and the X-ray detector, but other measurement conditions are the same as the first measurement conditions, and the target sample is gradually changed while changing the incident angle. The X-ray detector detects the intensity of the diffracted X-ray that has been diffracted by the target sample and diffracted by the target sample and passed through the aperture stop means, and the peak intensity is detected from the detected intensities. A step of setting the diffraction X-ray intensity of the target sample at a narrow aperture angle;
Dividing the X-ray intensity of the target sample at a narrow aperture angle by the X-ray intensity of the target sample at a wide aperture angle, and setting this divided value as the diffraction X-ray intensity ratio of the target sample;
A reference sample with guaranteed crystal integrity is used as the sample, and the reflection index is independently selected with respect to the first measurement condition, but the other measurement conditions are the same. The reference sample is irradiated with X-rays while gradually changing the angle, the intensity of the diffracted X-ray diffracted by the reference sample is detected by the X-ray detector, and the peak intensity is detected from the detected intensities. The step of setting the diffracted X-ray intensity of the reference sample at a wide aperture angle;
With respect to the second measurement condition, the reflection index is the reflection index selected in the third measurement condition, but the other measurement conditions are the same. The X-ray detector detects the intensity of diffracted X-rays that are irradiated with a line, diffracted by the reference sample, and passed through the aperture stop means, and the peak intensity is narrowed from the detected intensity. A step of setting the diffraction X-ray intensity of the reference sample at the opening angle;
Dividing the X-ray intensity of the reference sample at a narrow aperture angle by the X-ray intensity of the reference sample at a wide aperture angle, and setting this divided value as the diffraction X-ray intensity ratio of the reference sample;
Divide the diffracted X-ray intensity ratio of the target sample by the diffracted X-ray intensity ratio of the reference sample, and use this divided value as the normalized diffracted X-ray intensity ratio. The crystal structure state of is determined.

また本発明の結晶の構造解析方法の構成は、
試料に対してX線を照射したときに、前記試料にて回折した回折X線の強度をX線検出器により検出して前記試料の結晶の構造を解析する方法であって、
試料として解析対象となる対象試料を用い、この対象試料と前記X線検出器との間に開口絞り手段を配置しないようにした第1測定条件にて、入射角度を徐々に変化させつつ対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度を積分した積分値を、広開口角での対象試料の回折X線強度とする工程と、
前記対象試料と前記X線検出器との間に開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、入射角度を徐々に変化させつつ対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度を積分した積分値を、狭開口角での対象試料の回折X線強度とする工程と、
狭開口角での対象試料のX線強度を広開口角での対象試料のX線強度にて除算し、この除算値を対象試料の回折X線強度比とする工程と、
試料として結晶の完全性が保証された参照試料を用い、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて入射角度を徐々に変化させつつ参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度を積分した積分値を、広開口角での参照試料の回折X線強度とする工程と、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて入射角度を徐々に変化させつつ参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度を積分した積分値を、狭開口角での参照試料の回折X線強度とする工程と、
狭開口角での参照試料のX線強度を広開口角での参照試料のX線強度にて除算し、この除算値を参照試料の回折X線強度比とする工程と、
対象試料の回折X線強度比を参照試料の回折X線強度比にて除算し、この除算値を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする。
The structure of the crystal structure analysis method of the present invention is as follows.
A method of analyzing the crystal structure of the sample by detecting the intensity of diffracted X-rays diffracted by the sample with an X-ray detector when the sample is irradiated with X-rays;
A target sample to be analyzed is used as a sample, and the target sample is gradually changed under the first measurement condition in which an aperture stop means is not disposed between the target sample and the X-ray detector. The X-ray detector detects the intensity of the diffracted X-ray diffracted by the target sample, and the integrated value obtained by integrating the detected intensity is used as the diffraction X of the target sample at a wide aperture angle. The step of making the line strength;
An aperture stop means is arranged between the target sample and the X-ray detector, but other measurement conditions are the same as the first measurement conditions, and the target sample is gradually changed while changing the incident angle. The X-ray detector detects the intensity of the diffracted X-ray that has been diffracted by the target sample and diffracted by the target sample and passed through the aperture stop means, and the integrated value obtained by integrating the detected intensity is narrowed. A step of setting the diffraction X-ray intensity of the target sample at the opening angle;
Dividing the X-ray intensity of the target sample at a narrow aperture angle by the X-ray intensity of the target sample at a wide aperture angle, and setting this divided value as the diffraction X-ray intensity ratio of the target sample;
A reference sample with guaranteed crystal integrity is used as the sample, and the reflection index is independently selected with respect to the first measurement condition, but the other measurement conditions are the same. The reference sample is irradiated with X-rays while gradually changing the angle, the intensity of the diffracted X-ray diffracted by the reference sample is detected by the X-ray detector, and an integrated value obtained by integrating the detected intensity is widened. A step of setting the diffraction X-ray intensity of the reference sample at the opening angle;
With respect to the second measurement condition, the reflection index is the reflection index selected in the third measurement condition, but the other measurement conditions are the same. The X-ray detector detects the intensity of diffracted X-rays that are irradiated with a line, diffracted by the reference sample, and passed through the aperture stop means, and the integrated value obtained by integrating the detected intensity is a narrow aperture angle. The step of setting the diffraction X-ray intensity of the reference sample at
Dividing the X-ray intensity of the reference sample at a narrow aperture angle by the X-ray intensity of the reference sample at a wide aperture angle, and setting this divided value as the diffraction X-ray intensity ratio of the reference sample;
Divide the diffracted X-ray intensity ratio of the target sample by the diffracted X-ray intensity ratio of the reference sample, and use this divided value as the normalized diffracted X-ray intensity ratio. The crystal structure state of is determined.

また本発明の結晶の構造解析方法の構成は、
前記参照試料は、完全結晶基板である、Si基板結晶、またはGe基板結晶、またはGaAs基板結晶、またはInP基板結晶であることを特徴とする。
The structure of the crystal structure analysis method of the present invention is as follows.
The reference sample is an Si substrate crystal, a Ge substrate crystal, a GaAs substrate crystal, or an InP substrate crystal, which is a complete crystal substrate.

また本発明の結晶の構造解析装置の構成は、
試料を保持する試料保持部と、前記試料保持部に保持された試料に対してX線を照射するX線源と、前記試料にて回折した回折X線の強度を検出するX線検出器と、前記試料保持部と前記X線検出器との間であって回折X線が進行する受光系に配置されたり前記受光系から外れた位置に配置されたりする開口絞り手段とを有するX線回折装置と、
演算部と、
記憶部とからなる結晶の構造解析装置であって、
前記試料保持部に解析対象となる対象試料を保持し、この対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置しないようにした第1測定条件にて、前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を広開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を狭開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度を読み込み、狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度との相対比を求め、この相対比を対象試料の回折X線強度比として前記記憶部に記憶し、
前記試料保持部に結晶の完全性が保証された参照試料を保持し、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を広開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を狭開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度を読み込み、狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度との相対比を求め、この相対比を参照試料の回折X線強度比として前記記憶部に記憶し、
前記演算部は、前記記憶部から対象試料の回折X線強度比と参照試料の回折X線強度比を読み込み、対象試料の回折X線強度比と参照試料の回折X線強度比との相対比を求め、この相対比を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする。
The structure of the crystal structure analysis apparatus of the present invention is as follows.
A sample holder for holding the sample, an X-ray source for irradiating the sample held by the sample holder with X-rays, and an X-ray detector for detecting the intensity of the diffracted X-rays diffracted by the sample; X-ray diffraction having aperture stop means disposed between the sample holder and the X-ray detector and disposed in a light-receiving system where diffracted X-rays travel or disposed away from the light-receiving system Equipment,
An arithmetic unit;
A crystal structure analysis apparatus comprising a storage unit,
In the first measurement condition in which the target sample to be analyzed is held in the sample holding unit, and the aperture stop means is not arranged in the light receiving system between the target sample and the X-ray detector, The target sample is irradiated with X-rays from an X-ray source, the intensity of diffracted X-rays diffracted by the target sample is detected by the X-ray detector, and the calculation unit calculates the detected intensity at a wide aperture angle. Memorize | stored in the said memory | storage part as the diffraction X-ray intensity of an object sample,
The aperture stop means is arranged in the light receiving system between the target sample and the X-ray detector, but the other measurement conditions are the same as the first measurement conditions, and the second measurement conditions are used. The target sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the target sample and passing through the aperture stop means is detected by the X-ray detector, and the calculation unit calculates the detected intensity. Memorize | stored in the said memory | storage part as the diffraction X-ray intensity of the object sample in a narrow aperture angle,
The calculation unit reads the X-ray intensity of the target sample at a narrow aperture angle and the X-ray intensity of the target sample at a wide aperture angle from the storage unit, and the X-ray intensity and wide aperture angle of the target sample at a narrow aperture angle. The relative ratio with the X-ray intensity of the target sample is stored in the storage unit as the diffracted X-ray intensity ratio of the target sample,
A reference sample in which the integrity of the crystal is guaranteed is held in the sample holder, and the reflection index is an independently selected reflection index with respect to the first measurement condition, but the other measurement conditions are the same. The reference sample is irradiated with X-rays from the X-ray source under the conditions, the intensity of the diffracted X-ray diffracted by the reference sample is detected by the X-ray detector, and the arithmetic unit widens the detected intensity. Storing in the storage unit as the diffracted X-ray intensity of the reference sample at the aperture angle;
With respect to the second measurement condition, the reflection index is the reflection index selected in the third measurement condition, but other measurement conditions are the same. In the fourth measurement condition, X-rays are emitted from the X-ray source to the reference sample. The X-ray detector detects the intensity of the diffracted X-ray that has been irradiated, diffracted by the reference sample, and passed through the aperture stop means, and the arithmetic unit detects the detected intensity at a reference angle at a narrow aperture angle. Is stored in the storage unit as the diffracted X-ray intensity of
The calculation unit reads the X-ray intensity of the reference sample at a narrow aperture angle and the X-ray intensity of the reference sample at a wide aperture angle from the storage unit, and the X-ray intensity and wide aperture angle of the reference sample at a narrow aperture angle. The relative ratio with the X-ray intensity of the reference sample is stored in the storage unit as the diffracted X-ray intensity ratio of the reference sample,
The calculation unit reads the diffraction X-ray intensity ratio of the target sample and the diffraction X-ray intensity ratio of the reference sample from the storage unit, and the relative ratio between the diffraction X-ray intensity ratio of the target sample and the diffraction X-ray intensity ratio of the reference sample The relative ratio is defined as a normalized diffraction X-ray intensity ratio, and the crystal structure state of the target sample is determined from the normalized diffraction X-ray intensity ratio value.

また本発明の結晶の構造解析装置の構成は、
試料を保持する試料保持部と、前記試料保持部に保持された試料に対してX線を照射するX線源と、前記試料にて回折した回折X線の強度を検出するX線検出器と、前記試料保持部と前記X線検出器との間であって回折X線が進行する受光系に配置されたり前記受光系から外れた位置に配置されたりする開口絞り手段とを有するX線回折装置と、
演算部と、
記憶部とからなる結晶の構造解析装置であって、
前記試料保持部に解析対象となる対象試料を保持し、この対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置しないようにした第1測定条件にて、入射角度を徐々に変化させつつ前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度の中からピークとなる強度を広開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、入射角度を徐々に変化させつつ前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度の中からピークとなる強度を狭開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度を読み込み、狭開口角での対象試料のX線強度を広開口角での対象試料のX線強度にて除算し、この除算値を対象試料の回折X線強度比として前記記憶部に記憶し、
前記試料保持部に結晶の完全性が保証された参照試料を保持し、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて入射角度を徐々に変化させつつ前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度の中からピークとなる強度を広開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて入射角度を徐々に変化させつつ前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度の中からピークとなる強度を狭開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度を読み込み、狭開口角での参照試料のX線強度を広開口角での参照試料のX線強度にて除算し、この除算値を参照試料の回折X線強度比として前記記憶部に記憶し、
前記演算部は、前記記憶部から対象試料の回折X線強度比と参照試料の回折X線強度比を読み込み、対象試料の回折X線強度比を参照試料の回折X線強度比にて除算し、この除算値を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする。
The structure of the crystal structure analysis apparatus of the present invention is as follows.
A sample holder for holding the sample, an X-ray source for irradiating the sample held by the sample holder with X-rays, and an X-ray detector for detecting the intensity of the diffracted X-rays diffracted by the sample; X-ray diffraction having aperture stop means disposed between the sample holder and the X-ray detector and disposed in a light-receiving system where diffracted X-rays travel or disposed away from the light-receiving system Equipment,
An arithmetic unit;
A crystal structure analysis apparatus comprising a storage unit,
In the first measurement condition, a target sample to be analyzed is held in the sample holder, and the aperture stop means is not arranged in the light receiving system between the target sample and the X-ray detector. The X-ray source irradiates the target sample with X-rays while gradually changing the angle, and the X-ray detector detects the intensity of the diffracted X-rays diffracted by the target sample. Stored in the storage unit as the diffracted X-ray intensity of the target sample at a wide aperture angle,
The aperture stop means is arranged in the light receiving system between the target sample and the X-ray detector, but the other measurement conditions are the same as the first measurement conditions, and the incident angle is gradually increased. The X-ray source irradiates the target sample with X-rays while changing the intensity, and the X-ray detector detects the intensity of the diffracted X-rays diffracted by the target sample and passing through the aperture stop means, The calculation unit stores the peak intensity from the detected intensity in the storage unit as the diffraction X-ray intensity of the target sample at a narrow aperture angle,
The calculation unit reads the X-ray intensity of the target sample at a narrow aperture angle and the X-ray intensity of the target sample at a wide aperture angle from the storage unit, and calculates the X-ray intensity of the target sample at a narrow aperture angle as a wide aperture angle. And dividing the divided value by the X-ray intensity of the target sample in the storage unit as a diffracted X-ray intensity ratio of the target sample,
A reference sample in which the integrity of the crystal is guaranteed is held in the sample holder, and the reflection index is an independently selected reflection index with respect to the first measurement condition, but the other measurement conditions are the same. The X-ray source irradiates the reference sample with X-rays while gradually changing the incident angle under conditions, and the X-ray detector detects the intensity of the diffracted X-ray diffracted by the reference sample, and the calculation The unit stores the peak intensity from the detected intensity in the storage unit as the diffracted X-ray intensity of the reference sample at a wide aperture angle,
The X-ray source while gradually changing the incident angle under the fourth measurement condition in which the reflection index is set to the reflection index selected in the third measurement condition with respect to the second measurement condition but the other measurement conditions are the same. The reference sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the reference sample and passed through the aperture stop means is detected by the X-ray detector, and the calculation unit detects the detected intensity Storing the intensity of the peak from the above as the diffracted X-ray intensity of the reference sample at a narrow aperture angle in the storage unit,
The calculation unit reads the X-ray intensity of the reference sample at a narrow aperture angle and the X-ray intensity of the reference sample at a wide aperture angle from the storage unit, and calculates the X-ray intensity of the reference sample at a narrow aperture angle as a wide aperture angle. And dividing the divided value by the X-ray intensity of the reference sample in the storage unit as the diffracted X-ray intensity ratio of the reference sample,
The calculation unit reads the diffraction X-ray intensity ratio of the target sample and the diffraction X-ray intensity ratio of the reference sample from the storage unit, and divides the diffraction X-ray intensity ratio of the target sample by the diffraction X-ray intensity ratio of the reference sample. The division value is used as a normalized diffraction X-ray intensity ratio, and the crystal structure state of the target sample is determined from the normalized diffraction X-ray intensity ratio value.

また本発明の結晶の構造解析装置の構成は、
試料を保持する試料保持部と、前記試料保持部に保持された試料に対してX線を照射するX線源と、前記試料にて回折した回折X線の強度を検出するX線検出器と、前記試料保持部と前記X線検出器との間であって回折X線が進行する受光系に配置されたり前記受光系から外れた位置に配置されたりする開口絞り手段とを有するX線回折装置と、
演算部と、
記憶部とからなる結晶の構造解析装置であって、
前記試料保持部に解析対象となる対象試料を保持し、この対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置しないようにした第1測定条件にて、入射角度を徐々に変化させつつ前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を積分した積分値を広開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、入射角度を徐々に変化させつつ前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を積分した積分値を狭開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度を読み込み、狭開口角での対象試料のX線強度を広開口角での対象試料のX線強度にて除算し、この除算値を対象試料の回折X線強度比として前記記憶部に記憶し、
前記試料保持部に結晶の完全性が保証された参照試料を保持し、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて入射角度を徐々に変化させつつ前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を積分した積分値を広開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて入射角度を徐々に変化させつつ前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を積分した積分値を狭開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度を読み込み、狭開口角での参照試料のX線強度を広開口角での参照試料のX線強度にて除算し、この除算値を参照試料の回折X線強度比として前記記憶部に記憶し、
前記演算部は、前記記憶部から対象試料の回折X線強度比と参照試料の回折X線強度比を読み込み、対象試料の回折X線強度比を参照試料の回折X線強度比にて除算し、この除算値を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする。
The structure of the crystal structure analysis apparatus of the present invention is as follows.
A sample holder for holding the sample, an X-ray source for irradiating the sample held by the sample holder with X-rays, and an X-ray detector for detecting the intensity of the diffracted X-rays diffracted by the sample; X-ray diffraction having aperture stop means disposed between the sample holder and the X-ray detector and disposed in a light-receiving system where diffracted X-rays travel or disposed away from the light-receiving system Equipment,
An arithmetic unit;
A crystal structure analysis apparatus comprising a storage unit,
In the first measurement condition, a target sample to be analyzed is held in the sample holder, and the aperture stop means is not arranged in the light receiving system between the target sample and the X-ray detector. The X-ray source irradiates the target sample with X-rays while gradually changing the angle, and the X-ray detector detects the intensity of the diffracted X-rays diffracted by the target sample. The integrated value obtained by integrating the intensity is stored in the storage unit as the diffraction X-ray intensity of the target sample at a wide aperture angle,
The aperture stop means is arranged in the light receiving system between the target sample and the X-ray detector, but the other measurement conditions are the same as the first measurement conditions, and the incident angle is gradually increased. The X-ray source irradiates the target sample with X-rays while changing the intensity, and the X-ray detector detects the intensity of the diffracted X-rays diffracted by the target sample and passing through the aperture stop means, The calculation unit stores the integrated value obtained by integrating the detected intensity in the storage unit as the diffracted X-ray intensity of the target sample at a narrow aperture angle,
The calculation unit reads the X-ray intensity of the target sample at a narrow aperture angle and the X-ray intensity of the target sample at a wide aperture angle from the storage unit, and calculates the X-ray intensity of the target sample at a narrow aperture angle as a wide aperture angle. And dividing the divided value by the X-ray intensity of the target sample in the storage unit as a diffracted X-ray intensity ratio of the target sample,
A reference sample in which the integrity of the crystal is guaranteed is held in the sample holder, and the reflection index is an independently selected reflection index with respect to the first measurement condition, but the other measurement conditions are the same. The X-ray source irradiates the reference sample with X-rays while gradually changing the incident angle under conditions, and the X-ray detector detects the intensity of the diffracted X-ray diffracted by the reference sample, and the calculation The unit stores an integrated value obtained by integrating the detected intensity as the diffracted X-ray intensity of the reference sample at a wide aperture angle in the storage unit,
The X-ray source while gradually changing the incident angle under the fourth measurement condition in which the reflection index is set to the reflection index selected in the third measurement condition with respect to the second measurement condition but the other measurement conditions are the same. The reference sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the reference sample and passed through the aperture stop means is detected by the X-ray detector, and the calculation unit detects the detected intensity Is stored in the storage unit as the diffracted X-ray intensity of the reference sample at a narrow aperture angle,
The calculation unit reads the X-ray intensity of the reference sample at a narrow aperture angle and the X-ray intensity of the reference sample at a wide aperture angle from the storage unit, and calculates the X-ray intensity of the reference sample at a narrow aperture angle as a wide aperture angle. And dividing the divided value by the X-ray intensity of the reference sample in the storage unit as the diffracted X-ray intensity ratio of the reference sample,
The calculation unit reads the diffraction X-ray intensity ratio of the target sample and the diffraction X-ray intensity ratio of the reference sample from the storage unit, and divides the diffraction X-ray intensity ratio of the target sample by the diffraction X-ray intensity ratio of the reference sample. The division value is used as a normalized diffraction X-ray intensity ratio, and the crystal structure state of the target sample is determined from the normalized diffraction X-ray intensity ratio value.

また本発明の結晶の構造解析装置の構成は、
前記参照試料は、完全結晶基板である、Si基板結晶、またはGe基板結晶、またはGaAs基板結晶、またはInP基板結晶であることを特徴とする。
The structure of the crystal structure analysis apparatus of the present invention is as follows.
The reference sample is an Si substrate crystal, a Ge substrate crystal, a GaAs substrate crystal, or an InP substrate crystal, which is a complete crystal substrate.

[作用]
本発明においては、上記評価手段を用いることにより、解析対象ピークに関する評価解析と基準ピークを用いた解析および補正を分離、独立して行えるような評価解析手法を構成でき、これにより必ずしも基準ピークが解析対象ピークの近傍に観測されずとも、評価解析手法がうまく機能し、より一般の場合に検出感度よく構造劣化を検出、評価するという作用を生み出す。
特に、比較参照用試料測定時の反射指数を解析対象試料測定の反射指数と独立に自由に選べることを保証する解析方法にすることで、両者で反射指数が共通に選べないような、より一般の場合にも適用可能な解析方法に定式化できるという作用をもたらす。
[Action]
In the present invention, by using the evaluation means, it is possible to configure an evaluation analysis method that can separate and independently perform evaluation analysis on the analysis target peak and analysis and correction using the reference peak. Even if it is not observed in the vicinity of the peak to be analyzed, the evaluation analysis technique works well, and it produces an effect of detecting and evaluating structural deterioration with high detection sensitivity in a more general case.
In particular, by using an analysis method that guarantees that the reflection index at the time of sample measurement for comparison reference can be freely selected independently of the reflection index for measurement of the sample to be analyzed, it is more general that the reflection index cannot be selected in common. In this case, it can be formulated into an applicable analysis method.

本発明により、歪系エピタキシャル層、歪超格子構造の作製において重要となる、臨界膜厚の評価、および臨界膜厚をこえた領域での格子緩和過程の評価などの構造劣化をX線回折法を用いて評価する際に従来問題となっていた、他のPL測定法などを用いた場合と比べて検出感度が悪い、という課題を解決し、X線回折法を用いた構造劣化を評価する上で、従来法と比較して検出感度を向上させることが可能となった。特に、バルク結晶、または格子不整合度の大きいヘテロエピタキシャル成長薄膜結晶などにおいて頻繁に遭遇する、基準ピークとなるようなピークが解析対象ピークの近傍に観測できないような場合、すなわち、従来提案されていた方法では解析できないような場合にも構造劣化を検出感度よく評価解析することが可能となった。また、補正を施すことにより、構造劣化の無い場合を1.0とする普遍的比表示が可能となる点も本発明の効果である。
さらに、比較参照用試料測定時の反射指数を解析対象試料測定の反射指数と独立に自由に選べることを保証する解析方法にすることで、両者で反射指数が共通に選べないようなより一般の場合にも解析が適用可能となった。すなわち、本発明により、測定上の便宜を考えて反射指数を自由に選んで測定した実験データを用いて解析することが可能となった。
According to the present invention, X-ray diffractometry is used for structural deterioration such as evaluation of critical film thickness and evaluation of lattice relaxation process in a region exceeding the critical film thickness, which are important in the production of strained epitaxial layers and strained superlattice structures. To solve the problem of poor detection sensitivity compared to the case of using other PL measurement methods, etc., which has been a problem in the past, and evaluate structural deterioration using the X-ray diffraction method The detection sensitivity can be improved as compared with the conventional method. In particular, when a peak that becomes a reference peak that is frequently encountered in a bulk crystal or a heteroepitaxially grown thin film crystal with a large degree of lattice mismatch cannot be observed in the vicinity of the peak to be analyzed, that is, conventionally proposed. Even when the method cannot be analyzed, structural degradation can be evaluated and analyzed with high detection sensitivity. In addition, the effect of the present invention is that by performing the correction, it is possible to display a universal ratio with 1.0 when there is no structural deterioration.
Furthermore, by using an analysis method that guarantees that the reflection index at the time of measurement of the reference sample can be freely selected independently of the reflection index of the measurement of the sample to be analyzed, it is more general that the reflection index cannot be selected in common by both. Analysis can also be applied to cases. That is, according to the present invention, analysis can be performed using experimental data measured by freely selecting a reflection index in consideration of convenience in measurement.

本発明を実施するための最良の形態では、任意のバルク結晶、または任意の基板上にエピタキシャル成長により作製された任意の材料系からなる単層および多層構造結晶を、X線回折により構造評価する場合を想定する。
この際、本発明の結晶の構造解析方法は、
(1)回折X線の受光系の開口角条件のみを変えた条件で、他の測定条件を同じに保ち、同一の反射指数(hkl)をもつ回折プロファイルを複数測定する工程と、
上記工程により得られた各測定プロファイル中の解析対象ピーク(あるいは一連のピーク群)ごとにピークトップ点での回折強度値を絶対測定し、この値をもとに各解析対象ピークごとに受光系開口角条件の異なる測定プロファイル間での回折強度値の相対比を算出する工程と、
上記工程により得られた回折強度値の比を受光系開口角条件の広い条件での回折強度値に対する受光系開口角条件の狭い条件での回折強度値の相対比の観点から整理し、この値の大小を評価することにより、各解析対象ピーク(あるいは一連のピーク群)に対応する解析対象層(あるいは解析対象多層構造結晶)の結晶的完全性、構造劣化の程度を判定することを特徴とする結晶の構造解析法であり、
かつ、
(2)解析対象となる試料とは別に、比較参照用試料として結晶の完全性の保証された試料を用意しておき、上記(1)中に述べた解析対象試料に対して適用した受光系の開口角条件のみを変えた条件での回折プロファイルの複数測定を比較参照用試料に対しても行う。この比較参照用試料に対する測定では、入射X線に関するすべての測定条件、受光系測定配置条件、スキャンスピード等測定条件をすべて(1)の解析対象試料の測定時に用いた条件に保ったまま比較参照用試料にも適用し、(1)と同様の手順で回折プロファイルを複数測定する。ただし、この測定の際、比較参照用試料測定に用いる反射指数hklは(1)の測定条件とは独立に自由に選択することを特徴とする。このようにして得られた回折プロファイル中の比較参照用試料ピークに対して(1)と同様の手順で受光系開口角条件の異なる測定プロファイル間での回折強度値の相対比を算出する工程と、
得られた比較参照用試料ピークに対する回折強度値の相対比を用いて、上記(1)の解析法において得られた解析対象ピークに対する回折強度値の相対比を除することにより、規格化された回折強度値の相対比を算出する工程と、
前工程で得られた規格化された回折強度値の相対比の大小を比較することにより、各解析対象ピーク(または一連のピーク群)に対応する解析対象層(あるいは解析対象多層構造結晶)の結晶学的完全性、構造劣化の程度を判定することを特徴とする結晶の構造解析法である。
In the best mode for carrying out the present invention, a single layer and a multilayer structure crystal made of an arbitrary bulk crystal or an arbitrary material system produced by epitaxial growth on an arbitrary substrate are subjected to structural evaluation by X-ray diffraction. Is assumed.
At this time, the crystal structure analysis method of the present invention is:
(1) A step of measuring a plurality of diffraction profiles having the same reflection index (hkl) while keeping the other measurement conditions the same under the condition where only the aperture angle condition of the light receiving system for diffracted X-rays is changed;
The diffraction intensity value at the peak top point is absolutely measured for each analysis target peak (or series of peaks) in each measurement profile obtained by the above process, and the light receiving system is measured for each analysis target peak based on this value. Calculating a relative ratio of diffraction intensity values between measurement profiles having different aperture angle conditions;
The ratio of the diffraction intensity values obtained by the above process is arranged from the viewpoint of the relative ratio of the diffraction intensity value in the narrow condition of the light receiving system aperture angle condition to the diffraction intensity value in the wide condition of the light receiving system aperture angle condition. It is characterized by determining the degree of crystal deterioration and structural deterioration of the analysis target layer (or analysis target multilayer structure crystal) corresponding to each analysis target peak (or a series of peaks) by evaluating the size of A structural analysis method of the crystal
And,
(2) In addition to the sample to be analyzed, a sample with a guaranteed crystal integrity is prepared as a comparative reference sample, and the light receiving system applied to the sample to be analyzed described in (1) above A plurality of measurements of the diffraction profile under the condition where only the opening angle condition is changed are also performed on the comparative reference sample. In this comparative reference sample measurement, all the measurement conditions related to incident X-rays, light receiving system measurement arrangement conditions, scan speed, and other measurement conditions such as (1) are kept for comparison while maintaining the conditions used for the measurement of the sample to be analyzed. A plurality of diffraction profiles are measured by the same procedure as in (1). However, in this measurement, the reflection index hkl used for the measurement of the reference sample for comparison is freely selected independently of the measurement conditions of (1). A step of calculating a relative ratio of diffraction intensity values between measurement profiles having different light receiving system aperture angle conditions in the same procedure as in (1) with respect to the comparative reference sample peak in the diffraction profile thus obtained; ,
By using the relative ratio of the diffraction intensity value to the obtained comparative reference sample peak, it was normalized by dividing the relative ratio of the diffraction intensity value to the analysis target peak obtained in the analysis method of (1) above. Calculating a relative ratio of diffraction intensity values;
By comparing the relative ratios of the normalized diffraction intensity values obtained in the previous step, the analysis target layer (or analysis target multilayer structure crystal) corresponding to each analysis target peak (or series of peaks) is analyzed. A crystal structure analysis method characterized by determining crystallographic integrity and the degree of structural deterioration.

また本発明を実施するための最良の形態では、
(3)上記(2)の解析法において、特に
比較参照用試料として、Si基板結晶、Ge基板結晶、GaAs基板結晶、InP基板結晶等の完全結晶基板を用いることを特徴とする結晶の構造解析法である。
In the best mode for carrying out the present invention,
(3) In the analysis method of (2) above, a crystal structure analysis characterized by using a complete crystal substrate such as a Si substrate crystal, a Ge substrate crystal, a GaAs substrate crystal, or an InP substrate crystal as a comparative reference sample. Is the law.

次に、本発明の各実施例を説明する。   Next, each example of the present invention will be described.

本発明の具体的な実施例1として、(0001)サファイア基板上にMOVPE成長法により作製したGaNエピタキシャル薄膜試料を本発明に適用して構造評価した例を以下に述べる。尚、サファイアとGaNは格子不整合度が約19%あり、格子不整合度の大きな材料系の典型例である。したがって、X線回折測定においてサファイア基板ピークはGaNエピタキシャル層ピークの近傍には観測されず、したがってGaNエピタキシャル層ピークの近傍に基準ピークとなりうるような回折ピークは観測されない場合の典型例となっている。   As a specific example 1 of the present invention, an example in which a structure evaluation of a GaN epitaxial thin film sample produced on a (0001) sapphire substrate by MOVPE growth method is applied to the present invention will be described below. Note that sapphire and GaN have a lattice mismatch degree of about 19%, which is a typical example of a material system having a large lattice mismatch degree. Therefore, in the X-ray diffraction measurement, the sapphire substrate peak is not observed in the vicinity of the GaN epitaxial layer peak, and is therefore a typical example in which no diffraction peak that can be a reference peak is observed in the vicinity of the GaN epitaxial layer peak. .

GaNエピタキシャル薄膜試料としては、成長条件の異なる2つの対象試料(試料Aおよび試料B)を準備し、それぞれについて構造劣化の程度を評価した。   As GaN epitaxial thin film samples, two target samples (sample A and sample B) having different growth conditions were prepared, and the degree of structural deterioration was evaluated for each sample.

本発明の実施例として、図1にGaN試料Aの0006反射X線回折測定プロファイルを示す。同図には2種類の受光系開口角条件(第1測定条件と第2測定条件)で測定した2つのプロファイルが表示してあり、各プロファイルにはGaN層に起因したピークのみが観測される。用いた受光系開口角条件は、1つはX線検出器の前に受光スリットを置かない広い受光系開口角条件(第1測定条件)、他の1つは、X線検出器の前に受光用アナライザ結晶を挿入した極端に狭い受光系開口角条件(第2測定条件)である。
X線回折測定の際における第1測定条件と第2測定条件は、受光系開口角条件は異なるが、他の測定条件は同一にしている。
As an example of the present invention, FIG. 1 shows a 0006 reflection X-ray diffraction measurement profile of a GaN sample A. In the figure, two profiles measured under two types of light receiving system aperture angle conditions (first measurement condition and second measurement condition) are displayed. In each profile, only a peak due to the GaN layer is observed. . The light receiving system aperture angle condition used is one wide light receiving system aperture angle condition (first measurement condition) in which no light receiving slit is placed in front of the X-ray detector, and the other one is in front of the X-ray detector. This is an extremely narrow light receiving system aperture angle condition (second measurement condition) in which a light receiving analyzer crystal is inserted.
The first measurement condition and the second measurement condition in the X-ray diffraction measurement are different in the light receiving system aperture angle condition, but the other measurement conditions are the same.

図1の表示において、縦軸は回折強度をcounts/secondを単位として表示しており、横軸は試料に照射するX線の入射角度を表示している。
「回折強度」とは、X線源から発生したX線を試料に照射したときに、試料の結晶格子によって回折されて射出された回折X線の強度を、X線検出器によって検出した強度(回折X線強度)である。図1の縦軸は、この回折強度(回折X線強度)を示している。
In the display of FIG. 1, the vertical axis indicates the diffraction intensity in units of counts / second, and the horizontal axis indicates the incident angle of the X-ray irradiated to the sample.
“Diffraction intensity” refers to the intensity detected by the X-ray detector when the X-ray generated from the X-ray source is irradiated onto the sample and the intensity of the diffracted X-ray emitted after being diffracted by the crystal lattice of the sample is detected ( Diffraction X-ray intensity). The vertical axis in FIG. 1 indicates this diffraction intensity (diffracted X-ray intensity).

また、X線回折法では、周知のように、X線源を静止した状態で、試料を徐々に回転させることにより試料に照射するX線の入射角度を変化させて、各入射角度における回折強度を検出している。この場合、例えば二軸回折計では、ゴニオメータを使用して、試料をθ°回転させたときに同期してX線検出器を2θ°回転させるようにしている。図1の横軸は、試料に照射するX線の入射角度の変化状態を示している。
なお、試料を回転させてX線の入射角度を変化させつつ、回折X線強度(回折強度)を検出することを、「スキャン」と称する。
更に、各入射角度における回折強度を辿った特性曲線を、「プロファイル」と称する。
また、試料から射出される回折X線は所定の放射角(立体角)をもって、X線検出器に向かって進行する。したがって、試料とX線検出器との間の経路(受光系)に、開口絞り手段(スリットやアナライザ結晶)を配置すると、開口絞り手段の開口角の範囲内にある回折X線のみがX線検出器に入射されることになる。
In addition, as is well known in the X-ray diffraction method, the X-ray source is stationary and the sample is gradually rotated to change the incident angle of the X-rays applied to the sample. Is detected. In this case, for example, in the biaxial diffractometer, a goniometer is used to rotate the X-ray detector by 2θ ° in synchronization with the rotation of the sample by θ °. The horizontal axis of FIG. 1 shows the change state of the incident angle of X-rays irradiated on the sample.
Note that detecting the diffracted X-ray intensity (diffraction intensity) while rotating the sample to change the incident angle of the X-ray is referred to as “scan”.
Furthermore, a characteristic curve that follows the diffraction intensity at each incident angle is referred to as a “profile”.
Further, the diffracted X-rays emitted from the sample travel toward the X-ray detector with a predetermined radiation angle (solid angle). Therefore, when an aperture stop means (slit or analyzer crystal) is arranged in the path (light receiving system) between the sample and the X-ray detector, only the diffracted X-rays within the aperture angle range of the aperture stop means are X-rays. It will be incident on the detector.

図1に示す両プロファイルの測定においてX線源の条件、スキャンスピード、反射指数等、受光系開口角条件以外の他のすべての測定条件は同一に保っているため、図1の表示における2つのプロファイルの間の相対強度差は、受光系開口角条件の違いに起因して生じる回折強度差の絶対表示とみなせる点が重要である。   In the measurement of both profiles shown in FIG. 1, all the measurement conditions other than the light receiving system aperture angle conditions such as the X-ray source conditions, scan speed, reflection index, etc. are kept the same. It is important that the relative intensity difference between the profiles can be regarded as an absolute display of the diffraction intensity difference caused by the difference in the light receiving system aperture angle condition.

この点に注意すると、図1より、極端に狭い受光系開口角条件で測定した場合のGaN層ピークの絶対回折強度は、広い受光系開口角条件で測定した場合の絶対回折強度に比べて著しく減少していることが分かる。この減少の程度の大小を評価解析することにより、解析対象層であるGaN層の結晶の完全性、構造劣化の程度を評価できる。具体的に2つのプロファイルの中のGaNピーク(具体的には入射角度が63°付近のときの)の回折強度比(=極端に狭い受光系開口角としたときの回折強度/広い受光系開口角としたときの回折強度)を図から求めると、約0.01という小さな値が得られ、構造劣化の程度が大きいことが結論できる。   When attention is paid to this point, it can be seen from FIG. 1 that the absolute diffraction intensity of the peak of the GaN layer when measured under extremely narrow light receiving system aperture angle conditions is significantly higher than the absolute diffraction intensity when measured under wide light receiving system aperture angle conditions. It turns out that it has decreased. By evaluating and analyzing the magnitude of this reduction, it is possible to evaluate the crystal perfection and the degree of structural deterioration of the GaN layer that is the analysis target layer. Specifically, the diffraction intensity ratio of the GaN peak in the two profiles (specifically when the incident angle is around 63 °) (= the diffraction intensity when the light receiving system aperture angle is extremely narrow / the wide light receiving system aperture) When the diffraction intensity (when using the angle) is obtained from the figure, a small value of about 0.01 is obtained, and it can be concluded that the degree of structural deterioration is large.

更に詳述すると、まず広い受光系開口角条件(第1測定条件)で対象試料AをX線回折測定して、プロファイルの中のGaNピーク(広開口角での対象試料の回折X線強度)を求める。
次に、極端に狭い受光系開口角条件(第2測定条件)で対象試料AをX線回折測定して、プロファイルの中のGaNピーク(狭開口角での対象試料の回折X線強度)を求める。
そして、「極端に狭い受光系開口角条件(第2測定条件)で対象試料AをX線回折測定したプロファイルの中のGaNピーク(狭開口角での対象試料の回折X線強度)」を「広い受光系開口角条件(第1測定条件)で対象試料AをX線回折測定したプロファイルの中のGaNピーク(広開口角での対象試料の回折X線強度)」で除算することにより、「対象試料Aの回折X線強度比」として、上述した約0.01という値が得られる。
More specifically, first, X-ray diffraction measurement is performed on the target sample A under a wide light receiving system aperture angle condition (first measurement condition), and a GaN peak in the profile (diffracted X-ray intensity of the target sample at a wide aperture angle). Ask for.
Next, subject sample A is subjected to X-ray diffraction measurement under an extremely narrow light receiving system aperture angle condition (second measurement condition), and a GaN peak in the profile (diffracted X-ray intensity of the subject sample at a narrow aperture angle) is obtained. Ask.
Then, “a GaN peak (diffracted X-ray intensity of the target sample at a narrow aperture angle) in a profile obtained by X-ray diffraction measurement of the target sample A under an extremely narrow light receiving system aperture angle condition (second measurement condition)” is “ By dividing by the GaN peak (diffracted X-ray intensity of the target sample at a wide aperture angle) in the profile obtained by X-ray diffraction measurement of the target sample A under a wide light receiving system aperture angle condition (first measurement condition), As the “diffracted X-ray intensity ratio of the target sample A”, the above-described value of about 0.01 is obtained.

同様の測定を試料Bについて行った結果を図2に示す。用いた測定条件はすべて図1の測定で用いたものと同一に揃えておき、これにより試料間における構造劣化の程度の比較が容易になるようにした。図2より、入射角度が64.2°付近のときの試料Bに対する回折強度比、つまり対象試料Bの回折X線強度比(=極端に狭い受光系開口角としたときの回折強度/広い受光系開口角としたときの回折強度)は約0.06が得られる。   The result of the same measurement performed on sample B is shown in FIG. All the measurement conditions used were the same as those used in the measurement of FIG. 1, so that the degree of structural deterioration between samples could be easily compared. From FIG. 2, the diffraction intensity ratio with respect to the sample B when the incident angle is around 64.2 °, that is, the diffraction X-ray intensity ratio of the target sample B (= diffraction intensity with an extremely narrow light receiving system aperture angle / wide light reception). The diffraction intensity when the system opening angle is taken is about 0.06.

更に詳述すると、まず広い受光系開口角条件(前述した第1測定条件)で対象試料BをX線回折測定して、プロファイルの中のGaNピーク(広開口角での対象試料の回折X線強度)を求める。
次に、極端に狭い受光系開口角条件(前述した第2測定条件)で対象試料BをX線測定して、プロファイルの中のGaNピーク(狭開口角での対象試料の回折X線強度)を求める。
そして、「極端に狭い受光系開口角条件(第2測定条件)で対象試料BをX線回折測定したプロファイルの中のGaNピーク(狭開口角での対象試料の回折X線強度)」を「広い受光系開口角条件(第1測定条件)で対象試料BをX線回折測定したプロファイルの中のGaNピーク(広開口角での対象試料の回折X線強度)」で除算することにより、「対象試料Bの回折X線強度比」として、上述した約0.06という値が得られる。
More specifically, first, X-ray diffraction measurement is performed on the target sample B under a wide light receiving system aperture angle condition (the first measurement condition described above), and a GaN peak in the profile (diffracted X-ray of the target sample at a wide aperture angle). Strength).
Next, the target sample B is subjected to X-ray measurement under an extremely narrow light receiving system aperture angle condition (the second measurement condition described above), and a GaN peak in the profile (diffracted X-ray intensity of the target sample at a narrow aperture angle) Ask for.
Then, “a GaN peak (diffracted X-ray intensity of the target sample at a narrow aperture angle) in a profile obtained by X-ray diffraction measurement of the target sample B under an extremely narrow light receiving system aperture angle condition (second measurement condition)” is “ By dividing by the GaN peak (diffracted X-ray intensity of the target sample at a wide aperture angle) in a profile obtained by X-ray diffraction measurement of the target sample B under a wide light receiving system aperture angle condition (first measurement condition), As the “diffracted X-ray intensity ratio of the target sample B”, the above-described value of about 0.06 is obtained.

ここで、広い受光系開口角条件と狭い受光系開口角条件について、X線回折装置を示す図3(a)〜(e)を用いて説明する。   Here, a wide light receiving system aperture angle condition and a narrow light receiving system aperture angle condition will be described with reference to FIGS. 3A to 3E showing an X-ray diffraction apparatus.

図3(a)において、10はX線源、11は試料保持部、12はX線検出器、13はスリットである。試料保持部11には、試料20が備えられる。   In FIG. 3A, 10 is an X-ray source, 11 is a sample holder, 12 is an X-ray detector, and 13 is a slit. The sample holder 11 is provided with a sample 20.

X線源10から発生したX線は、試料保持部11に保持された試料20に照射される。そうすると、試料20の結晶格子の回折により回折X線が生じてこの回折X線が射出される。射出された回折X線はX線検出部12に入り回折X線の強度が検出される。このときスキャン動作により、試料20(試料保持部11)をθ°回転させたときに同期して検出器を2θ°回転させるようにしている。   X-rays generated from the X-ray source 10 are applied to the sample 20 held by the sample holding unit 11. Then, diffracted X-rays are generated by diffraction of the crystal lattice of the sample 20, and the diffracted X-rays are emitted. The emitted diffracted X-ray enters the X-ray detector 12 and the intensity of the diffracted X-ray is detected. At this time, by the scanning operation, the detector is rotated 2θ ° synchronously when the sample 20 (sample holding unit 11) is rotated θ °.

そして、試料20とX線検出部11との間の経路、つまり、回折X線が進行する受光系に、スリット13を配置したり、スリット13を配置しなかったりすることができる。「広い受光系開口角条件」はスリット13がない場合に相当し、「狭い受光系開口角条件」はスリット13がある場合に相当する。   Then, the slit 13 can be arranged in the path between the sample 20 and the X-ray detection unit 11, that is, the light receiving system in which the diffracted X-rays travel, or the slit 13 can be omitted. The “wide light receiving system opening angle condition” corresponds to the case where there is no slit 13, and the “narrow light receiving system opening angle condition” corresponds to the case where there is the slit 13.

図3(b)に示すように、結晶性の高い試料20にX線を照射した場合、その結晶表面で回折したX線は散乱するものが少なく狭い放射角を有する。したがって、図3(c)に示すように、結晶とX線検出器20の間にスリット13を挿入した場合、回折したX線のほとんどがスリット13を透過してX線検出器12に到達するので測定される回折強度は高い。よって、スリット13を挿入する場合に検出される回折強度は、挿入しない場合のそれに比べて低下することはないので、それぞれの回折強度の比の値は高くなる。   As shown in FIG. 3B, when the sample 20 having high crystallinity is irradiated with X-rays, the X-ray diffracted on the crystal surface is hardly scattered and has a narrow radiation angle. Therefore, as shown in FIG. 3C, when the slit 13 is inserted between the crystal and the X-ray detector 20, most of the diffracted X-rays pass through the slit 13 and reach the X-ray detector 12. Therefore, the diffraction intensity measured is high. Therefore, since the diffraction intensity detected when the slit 13 is inserted does not decrease compared to that when the slit 13 is not inserted, the value of the ratio of the respective diffraction intensities becomes high.

一方、図3(d)に示すように、結晶性の低い試料20にX線を照射した場合、その結晶表面で回折したX線は散乱するものが多く広い放射角を有する。したがって、結晶とX線検出器12の間にスリット13を挿入した場合、回折したX線の多くはスリット13を透過せずX線検出器12に到達できないので測定される回折強度は低い。よって、スリット13を挿入する場合に検出される回折強度は、挿入しない場合のそれに比べて低下するので、それぞれの回折強度の比の値は低くなる。   On the other hand, as shown in FIG. 3D, when the sample 20 having low crystallinity is irradiated with X-rays, the X-ray diffracted on the crystal surface is often scattered and has a wide radiation angle. Therefore, when the slit 13 is inserted between the crystal and the X-ray detector 12, most of the diffracted X-rays do not pass through the slit 13 and cannot reach the X-ray detector 12, so that the measured diffraction intensity is low. Therefore, since the diffraction intensity detected when the slit 13 is inserted is lower than that when the slit 13 is not inserted, the value of the ratio of the respective diffraction intensities is low.

実際の測定においては狭い受光系開口角条件は、図4(b)に示すように、アナライザ結晶14を用いて実現できる。一般にアナライザ結晶14にはSi結晶やGe結晶の(220)非対称面が用いられる。なお図4(a)は、アナライザ結晶14を受光系に介在させないようにして受光系開口角条件を広くした状態を示している。   In actual measurement, a narrow light receiving system aperture angle condition can be realized by using an analyzer crystal 14 as shown in FIG. In general, the analyzer crystal 14 uses a (220) asymmetric surface of Si crystal or Ge crystal. FIG. 4A shows a state where the condition of the light receiving system aperture angle is widened so that the analyzer crystal 14 is not interposed in the light receiving system.

次に、比較参照用試料としてGaAs基板結晶を採用し、図1,図2で用いた測定条件と同一の測定条件を用いて測定評価した結果を図5に示す。この際、反射指数も図1,図2とは独立に004に選んだ。なお、比較参照用試料として採用したGaAs基板結晶は、結晶の完全性が保証された試料である。   Next, FIG. 5 shows the results of measurement and evaluation using a GaAs substrate crystal as a comparative reference sample and using the same measurement conditions as those used in FIGS. At this time, the reflection index was also selected as 004 independently of FIGS. The GaAs substrate crystal employed as a comparative reference sample is a sample in which the integrity of the crystal is guaranteed.

なお、反射指数とは、結晶のブラッグ条件を満足する格子面によるX線の反射を表す指数である。
なお、図1,図2,に示す測定評価結果を得るために用いた測定条件で用いた反射指数と、図5に示す測定評価結果を得るために用いた測定条件で用いた反射指数は、異ならせている。他の測定条件は同じにしている。
The reflection index is an index representing the reflection of X-rays by the lattice plane that satisfies the Bragg condition of the crystal.
The reflection index used under the measurement conditions used to obtain the measurement evaluation results shown in FIGS. 1 and 2 and the reflection index used under the measurement conditions used to obtain the measurement evaluation results shown in FIG. It is different. Other measurement conditions are the same.

つまり、ここでいう「測定条件とは」、試料に入射するX線の強度・波長、X線検出器の感度、開口絞り手段の開口角、各試料の反射指数、スキャンスピード等をいう。   In other words, the “measurement condition” here refers to the intensity and wavelength of X-rays incident on the sample, the sensitivity of the X-ray detector, the aperture angle of the aperture stop means, the reflection index of each sample, the scan speed, and the like.

図5より2つの測定(広い受光系開口角条件における測定と、極端に狭い受光系開口角条件における測定)での回折強度比は約0.25であることが分かる。この値は反射指数を002、あるいは006に選んで評価しても指数に依存せず、ほぼ一定の値が得られることが実験的に確認できる。この実験事実から、比較参照用試料として完全結晶を選んだ場合には上記回折強度比は反射指数に依存せず、他の測定条件で決まる一定の値が得られることが実験的に保証できる。したがって図5の測定において図1,2とは独立に反射指数を選んで解析することが正当化される。
以上の結果を基に図5の004反射を用いた実験結果から、本実施例に採用した測定条件では、2つの異なる受光系開口角測定条件での回折強度比は完全結晶試料に対して(測定に用いる反射指数に依存せず)約0.25となる測定条件であったことが確認できた。
FIG. 5 shows that the diffraction intensity ratio in two measurements (measurement under a wide light receiving system aperture angle condition and extremely narrow light receiving system aperture angle condition) is about 0.25. It can be experimentally confirmed that this value does not depend on the index even if the reflection index is selected as 002 or 006 and is evaluated, and a substantially constant value is obtained. From this experimental fact, when a perfect crystal is selected as a comparative reference sample, it can be experimentally guaranteed that the diffraction intensity ratio does not depend on the reflection index, and a constant value determined by other measurement conditions can be obtained. Therefore, in the measurement of FIG. 5, it is justified to select and analyze the reflection index independently of FIGS.
From the experimental results using 004 reflection in FIG. 5 based on the above results, under the measurement conditions employed in this example, the diffraction intensity ratio under two different light receiving system aperture angle measurement conditions is It was confirmed that the measurement conditions were about 0.25 (independent of the reflection index used for measurement).

更に詳述すると、まず広い受光系開口角条件(第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じにした第3測定条件)で参照試料をX線回折測定してプロファイルの中のGaAsピーク(広開口角での参照試料の回折X線強度)を求める。
次に、極端に狭い受光系開口角条件(第2測定条件に対して反射指数は第3測定条件で選択した反射指数とするが他の測定条件は同じにした第4測定条件)で参照試料をX線回折測定してプロファイルの中のGaAsピーク(狭開口角での参照試料の回折X線強度)を求める。
そして、「極端に狭い受光系開口角条件(第3測定条件)で参照試料を測定したプロファイルの中のGaAsピーク(狭開口角での参照試料の回折X線強度)」を「広い受光系開口角条件(第4測定条件)で参照試料を測定したプロファイルの中のGaAsピーク(広開口角での参照試料の回折X線強度)」で除算することにより、「参照試料の回折X線強度比」として、上述した約0.25という値が得られる。
More specifically, the reference sample is first placed under a wide light receiving system aperture angle condition (the third measurement condition in which the reflection index is selected independently of the first measurement condition but the other measurement conditions are the same). A line diffraction measurement is performed to obtain a GaAs peak (diffracted X-ray intensity of the reference sample at a wide aperture angle) in the profile.
Next, a reference sample under extremely narrow light receiving system aperture angle conditions (the fourth measurement condition in which the reflection index is the reflection index selected in the third measurement condition for the second measurement condition but the other measurement conditions are the same). X-ray diffraction measurement is performed to obtain a GaAs peak in the profile (diffracted X-ray intensity of the reference sample at a narrow aperture angle).
Then, "GaAs peak in the profile of the reference sample measured under extremely narrow light receiving system aperture angle condition (third measurement condition) (diffracted X-ray intensity of the reference sample at narrow aperture angle)" By dividing by the GaAs peak (diffracted X-ray intensity of the reference sample at a wide aperture angle) in the profile obtained by measuring the reference sample under the angular condition (fourth measurement condition), the “diffracted X-ray intensity ratio of the reference sample” ", The above-mentioned value of about 0.25 is obtained.

なお比較参照用試料は完全結晶、つまり、結晶の完全性が保証された試料であり、ここでいう、「結晶の完全性が保証された」とは、結晶品質が一般に市販されている半導体結晶基板の結晶品質程度であることを示す。   The comparative reference sample is a complete crystal, that is, a sample in which the crystal integrity is guaranteed, and the term “crystal integrity is guaranteed” as used herein means a semiconductor crystal whose crystal quality is generally commercially available. It shows that it is about the crystal quality of the substrate.

そこで、「参照試料の回折X線強度比(=0.25)」を用いて上述の解析対象層である試料AのGaNピークの回折強度比(「対象試料Aの回折X線強度比」=0.01)を除することにより、補正された回折強度比(規格化した回折X線強度比)を求めると、0.01/0.25=0.04の値を得る。この規格化した回折X線強度比の値が1.0であれば解析対象層が完全結晶であることを意味し、規格化した回折X線強度比の値が1.0よりも小さくなるに従い構造劣化の程度が大きくなることを示している。この意味で「補正された回折強度比(規格化した回折X線強度比)」は構造劣化の程度をより普遍的に表示する量になっていることが分かり、図1のみの解析に比べて利点を持つことが分かる。得られた0.04という値(規格化した回折X線強度比の値)から解析対象層である対象試料AのGaNピークは構造劣化の影響を顕著に含んでいることが明確になった。   Therefore, using the “diffracted X-ray intensity ratio of the reference sample (= 0.25)”, the diffraction intensity ratio of the GaN peak of the sample A as the analysis target layer (“diffracted X-ray intensity ratio of the target sample A” = When the corrected diffraction intensity ratio (normalized diffraction X-ray intensity ratio) is obtained by dividing (0.01), a value of 0.01 / 0.25 = 0.04 is obtained. If the normalized diffraction X-ray intensity ratio value is 1.0, it means that the analysis target layer is a complete crystal, and as the normalized diffraction X-ray intensity ratio value becomes smaller than 1.0, It shows that the degree of structural deterioration increases. In this sense, it is understood that the “corrected diffraction intensity ratio (standardized diffraction X-ray intensity ratio)” is an amount that displays the degree of structural degradation more universally, compared to the analysis of FIG. 1 alone. You can see that it has advantages. From the obtained value of 0.04 (value of normalized diffraction X-ray intensity ratio), it became clear that the GaN peak of the target sample A, which is the analysis target layer, significantly includes the influence of structural deterioration.

試料Bについても同様に補正された回折強度比(規格化した回折X線強度比)を求めると、0.06/0.25=0.24の値を得る。この値が1.0よりも小さいことから、試料Bについても構造劣化が存在することが簡便に結論できる。また、試料Aとの値の比較から、試料Bの構造劣化の程度は試料Aほど大きくないことが結論でき、試料Bは試料Aに比べて結晶性がよいことが簡便かつ普遍的立場から解析できた。   When the corrected diffraction intensity ratio (standardized diffraction X-ray intensity ratio) is similarly obtained for sample B, a value of 0.06 / 0.25 = 0.24 is obtained. Since this value is smaller than 1.0, it can be easily concluded that there is structural deterioration in Sample B. In addition, it can be concluded from the comparison with the value of sample A that the degree of structural deterioration of sample B is not as great as that of sample A, and it is simple and universally analyzed that sample B has better crystallinity than sample A. did it.

以上のように本発明では、規格化した回折X線強度比を求めるようにしたため、構造劣化の有無、およびその程度を、従来に比べてより一般の場合に検出感度よく検出、評価できることが分かった。   As described above, in the present invention, since the standardized diffraction X-ray intensity ratio is obtained, it can be seen that the presence or absence and the degree of structural deterioration can be detected and evaluated with higher detection sensitivity than in the conventional case. It was.

なお、結晶の完全性が保証された参照試料としては、Si基板結晶、Ge基板結晶、GaAs基板結晶、InP基板結晶等の完全結晶基板を用いることができる。   In addition, as a reference sample in which the integrity of the crystal is guaranteed, a complete crystal substrate such as a Si substrate crystal, a Ge substrate crystal, a GaAs substrate crystal, or an InP substrate crystal can be used.

次に本発明の実施例2に係る、結晶の構造解析装置を、概略構成図である図6(a),図6(b)、及び、フロー図である図7(a)〜図7(c)を参照して説明する。
実施例2の、結晶の構造解析装置100は、実施例1の「結晶の構造解析方法」を実施する一つの装置である。なお、図6(a)は広い受光系開口角条件(第1測定条件及び第3測定条件)においてX線回折測定をする状態を示しており、図6(b)は極端に狭い受光系開口角条件(第2測定条件及び第4測定条件)においてX線回折測定をする状態を示している。
Next, the crystal structure analysis apparatus according to Example 2 of the present invention is shown in schematic configuration diagrams in FIGS. 6A and 6B and flow diagrams in FIGS. This will be described with reference to c).
The crystal structure analysis apparatus 100 according to the second embodiment is one apparatus that performs the “crystal structure analysis method” according to the first embodiment. 6A shows a state in which X-ray diffraction measurement is performed under wide light receiving system aperture angle conditions (first measurement condition and third measurement condition), and FIG. 6B shows an extremely narrow light receiving system aperture. A state in which X-ray diffraction measurement is performed under angular conditions (second measurement condition and fourth measurement condition) is shown.

図6(a)及び図6(b)に示すように、この結晶の構造解析装置100は、X線回折装置30と、演算部40と、記憶部50を有している。演算部40と記憶部50との間ではデータの送受ができるようになっている。   As shown in FIGS. 6A and 6B, the crystal structure analysis apparatus 100 includes an X-ray diffraction apparatus 30, a calculation unit 40, and a storage unit 50. Data can be transmitted and received between the calculation unit 40 and the storage unit 50.

X線回折装置30は、X線源31と、試料保持部32と、X線検出器33,34と、アナライザ結晶35を備えている。X線検出器33とX線検出器34の検出感度は同一になっている。試料保持部32には、対象試料21または参照試料22が保持される。   The X-ray diffraction apparatus 30 includes an X-ray source 31, a sample holder 32, X-ray detectors 33 and 34, and an analyzer crystal 35. The detection sensitivities of the X-ray detector 33 and the X-ray detector 34 are the same. The sample holder 21 holds the target sample 21 or the reference sample 22.

X線回折測定の際には、X線源31から発生したX線が、試料保持部32に保持された試料21(または22)に照射される。そうすると、試料21(22)の結晶の回折により回折X線が生じて、この回折X線が射出される。
図6(a)に示す第1測定条件及び第3測定条件(広い開口角条件)のときには、回折X線はX線検出器33に入り回折X線の強度が検出される。検出された回折X線強度は、X線検出器33から演算部40に送られる。
また、図6(b)に示す第2測定条件及び第4測定条件(極端に狭い開口角条件)のときには、回折X線はアナライザ結晶35で回折・反射されてからX線検出器34に入り回折X線の強度が検出される。検出された回折X線強度は、X線検出器34から演算部40に送られる。
そして、第1,第3測定条件であっても、第2,第4測定条件であっても、スキャン動作が行われ、試料21(22)を保持した試料保持部32を徐々に回転することに伴い、この試料保持部32の回転角の2倍の角度でもって、検出器33,34及びアナライザ結晶35が徐々に回転するようになっている。
In the X-ray diffraction measurement, the X-ray generated from the X-ray source 31 is irradiated to the sample 21 (or 22) held by the sample holding unit 32. Then, diffraction X-rays are generated by diffraction of the crystal of the sample 21 (22), and the diffraction X-rays are emitted.
Under the first measurement condition and the third measurement condition (wide aperture angle condition) shown in FIG. 6A, the diffracted X-ray enters the X-ray detector 33 and the intensity of the diffracted X-ray is detected. The detected diffracted X-ray intensity is sent from the X-ray detector 33 to the calculation unit 40.
6B, the diffracted X-rays are diffracted and reflected by the analyzer crystal 35 before entering the X-ray detector 34 under the second and fourth measurement conditions (extremely narrow aperture angle conditions). The intensity of the diffracted X-ray is detected. The detected diffracted X-ray intensity is sent from the X-ray detector 34 to the calculation unit 40.
The scanning operation is performed regardless of the first, third measurement conditions, or the second, fourth measurement conditions, and the sample holder 32 holding the sample 21 (22) is gradually rotated. Accordingly, the detectors 33 and 34 and the analyzer crystal 35 are gradually rotated at an angle twice the rotation angle of the sample holder 32.

なお、第1,第3測定条件(広い開口角条件)と第2,第4測定条件(極端に狭い開口角条件)とでは、検出器33,34及びアナライザ結晶35の配置状態が異なるが、この配置状態の変更は、手動制御によっても、自動制御によっても行うことができる。   The first and third measurement conditions (wide aperture angle conditions) and the second and fourth measurement conditions (extremely narrow aperture angle conditions) differ in the arrangement state of the detectors 33 and 34 and the analyzer crystal 35. The change of the arrangement state can be performed by manual control or automatic control.

また、解析対象となる対象試料21を試料保持部32の表面側に保持して、X線回折測定を行った後に、参照試料22を試料保持部32の表面側に保持して、X線回折測定を行う。
この試料の交換の変形例としては、試料保持部32の表面側に対象試料21を保持し、試料保持部32の裏面側に対象試料22を保持し、対象試料21に対してX線回折測定をする際には対象試料21をX線源31側に向け、その後の参照試料22に対しX線回折測定をする際には、試料保持部32を180度回転させて、参照試料22をX線源31側に向けるように構成することもできる。
Further, after the target sample 21 to be analyzed is held on the surface side of the sample holding unit 32 and X-ray diffraction measurement is performed, the reference sample 22 is held on the surface side of the sample holding unit 32 and X-ray diffraction is performed. Measure.
As a modification of this sample exchange, the target sample 21 is held on the front surface side of the sample holding unit 32, the target sample 22 is held on the back side of the sample holding unit 32, and X-ray diffraction measurement is performed on the target sample 21. When the target sample 21 is directed to the X-ray source 31 side and X-ray diffraction measurement is performed on the reference sample 22 thereafter, the sample holder 32 is rotated by 180 degrees, and the reference sample 22 is moved to the X-ray source. It can also be configured to be directed to the radiation source 31 side.

次に図6(a),図6(b)及び図7(a)〜図7(c)を参照してX線回折測定動作を説明する。   Next, the X-ray diffraction measurement operation will be described with reference to FIGS. 6 (a), 6 (b) and 7 (a) to 7 (c).

図6(a)に示すように、広い受光系開口角条件になる配置状態にして、解析対象となる対象試料21を、試料保持部32にセットする(ステップ1)。   As shown in FIG. 6A, the target sample 21 to be analyzed is set in the sample holder 32 in an arrangement state that satisfies a wide light receiving system aperture angle condition (step 1).

受光系にアナライザ結晶35をセットせずに広い受光系開口角条件とした状態において、対象試料21にX線を照射しつつスキャンをして、対象試料21から放射される回折X線の強度(回折X線強度)をX線検出器33で測定する。このときの測定条件を、「第1測定条件」とする(ステップ2)。   In a state where the analyzer crystal 35 is not set in the light receiving system and a wide light receiving system aperture angle condition is set, the intensity of diffracted X-rays radiated from the target sample 21 is scanned while irradiating the target sample 21 with X-rays ( (Diffraction X-ray intensity) is measured by the X-ray detector 33. The measurement condition at this time is defined as “first measurement condition” (step 2).

演算部40では、「第1測定条件」の下で得られた回折X線強度を示す測定プロファイルの中から、ピークとなる部分の回折X線強度を求める。この求めた回折X線強度を、「広開口角での対象試料の回折X線強度」とする(ステップ3)。   The computing unit 40 obtains the diffracted X-ray intensity at the peak from the measurement profile indicating the diffracted X-ray intensity obtained under the “first measurement condition”. The obtained diffracted X-ray intensity is defined as “diffracted X-ray intensity of the target sample at a wide aperture angle” (step 3).

上記の「広開口角での対象試料の回折X線強度」を、記憶部50に記憶する(ステップ4)。   The “diffracted X-ray intensity of the target sample at a wide aperture angle” is stored in the storage unit 50 (step 4).

図6(b)に示すように、アナライザ結晶35を受光系にセットして狭い受光系開口角条件とした状態において、対象試料21にX線を照射しつつスキャンをして、対象試料21から放射されて狭い開口角を透過してきた回折X線の強度(回折X線強度)をX線検出器34で測定する。このときの測定条件は、「第1測定条件」に対して受光系開口角が異なるのみで他の測定条件を保持したままの「第2測定条件」としている(ステップ5)。   As shown in FIG. 6B, in a state where the analyzer crystal 35 is set in the light receiving system and the light receiving system has a narrow opening angle condition, scanning is performed while irradiating the target sample 21 with X-rays. The intensity of the diffracted X-ray that has been radiated and transmitted through a narrow aperture angle (diffracted X-ray intensity) is measured by the X-ray detector 34. The measurement condition at this time is the “second measurement condition” in which the other measurement conditions are maintained while only the light receiving system aperture angle is different from the “first measurement condition” (step 5).

演算部40では、「第2測定条件」の下で得られた回折X線強度を示す測定プロファイルの中から、ピークとなる部分の回折X線強度を求める。この求めた回折X線強度を、「狭開口角での対象試料の回折X線強度」とする(ステップ6)。   The computing unit 40 obtains the diffracted X-ray intensity at the peak portion from the measurement profile indicating the diffracted X-ray intensity obtained under the “second measurement condition”. The obtained diffracted X-ray intensity is defined as “diffracted X-ray intensity of the target sample at a narrow aperture angle” (step 6).

上記の「狭開口角での対象試料の回折X線強度」を、記憶部50に記憶する(ステップ7)。   The “diffracted X-ray intensity of the target sample at a narrow aperture angle” is stored in the storage unit 50 (step 7).

記憶部50に記憶されている、「広開口角での対象試料の回折X線強度」と「狭開口角での対象試料の回折X線強度」を演算部40に読み込む(ステップ8)。   The “diffracted X-ray intensity of the target sample at a wide aperture angle” and “diffracted X-ray intensity of the target sample at a narrow aperture angle” stored in the storage unit 50 are read into the arithmetic unit 40 (step 8).

演算部40では、「狭開口角での対象試料の回折X線強度」を「広開口角での対象試料の回折X線強度」で除算して、「対象試料の回折X線強度比」を計算する(ステップ9)。   The calculation unit 40 divides “diffracted X-ray intensity of the target sample at a narrow aperture angle” by “diffracted X-ray intensity of the target sample at a wide aperture angle” to obtain “diffracted X-ray intensity ratio of the target sample”. Calculate (step 9).

上記の「対象試料の回折X線強度比」を、記憶部50に記憶する(ステップ10)。   The “diffracted X-ray intensity ratio of the target sample” is stored in the storage unit 50 (step 10).

次に、図6(a)に示すように、広い受光系開口角条件になる配置状態にして、結晶の完全性が保証された参照試料22を、試料保持部32にセットする(ステップ11)。   Next, as shown in FIG. 6A, the reference sample 22 in which the integrity of the crystal is guaranteed is set in the sample holder 32 in an arrangement state in which a wide light receiving system aperture angle condition is satisfied (step 11). .

受光系にアナライザ結晶35をセットせずに広い受光系開口角条件とした状態において、参照試料22にX線を照射しつつスキャンをして、参照試料22から放射される回折X線の強度(回折X線強度)をX線検出器33で測定する。このときの測定条件(「第3測定条件」)は、上述した「第1測定条件」に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである(ステップ12)。   In a state where the analyzer crystal 35 is not set in the light receiving system and the light receiving system has a wide opening angle condition, the reference sample 22 is scanned while being irradiated with X-rays, and the intensity of diffracted X-rays emitted from the reference sample 22 ( (Diffraction X-ray intensity) is measured by the X-ray detector 33. The measurement conditions (“third measurement condition”) at this time are the reflection index selected independently of the above-mentioned “first measurement condition”, but the other measurement conditions are the same (step 12). .

演算部40では、「第3測定条件」の下で得られた回折X線強度を示す測定プロファイルの中から、ピークとなる部分の回折X線強度を求める。この求めた回折X線強度を、「広開口角での参照試料の回折X線強度」とする(ステップ13)。   The computing unit 40 obtains the diffracted X-ray intensity at the peak from the measurement profile indicating the diffracted X-ray intensity obtained under the “third measurement condition”. The obtained diffracted X-ray intensity is defined as “diffracted X-ray intensity of the reference sample at a wide aperture angle” (step 13).

上記の「広開口角での参照試料の回折X線強度」を、記憶部50に記憶する(ステップ14)。   The “diffracted X-ray intensity of the reference sample at a wide aperture angle” is stored in the storage unit 50 (step 14).

図6(b)に示すように、アナライザ結晶35を受光系にセットして狭い受光系開口角条件とした状態において、参照試料22にX線を照射しつつスキャンをして、参照試料22から放射されて狭い開口角を透過してきた回折X線の強度(回折X線強度)をX線検出器34で測定する。このときの測定条件(「第4測定条件」)は、上述した「第2測定条件」に対して反射指数は「第3測定条件」で選択した反射指数とするが他の測定条件は同じである(ステップ15)。   As shown in FIG. 6B, in a state where the analyzer crystal 35 is set in the light receiving system and the light receiving system has a narrow opening angle condition, scanning is performed while irradiating the reference sample 22 with X-rays. The intensity of the diffracted X-ray that has been radiated and transmitted through a narrow aperture angle (diffracted X-ray intensity) is measured by the X-ray detector 34. The measurement condition (“fourth measurement condition”) at this time is the reflection index selected in “third measurement condition” with respect to the “second measurement condition” described above, but the other measurement conditions are the same. Yes (step 15).

演算部40では、「第4測定条件」の下で得られた回折X線強度を示す測定プロファイルの中から、ピークとなる部分の回折X線強度を求める。この求めた回折X線強度を、「狭開口角での参照試料の回折X線強度」とする(ステップ16)。   The computing unit 40 obtains the diffraction X-ray intensity at the peak portion from the measurement profile indicating the diffraction X-ray intensity obtained under the “fourth measurement condition”. The obtained diffracted X-ray intensity is defined as “diffracted X-ray intensity of the reference sample at a narrow aperture angle” (step 16).

上記の「狭開口角での参照試料の回折X線強度」を、記憶部50に記憶する(ステップ17)。   The above-mentioned “diffracted X-ray intensity of the reference sample at a narrow aperture angle” is stored in the storage unit 50 (step 17).

記憶部50に記憶されている、「広開口角での参照試料の回折X線強度」と「狭開口角での参照試料の回折X線強度」を演算部40に読み込む(ステップ18)。   The “diffracted X-ray intensity of the reference sample at a wide aperture angle” and “diffracted X-ray intensity of the reference sample at a narrow aperture angle” stored in the storage unit 50 are read into the arithmetic unit 40 (step 18).

演算部40では、「狭開口角での参照試料の回折X線強度」を「広開口角での参照試料の回折X線強度」で除算して、「参照試料の回折X線強度比」を計算する(ステップ19)。   The calculation unit 40 divides the “diffracted X-ray intensity of the reference sample at a narrow aperture angle” by the “diffracted X-ray intensity of the reference sample at a wide aperture angle” to obtain the “diffracted X-ray intensity ratio of the reference sample”. Calculate (step 19).

上記の「参照試料の回折X線強度比」を、記憶部50に記憶する(ステップ20)。   The “diffracted X-ray intensity ratio of the reference sample” is stored in the storage unit 50 (step 20).

記憶部50に記憶されている「対象試料の回折X線強度比」と「参照試料の回折X線強度比」を演算部40に読み込む(ステップ21)。   The “diffracted X-ray intensity ratio of the target sample” and the “diffracted X-ray intensity ratio of the reference sample” stored in the storage unit 50 are read into the computing unit 40 (step 21).

演算部40では、「対象試料の回折X線強度比」を「参照試料の回折X線強度比」で除算して、「規格化した回折X線強度比」を計算する(ステップ22)。   The computing unit 40 divides the “diffracted X-ray intensity ratio of the target sample” by the “diffracted X-ray intensity ratio of the reference sample” to calculate a “standardized diffraction X-ray intensity ratio” (step 22).

「規格化した回折X線強度比」の大きさから、対象試料22の結晶学的完全性、構造劣化の程度を判定する(ステップ23)。   From the magnitude of the “normalized diffraction X-ray intensity ratio”, the crystallographic integrity of the target sample 22 and the degree of structural deterioration are determined (step 23).

上記各実施例においては、プロファイルのピークの値を対象として解析しているが、プロファイルの積分値など、回折されたX線の強度を反映するものを対象としても同様の効果を得ることができる。   In each of the above embodiments, the analysis is performed on the peak value of the profile, but the same effect can be obtained even on the target reflecting the diffracted X-ray intensity, such as the integral value of the profile. .

そこで、実施例3では、図6(a),図6(b)に示す、結晶の構造解析装置100を用いると共に、回折X線の強度を反映するものとしてプロファイルの積分値を用いて、結晶の構造解析をする例を説明する。
構成は図6(a),図6(b)に示すものと同じであるので、図6(a),図6(b)及び図8(a)〜図8(c)を参照して、実施例3でのX線回折測定動作を説明する。
Therefore, in Example 3, the crystal structure analysis apparatus 100 shown in FIGS. 6A and 6B is used, and the integral value of the profile is used to reflect the intensity of the diffracted X-rays. An example of structural analysis will be described.
Since the configuration is the same as that shown in FIGS. 6 (a) and 6 (b), refer to FIGS. 6 (a), 6 (b) and FIGS. 8 (a) to 8 (c). The X-ray diffraction measurement operation in Example 3 will be described.

図6(a)に示すように、広い受光系開口角条件になる配置状態にして、解析対象となる対象試料21を、試料保持部32にセットする(ステップ101)。   As shown in FIG. 6A, the target sample 21 to be analyzed is set in the sample holder 32 in an arrangement state that satisfies a wide light receiving system aperture angle condition (step 101).

受光系にアナライザ結晶35をセットせずに広い受光系開口角条件とした状態において、対象試料21にX線を照射しつつスキャンをして、対象試料21から放射される回折X線の強度(回折X線強度)をX線検出器33で測定する。このときの測定条件を、「第1測定条件」とする(ステップ102)。   In a state where the analyzer crystal 35 is not set in the light receiving system and a wide light receiving system aperture angle condition is set, the intensity of diffracted X-rays radiated from the target sample 21 is scanned while irradiating the target sample 21 with X-rays ( (Diffraction X-ray intensity) is measured by the X-ray detector 33. The measurement condition at this time is defined as “first measurement condition” (step 102).

演算部40では、「第1測定条件」の下で得られた回折X線強度を示す測定プロファイルを積分して積分値を求める。この積分値を、「広開口角での対象試料の回折X線強度」とする(ステップ103)。   The computing unit 40 integrates the measurement profile indicating the diffracted X-ray intensity obtained under the “first measurement condition” to obtain an integral value. This integrated value is defined as “diffracted X-ray intensity of the target sample at a wide aperture angle” (step 103).

上記の「広開口角での対象試料の回折X線強度」を、記憶部50に記憶する(ステップ104)。   The above-mentioned “diffracted X-ray intensity of the target sample at a wide aperture angle” is stored in the storage unit 50 (step 104).

図6(b)に示すように、アナライザ結晶35を受光系にセットして狭い受光系開口角条件とした状態において、対象試料21にX線を照射しつつスキャンをして、対象試料21から放射されて狭い開口角を透過してきた回折X線の強度(回折X線強度)をX線検出器34で測定する。このときの測定条件は、「第1測定条件」に対して受光系開口角が異なるのみで他の測定条件を保持したままの「第2測定条件」としている(ステップ105)。   As shown in FIG. 6B, in a state where the analyzer crystal 35 is set in the light receiving system and the light receiving system has a narrow opening angle condition, scanning is performed while irradiating the target sample 21 with X-rays. The intensity of the diffracted X-ray that has been radiated and transmitted through a narrow aperture angle (diffracted X-ray intensity) is measured by the X-ray detector 34. The measurement condition at this time is a “second measurement condition” that is different from the “first measurement condition” in that the aperture angle of the light receiving system is different and other measurement conditions are maintained (step 105).

演算部40では、「第2測定条件」の下で得られた回折X線強度を示す測定プロファイルを積分して積分値を求める。この積分値を、「狭開口角での対象試料の回折X線強度」とする(ステップ106)。   The computing unit 40 integrates the measurement profile indicating the diffracted X-ray intensity obtained under the “second measurement condition” to obtain an integral value. This integrated value is defined as “diffracted X-ray intensity of the target sample at a narrow aperture angle” (step 106).

上記の「狭開口角での対象試料の回折X線強度」を、記憶部50に記憶する(ステップ107)。   The “diffracted X-ray intensity of the target sample at a narrow aperture angle” is stored in the storage unit 50 (step 107).

記憶部50に記憶されている、「広開口角での対象試料の回折X線強度」と「狭開口角での対象試料の回折X線強度」を演算部40に読み込む(ステップ108)。   The “diffracted X-ray intensity of the target sample at a wide aperture angle” and “diffracted X-ray intensity of the target sample at a narrow aperture angle” stored in the storage unit 50 are read into the arithmetic unit 40 (step 108).

演算部40では、「狭開口角での対象試料の回折X線強度」を「広開口角での対象試料の回折X線強度」で除算して、「対象試料の回折X線強度比」を計算する(ステップ109)。   The calculation unit 40 divides “diffracted X-ray intensity of the target sample at a narrow aperture angle” by “diffracted X-ray intensity of the target sample at a wide aperture angle” to obtain “diffracted X-ray intensity ratio of the target sample”. Calculate (step 109).

上記の「対象試料の回折X線強度比」を、記憶部50に記憶する(ステップ110)。   The above-mentioned “diffracted X-ray intensity ratio of the target sample” is stored in the storage unit 50 (step 110).

次に、図6(a)に示すように、広い受光系開口角条件になる配置状態にして、結晶の完全性が保証された参照試料22を、試料保持部32にセットする(ステップ111)。   Next, as shown in FIG. 6A, the reference sample 22 in which the crystal integrity is ensured is set in the sample holder 32 in an arrangement state that satisfies a wide light receiving system aperture angle condition (step 111). .

受光系にアナライザ結晶35をセットせずに広い受光系開口角条件とした状態において、参照試料22にX線を照射しつつスキャンをして、参照試料22から放射される回折X線の強度(回折X線強度)をX線検出器33で測定する。このときの測定条件(「第3測定条件」)は、上述した「第1測定条件」に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである(ステップ112)。   In a state where the analyzer crystal 35 is not set in the light receiving system and the light receiving system has a wide opening angle condition, the reference sample 22 is scanned while being irradiated with X-rays, and the intensity of diffracted X-rays emitted from the reference sample 22 ( (Diffraction X-ray intensity) is measured by the X-ray detector 33. The measurement conditions (“third measurement condition”) at this time are the reflection index selected independently of the above-mentioned “first measurement condition”, but the other measurement conditions are the same (step 112). .

演算部40では、「第3測定条件」の下で得られた回折X線強度を示す測定プロファイルを積分して積分値を求める。この積分値を、「広開口角での参照試料の回折X線強度」とする(ステップ113)。   The computing unit 40 obtains an integrated value by integrating the measurement profile indicating the diffracted X-ray intensity obtained under the “third measurement condition”. This integrated value is defined as “diffracted X-ray intensity of the reference sample at a wide aperture angle” (step 113).

上記の「広開口角での参照試料の回折X線強度」を、記憶部50に記憶する(ステップ114)。   The above-mentioned “diffracted X-ray intensity of the reference sample at a wide aperture angle” is stored in the storage unit 50 (step 114).

図6(b)に示すように、アナライザ結晶35を受光系にセットして狭い受光系開口角条件とした状態において、参照試料22にX線を照射しつつスキャンをして、参照試料22から放射されて狭い開口角を透過してきた回折X線の強度(回折X線強度)をX線検出器34で測定する。このときの測定条件(「第4測定条件」)は、上述した「第2測定条件」に対して反射指数は「第3測定条件」で選択した反射指数とするが他の測定条件は同じである(ステップ115)。   As shown in FIG. 6B, in a state where the analyzer crystal 35 is set in the light receiving system and the light receiving system has a narrow opening angle condition, scanning is performed while irradiating the reference sample 22 with X-rays. The intensity of the diffracted X-ray that has been radiated and transmitted through a narrow aperture angle (diffracted X-ray intensity) is measured by the X-ray detector 34. The measurement condition (“fourth measurement condition”) at this time is the reflection index selected in “third measurement condition” with respect to the “second measurement condition” described above, but the other measurement conditions are the same. Yes (step 115).

演算部40では、「第4測定条件」の下で得られた回折X線強度を示す測定プロファイルを積分して積分値を求める。この積分値を、「狭開口角での参照試料の回折X線強度」とする(ステップ116)。   The computing unit 40 obtains an integrated value by integrating the measurement profile indicating the diffracted X-ray intensity obtained under the “fourth measurement condition”. This integrated value is defined as “diffracted X-ray intensity of the reference sample at a narrow aperture angle” (step 116).

上記の「狭開口角での参照試料の回折X線強度」を、記憶部50に記憶する(ステップ117)。   The above-mentioned “diffracted X-ray intensity of the reference sample at a narrow aperture angle” is stored in the storage unit 50 (step 117).

記憶部50に記憶されている、「広開口角での参照試料の回折X線強度」と「狭開口角での参照試料の回折X線強度」を演算部40に読み込む(ステップ118)。   The “diffracted X-ray intensity of the reference sample at a wide aperture angle” and the “diffracted X-ray intensity of the reference sample at a narrow aperture angle” stored in the storage unit 50 are read into the computing unit 40 (step 118).

演算部40では、「狭開口角での参照試料の回折X線強度」を「広開口角での参照試料の回折X線強度」で除算して、「参照試料の回折X線強度比」を計算する(ステップ119)。   The calculation unit 40 divides the “diffracted X-ray intensity of the reference sample at a narrow aperture angle” by the “diffracted X-ray intensity of the reference sample at a wide aperture angle” to obtain the “diffracted X-ray intensity ratio of the reference sample”. Calculate (step 119).

上記の「参照試料の回折X線強度比」を、記憶部50に記憶する(ステップ120)。   The “diffracted X-ray intensity ratio of the reference sample” is stored in the storage unit 50 (step 120).

記憶部50に記憶されている「対象試料の回折X線強度比」と「参照試料の回折X線強度比」を演算部40に読み込む(ステップ121)。   The “diffracted X-ray intensity ratio of the target sample” and the “diffracted X-ray intensity ratio of the reference sample” stored in the storage unit 50 are read into the computing unit 40 (step 121).

演算部40では、「対象試料の回折X線強度比」を「参照試料の回折X線強度比」で除算して、「規格化した回折X線強度比」を計算する(ステップ122)。   The computing unit 40 calculates the “standardized diffraction X-ray intensity ratio” by dividing the “diffracted X-ray intensity ratio of the target sample” by the “diffracted X-ray intensity ratio of the reference sample” (step 122).

「規格化した回折X線強度比」の大きさから、対象試料22の結晶学的完全性、構造劣化の程度を判定する(ステップ123)。   From the magnitude of the “normalized diffraction X-ray intensity ratio”, the crystallographic integrity of the target sample 22 and the degree of structural deterioration are determined (step 123).

2種類の受光系開口角条件で測定したGaN試料(試料A)の0006反射X線回折測定プロファイルを示す特性図。The characteristic view which shows the 0006 reflection X-ray-diffraction measurement profile of the GaN sample (sample A) measured on two types of light receiving system aperture angle conditions. 2種類の受光系開口角条件で測定したGaN試料(試料B)の0006反射X線回折測定プロファイルを示す特性図。The characteristic view which shows the 0006 reflection X-ray-diffraction measurement profile of the GaN sample (sample B) measured on two types of light receiving system aperture angle conditions. X線解析装置を示す概略構成図。1 is a schematic configuration diagram showing an X-ray analysis apparatus. X線解析装置を示す概略構成図。1 is a schematic configuration diagram showing an X-ray analysis apparatus. 比較参照用試料GaAs基板結晶ピークに対して2種類の受光系開口角条件で測定した006反射X線回折測定プロファイルを示す特性図。The characteristic view which shows the 006 reflection X-ray-diffraction measurement profile measured on two types of light receiving system aperture angle conditions with respect to the sample GaAs substrate crystal peak for a comparative reference. 実施例2に係る、結晶の構造解析装置を示す構成図。FIG. 3 is a configuration diagram showing a crystal structure analysis apparatus according to a second embodiment. 実施例2に係る、結晶の構造解析装置を示す構成図。FIG. 3 is a configuration diagram showing a crystal structure analysis apparatus according to a second embodiment. 実施例2の動作状態を示すフロー図。FIG. 6 is a flowchart showing an operation state of the second embodiment. 実施例2の動作状態を示すフロー図。FIG. 6 is a flowchart showing an operation state of the second embodiment. 実施例2の動作状態を示すフロー図。FIG. 6 is a flowchart showing an operation state of the second embodiment. 実施例3の動作状態を示すフロー図。FIG. 9 is a flowchart showing an operation state of the third embodiment. 実施例3の動作状態を示すフロー図。FIG. 9 is a flowchart showing an operation state of the third embodiment. 実施例3の動作状態を示すフロー図。FIG. 9 is a flowchart showing an operation state of the third embodiment.

符号の説明Explanation of symbols

10 X線源
11 試料保持部
12 X線検出器
13 スリット
14 アナライザ結晶
20 試料
100 結晶の構造解析装置
30 X線回折装置
31 エクス線源
32 試料保持部
33,34 X線検出器
35 アナライザ結晶
DESCRIPTION OF SYMBOLS 10 X-ray source 11 Sample holding part 12 X-ray detector 13 Slit 14 Analyzer crystal 20 Sample 100 Crystal structure analysis apparatus 30 X-ray diffractometer 31 X-ray source 32 Sample holding part 33, 34 X-ray detector 35 Analyzer crystal

Claims (8)

試料に対してX線を照射したときに、前記試料にて回折した回折X線の強度をX線検出器により検出して前記試料の結晶の構造を解析する方法であって、
試料として解析対象となる対象試料を用い、この対象試料と前記X線検出器との間に開口絞り手段を配置しないようにした第1測定条件にて、対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度を、広開口角での対象試料の回折X線強度とする工程と、
前記対象試料と前記X線検出器との間に開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度を、狭開口角での対象試料の回折X線強度とする工程と、
狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度との相対比を求め、この相対比を対象試料の回折X線強度比とする工程と、
試料として結晶の完全性が保証された参照試料を用い、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度を、広開口角での参照試料の回折X線強度とする工程と、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度を、狭開口角での参照試料の回折X線強度とする工程と、
狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度との相対比を求め、この相対比を参照試料の回折X線強度比とする工程と、
対象試料の回折X線強度比と参照試料の回折X線強度比との相対比を求め、この相対比を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする結晶の構造解析方法。
A method of analyzing the crystal structure of the sample by detecting the intensity of diffracted X-rays diffracted by the sample with an X-ray detector when the sample is irradiated with X-rays;
Using a target sample to be analyzed as a sample and irradiating the target sample with X-rays under a first measurement condition in which no aperture stop means is disposed between the target sample and the X-ray detector, Detecting the intensity of the diffracted X-ray diffracted by the target sample with the X-ray detector, and setting the detected intensity as the diffracted X-ray intensity of the target sample at a wide aperture angle;
An aperture stop means is disposed between the target sample and the X-ray detector, but the other measurement conditions are the same as the first measurement conditions, and the target sample is irradiated with X-rays. The intensity of the diffracted X-ray diffracted by the target sample and passing through the aperture stop means is detected by the X-ray detector, and this detected intensity is set as the diffracted X-ray intensity of the target sample at a narrow aperture angle. Process,
Obtaining a relative ratio between the X-ray intensity of the target sample at a narrow aperture angle and the X-ray intensity of the target sample at a wide aperture angle, and setting this relative ratio as the diffraction X-ray intensity ratio of the target sample;
A reference sample with guaranteed crystal integrity is used as the sample, and the reflection index is independently selected with respect to the first measurement condition, but the other measurement conditions are the same. The sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the reference sample is detected by the X-ray detector, and the detected intensity is set as the diffracted X-ray intensity of the reference sample at a wide aperture angle. Process,
The reference sample is irradiated with X-rays under the fourth measurement condition in which the reflection index is the reflection index selected in the third measurement condition but the other measurement conditions are the same with respect to the second measurement condition. Detecting the intensity of the diffracted X-rays diffracted at the aperture stop means by the X-ray detector and setting the detected intensity as the diffracted X-ray intensity of the reference sample at a narrow aperture angle; ,
Obtaining a relative ratio between the X-ray intensity of the reference sample at a narrow aperture angle and the X-ray intensity of the reference sample at a wide aperture angle, and setting this relative ratio as the diffraction X-ray intensity ratio of the reference sample;
The relative ratio between the diffracted X-ray intensity ratio of the target sample and the diffracted X-ray intensity ratio of the reference sample is obtained, and this relative ratio is defined as a normalized diffracted X-ray intensity ratio. A crystal structure analysis method characterized by determining a crystal structure state of a target sample.
試料に対してX線を照射したときに、前記試料にて回折した回折X線の強度をX線検出器により検出して前記試料の結晶の構造を解析する方法であって、
試料として解析対象となる対象試料を用い、この対象試料と前記X線検出器との間に開口絞り手段を配置しないようにした第1測定条件にて、入射角度を徐々に変化させつつ対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度の中からピークとなる強度を、広開口角での対象試料の回折X線強度とする工程と、
前記対象試料と前記X線検出器との間に開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、入射角度を徐々に変化させつつ対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度の中からピークとなる強度を、狭開口角での対象試料の回折X線強度とする工程と、
狭開口角での対象試料のX線強度を広開口角での対象試料のX線強度にて除算し、この除算値を対象試料の回折X線強度比とする工程と、
試料として結晶の完全性が保証された参照試料を用い、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて入射角度を徐々に変化させつつ参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度の中からピークとなる強度を、広開口角での参照試料の回折X線強度とする工程と、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて入射角度を徐々に変化させつつ参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度の中からピークとなる強度を、狭開口角での参照試料の回折X線強度とする工程と、
狭開口角での参照試料のX線強度を広開口角での参照試料のX線強度にて除算し、この除算値を参照試料の回折X線強度比とする工程と、
対象試料の回折X線強度比を参照試料の回折X線強度比にて除算し、この除算値を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする結晶の構造解析方法。
A method of analyzing the crystal structure of the sample by detecting the intensity of diffracted X-rays diffracted by the sample with an X-ray detector when the sample is irradiated with X-rays;
A target sample to be analyzed is used as a sample, and the target sample is gradually changed under the first measurement condition in which an aperture stop means is not disposed between the target sample and the X-ray detector. The X-ray detector detects the intensity of the diffracted X-ray diffracted by the target sample, and the peak intensity among the detected intensities of the target sample at a wide aperture angle is detected. A step of diffracted X-ray intensity;
An aperture stop means is arranged between the target sample and the X-ray detector, but other measurement conditions are the same as the first measurement conditions, and the target sample is gradually changed while changing the incident angle. The X-ray detector detects the intensity of the diffracted X-ray that has been diffracted by the target sample and diffracted by the target sample and passed through the aperture stop means, and the peak intensity is detected from the detected intensities. A step of setting the diffraction X-ray intensity of the target sample at a narrow aperture angle;
Dividing the X-ray intensity of the target sample at a narrow aperture angle by the X-ray intensity of the target sample at a wide aperture angle, and setting this divided value as the diffraction X-ray intensity ratio of the target sample;
A reference sample with guaranteed crystal integrity is used as the sample, and the reflection index is independently selected with respect to the first measurement condition, but the other measurement conditions are the same. The reference sample is irradiated with X-rays while gradually changing the angle, the intensity of the diffracted X-ray diffracted by the reference sample is detected by the X-ray detector, and the peak intensity is detected from the detected intensities. The step of setting the diffracted X-ray intensity of the reference sample at a wide aperture angle;
With respect to the second measurement condition, the reflection index is the reflection index selected in the third measurement condition, but the other measurement conditions are the same. The X-ray detector detects the intensity of diffracted X-rays that are irradiated with a line, diffracted by the reference sample, and passed through the aperture stop means, and the peak intensity is narrowed from the detected intensity. A step of setting the diffraction X-ray intensity of the reference sample at the opening angle;
Dividing the X-ray intensity of the reference sample at a narrow aperture angle by the X-ray intensity of the reference sample at a wide aperture angle, and setting this divided value as the diffraction X-ray intensity ratio of the reference sample;
Divide the diffracted X-ray intensity ratio of the target sample by the diffracted X-ray intensity ratio of the reference sample, and use this divided value as the normalized diffracted X-ray intensity ratio. A crystal structure analysis method comprising: determining a crystal structure state of a crystal.
試料に対してX線を照射したときに、前記試料にて回折した回折X線の強度をX線検出器により検出して前記試料の結晶の構造を解析する方法であって、
試料として解析対象となる対象試料を用い、この対象試料と前記X線検出器との間に開口絞り手段を配置しないようにした第1測定条件にて、入射角度を徐々に変化させつつ対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度を積分した積分値を、広開口角での対象試料の回折X線強度とする工程と、
前記対象試料と前記X線検出器との間に開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、入射角度を徐々に変化させつつ対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度を積分した積分値を、狭開口角での対象試料の回折X線強度とする工程と、
狭開口角での対象試料のX線強度を広開口角での対象試料のX線強度にて除算し、この除算値を対象試料の回折X線強度比とする工程と、
試料として結晶の完全性が保証された参照試料を用い、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて入射角度を徐々に変化させつつ参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、この検出した強度を積分した積分値を、広開口角での参照試料の回折X線強度とする工程と、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて入射角度を徐々に変化させつつ参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、この検出した強度を積分した積分値を、狭開口角での参照試料の回折X線強度とする工程と、
狭開口角での参照試料のX線強度を広開口角での参照試料のX線強度にて除算し、この除算値を参照試料の回折X線強度比とする工程と、
対象試料の回折X線強度比を参照試料の回折X線強度比にて除算し、この除算値を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする結晶の構造解析方法。
A method of analyzing the crystal structure of the sample by detecting the intensity of diffracted X-rays diffracted by the sample with an X-ray detector when the sample is irradiated with X-rays;
A target sample to be analyzed is used as a sample, and the target sample is gradually changed under the first measurement condition in which an aperture stop means is not disposed between the target sample and the X-ray detector. The X-ray detector detects the intensity of the diffracted X-ray diffracted by the target sample, and the integrated value obtained by integrating the detected intensity is used as the diffraction X of the target sample at a wide aperture angle. The step of making the line strength;
An aperture stop means is arranged between the target sample and the X-ray detector, but other measurement conditions are the same as the first measurement conditions, and the target sample is gradually changed while changing the incident angle. The X-ray detector detects the intensity of the diffracted X-ray that has been diffracted by the target sample and diffracted by the target sample and passed through the aperture stop means, and the integrated value obtained by integrating the detected intensity is narrowed. A step of setting the diffraction X-ray intensity of the target sample at the opening angle;
Dividing the X-ray intensity of the target sample at a narrow aperture angle by the X-ray intensity of the target sample at a wide aperture angle, and setting this divided value as the diffraction X-ray intensity ratio of the target sample;
A reference sample with guaranteed crystal integrity is used as the sample, and the reflection index is independently selected with respect to the first measurement condition, but the other measurement conditions are the same. The reference sample is irradiated with X-rays while gradually changing the angle, the intensity of the diffracted X-ray diffracted by the reference sample is detected by the X-ray detector, and an integrated value obtained by integrating the detected intensity is widened. A step of setting the diffraction X-ray intensity of the reference sample at the opening angle;
With respect to the second measurement condition, the reflection index is the reflection index selected in the third measurement condition, but the other measurement conditions are the same. The X-ray detector detects the intensity of diffracted X-rays that are irradiated with a line, diffracted by the reference sample, and passed through the aperture stop means, and the integrated value obtained by integrating the detected intensity is a narrow aperture angle. The step of setting the diffraction X-ray intensity of the reference sample at
Dividing the X-ray intensity of the reference sample at a narrow aperture angle by the X-ray intensity of the reference sample at a wide aperture angle, and setting this divided value as the diffraction X-ray intensity ratio of the reference sample;
Divide the diffracted X-ray intensity ratio of the target sample by the diffracted X-ray intensity ratio of the reference sample, and use this divided value as the normalized diffracted X-ray intensity ratio. A crystal structure analysis method comprising: determining a crystal structure state of a crystal.
請求項1乃至請求項3の何れか一項において、
前記参照試料は、完全結晶基板である、Si基板結晶、またはGe基板結晶、またはGaAs基板結晶、またはInP基板結晶であることを特徴とする結晶の構造解析方法。
In any one of Claims 1 thru | or 3,
The crystal structure analysis method, wherein the reference sample is a Si substrate crystal, a Ge substrate crystal, a GaAs substrate crystal, or an InP substrate crystal, which is a complete crystal substrate.
試料を保持する試料保持部と、前記試料保持部に保持された試料に対してX線を照射するX線源と、前記試料にて回折した回折X線の強度を検出するX線検出器と、前記試料保持部と前記X線検出器との間であって回折X線が進行する受光系に配置されたり前記受光系から外れた位置に配置されたりする開口絞り手段とを有するX線回折装置と、
演算部と、
記憶部とからなる結晶の構造解析装置であって、
前記試料保持部に解析対象となる対象試料を保持し、この対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置しないようにした第1測定条件にて、前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を広開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を狭開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度を読み込み、狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度との相対比を求め、この相対比を対象試料の回折X線強度比として前記記憶部に記憶し、
前記試料保持部に結晶の完全性が保証された参照試料を保持し、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を広開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を狭開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度を読み込み、狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度との相対比を求め、この相対比を参照試料の回折X線強度比として前記記憶部に記憶し、
前記演算部は、前記記憶部から対象試料の回折X線強度比と参照試料の回折X線強度比を読み込み、対象試料の回折X線強度比と参照試料の回折X線強度比との相対比を求め、この相対比を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする結晶の構造解析装置。
A sample holder for holding the sample, an X-ray source for irradiating the sample held by the sample holder with X-rays, and an X-ray detector for detecting the intensity of the diffracted X-rays diffracted by the sample; X-ray diffraction having aperture stop means disposed between the sample holder and the X-ray detector and disposed in a light-receiving system where diffracted X-rays travel or disposed away from the light-receiving system Equipment,
An arithmetic unit;
A crystal structure analysis apparatus comprising a storage unit,
In the first measurement condition in which the target sample to be analyzed is held in the sample holding unit, and the aperture stop means is not arranged in the light receiving system between the target sample and the X-ray detector, The target sample is irradiated with X-rays from an X-ray source, the intensity of diffracted X-rays diffracted by the target sample is detected by the X-ray detector, and the calculation unit calculates the detected intensity at a wide aperture angle. Memorize | stored in the said memory | storage part as the diffraction X-ray intensity of an object sample,
The aperture stop means is arranged in the light receiving system between the target sample and the X-ray detector, but the other measurement conditions are the same as the first measurement conditions, and the second measurement conditions are used. The target sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the target sample and passing through the aperture stop means is detected by the X-ray detector, and the calculation unit calculates the detected intensity. Memorize | stored in the said memory | storage part as the diffraction X-ray intensity of the object sample in a narrow aperture angle,
The calculation unit reads the X-ray intensity of the target sample at a narrow aperture angle and the X-ray intensity of the target sample at a wide aperture angle from the storage unit, and the X-ray intensity and wide aperture angle of the target sample at a narrow aperture angle. The relative ratio with the X-ray intensity of the target sample is stored in the storage unit as the diffracted X-ray intensity ratio of the target sample,
A reference sample in which the integrity of the crystal is guaranteed is held in the sample holder, and the reflection index is an independently selected reflection index with respect to the first measurement condition, but the other measurement conditions are the same. The reference sample is irradiated with X-rays from the X-ray source under the conditions, the intensity of the diffracted X-ray diffracted by the reference sample is detected by the X-ray detector, and the arithmetic unit widens the detected intensity. Storing in the storage unit as the diffracted X-ray intensity of the reference sample at the aperture angle;
With respect to the second measurement condition, the reflection index is the reflection index selected in the third measurement condition, but other measurement conditions are the same. In the fourth measurement condition, X-rays are emitted from the X-ray source to the reference sample. The X-ray detector detects the intensity of the diffracted X-ray that has been irradiated, diffracted by the reference sample, and passed through the aperture stop means, and the arithmetic unit detects the detected intensity at a reference angle at a narrow aperture angle. Is stored in the storage unit as the diffracted X-ray intensity of
The calculation unit reads the X-ray intensity of the reference sample at a narrow aperture angle and the X-ray intensity of the reference sample at a wide aperture angle from the storage unit, and the X-ray intensity and wide aperture angle of the reference sample at a narrow aperture angle. The relative ratio with the X-ray intensity of the reference sample is stored in the storage unit as the diffracted X-ray intensity ratio of the reference sample,
The calculation unit reads the diffraction X-ray intensity ratio of the target sample and the diffraction X-ray intensity ratio of the reference sample from the storage unit, and the relative ratio between the diffraction X-ray intensity ratio of the target sample and the diffraction X-ray intensity ratio of the reference sample A crystal structure analysis apparatus characterized in that the relative ratio is obtained as a normalized diffraction X-ray intensity ratio, and the crystal structure state of the target sample is determined from the value of the normalized diffraction X-ray intensity ratio.
試料を保持する試料保持部と、前記試料保持部に保持された試料に対してX線を照射するX線源と、前記試料にて回折した回折X線の強度を検出するX線検出器と、前記試料保持部と前記X線検出器との間であって回折X線が進行する受光系に配置されたり前記受光系から外れた位置に配置されたりする開口絞り手段とを有するX線回折装置と、
演算部と、
記憶部とからなる結晶の構造解析装置であって、
前記試料保持部に解析対象となる対象試料を保持し、この対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置しないようにした第1測定条件にて、入射角度を徐々に変化させつつ前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度の中からピークとなる強度を広開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、入射角度を徐々に変化させつつ前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度の中からピークとなる強度を狭開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度を読み込み、狭開口角での対象試料のX線強度を広開口角での対象試料のX線強度にて除算し、この除算値を対象試料の回折X線強度比として前記記憶部に記憶し、
前記試料保持部に結晶の完全性が保証された参照試料を保持し、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて入射角度を徐々に変化させつつ前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度の中からピークとなる強度を広開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて入射角度を徐々に変化させつつ前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度の中からピークとなる強度を狭開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度を読み込み、狭開口角での参照試料のX線強度を広開口角での参照試料のX線強度にて除算し、この除算値を参照試料の回折X線強度比として前記記憶部に記憶し、
前記演算部は、前記記憶部から対象試料の回折X線強度比と参照試料の回折X線強度比を読み込み、対象試料の回折X線強度比を参照試料の回折X線強度比にて除算し、この除算値を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする結晶の構造解析装置。
A sample holder for holding the sample, an X-ray source for irradiating the sample held by the sample holder with X-rays, and an X-ray detector for detecting the intensity of the diffracted X-rays diffracted by the sample; X-ray diffraction having aperture stop means disposed between the sample holder and the X-ray detector and disposed in a light-receiving system where diffracted X-rays travel or disposed away from the light-receiving system Equipment,
An arithmetic unit;
A crystal structure analysis apparatus comprising a storage unit,
In the first measurement condition, a target sample to be analyzed is held in the sample holder, and the aperture stop means is not arranged in the light receiving system between the target sample and the X-ray detector. The X-ray source irradiates the target sample with X-rays while gradually changing the angle, and the X-ray detector detects the intensity of the diffracted X-rays diffracted by the target sample. Stored in the storage unit as the diffracted X-ray intensity of the target sample at a wide aperture angle,
The aperture stop means is arranged in the light receiving system between the target sample and the X-ray detector, but the other measurement conditions are the same as the first measurement conditions, and the incident angle is gradually increased. The X-ray source irradiates the target sample with X-rays while changing the intensity, and the X-ray detector detects the intensity of the diffracted X-rays diffracted by the target sample and passing through the aperture stop means, The calculation unit stores the peak intensity from the detected intensity in the storage unit as the diffraction X-ray intensity of the target sample at a narrow aperture angle,
The calculation unit reads the X-ray intensity of the target sample at a narrow aperture angle and the X-ray intensity of the target sample at a wide aperture angle from the storage unit, and calculates the X-ray intensity of the target sample at a narrow aperture angle as a wide aperture angle. And dividing the divided value by the X-ray intensity of the target sample in the storage unit as a diffracted X-ray intensity ratio of the target sample,
A reference sample in which the integrity of the crystal is guaranteed is held in the sample holder, and the reflection index is an independently selected reflection index with respect to the first measurement condition, but the other measurement conditions are the same. The X-ray source irradiates the reference sample with X-rays while gradually changing the incident angle under conditions, and the X-ray detector detects the intensity of the diffracted X-ray diffracted by the reference sample, and the calculation The unit stores the peak intensity from the detected intensity in the storage unit as the diffracted X-ray intensity of the reference sample at a wide aperture angle,
The X-ray source while gradually changing the incident angle under the fourth measurement condition in which the reflection index is set to the reflection index selected in the third measurement condition with respect to the second measurement condition but the other measurement conditions are the same. The reference sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the reference sample and passed through the aperture stop means is detected by the X-ray detector, and the calculation unit detects the detected intensity Storing the intensity of the peak from the above as the diffracted X-ray intensity of the reference sample at a narrow aperture angle in the storage unit,
The calculation unit reads the X-ray intensity of the reference sample at a narrow aperture angle and the X-ray intensity of the reference sample at a wide aperture angle from the storage unit, and calculates the X-ray intensity of the reference sample at a narrow aperture angle as a wide aperture angle. And dividing the divided value by the X-ray intensity of the reference sample in the storage unit as the diffracted X-ray intensity ratio of the reference sample,
The calculation unit reads the diffraction X-ray intensity ratio of the target sample and the diffraction X-ray intensity ratio of the reference sample from the storage unit, and divides the diffraction X-ray intensity ratio of the target sample by the diffraction X-ray intensity ratio of the reference sample. A crystal structure analysis apparatus characterized in that the division value is used as a normalized diffraction X-ray intensity ratio, and the crystal structure state of the target sample is determined from the normalized diffraction X-ray intensity ratio value.
試料を保持する試料保持部と、前記試料保持部に保持された試料に対してX線を照射するX線源と、前記試料にて回折した回折X線の強度を検出するX線検出器と、前記試料保持部と前記X線検出器との間であって回折X線が進行する受光系に配置されたり前記受光系から外れた位置に配置されたりする開口絞り手段とを有するX線回折装置と、
演算部と、
記憶部とからなる結晶の構造解析装置であって、
前記試料保持部に解析対象となる対象試料を保持し、この対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置しないようにした第1測定条件にて、入射角度を徐々に変化させつつ前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を積分した積分値を広開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記対象試料と前記X線検出器との間の前記受光系に前記開口絞り手段を配置するが他の測定条件は第1測定条件と同じにした第2測定条件にて、入射角度を徐々に変化させつつ前記X線源から前記対象試料にX線を照射し、前記対象試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を積分した積分値を狭開口角での対象試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での対象試料のX線強度と広開口角での対象試料のX線強度を読み込み、狭開口角での対象試料のX線強度を広開口角での対象試料のX線強度にて除算し、この除算値を対象試料の回折X線強度比として前記記憶部に記憶し、
前記試料保持部に結晶の完全性が保証された参照試料を保持し、前記第1測定条件に対して反射指数は独立に選択した反射指数とするが他の測定条件は同じである第3測定条件にて入射角度を徐々に変化させつつ前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折した回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を積分した積分値を広開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記第2測定条件に対して反射指数は前記第3測定条件で選択した反射指数とするが他の測定条件は同じである第4測定条件にて入射角度を徐々に変化させつつ前記X線源から前記参照試料にX線を照射し、前記参照試料にて回折して前記開口絞り手段を通過してきた回折X線の強度を前記X線検出器により検出し、前記演算部はこの検出した強度を積分した積分値を狭開口角での参照試料の回折X線強度として前記記憶部に記憶し、
前記演算部は、前記記憶部から狭開口角での参照試料のX線強度と広開口角での参照試料のX線強度を読み込み、狭開口角での参照試料のX線強度を広開口角での参照試料のX線強度にて除算し、この除算値を参照試料の回折X線強度比として前記記憶部に記憶し、
前記演算部は、前記記憶部から対象試料の回折X線強度比と参照試料の回折X線強度比を読み込み、対象試料の回折X線強度比を参照試料の回折X線強度比にて除算し、この除算値を規格化した回折X線強度比とし、この規格化した回折X線強度比の値から対象試料の結晶構造状態を判定することを特徴とする結晶の構造解析装置。
A sample holder for holding the sample, an X-ray source for irradiating the sample held by the sample holder with X-rays, and an X-ray detector for detecting the intensity of the diffracted X-rays diffracted by the sample; X-ray diffraction having aperture stop means disposed between the sample holder and the X-ray detector and disposed in a light-receiving system where diffracted X-rays travel or disposed away from the light-receiving system Equipment,
An arithmetic unit;
A crystal structure analysis apparatus comprising a storage unit,
In the first measurement condition, a target sample to be analyzed is held in the sample holder, and the aperture stop means is not arranged in the light receiving system between the target sample and the X-ray detector. The X-ray source irradiates the target sample with X-rays while gradually changing the angle, and the X-ray detector detects the intensity of the diffracted X-rays diffracted by the target sample. The integrated value obtained by integrating the intensity is stored in the storage unit as the diffraction X-ray intensity of the target sample at a wide aperture angle,
The aperture stop means is arranged in the light receiving system between the target sample and the X-ray detector, but the other measurement conditions are the same as the first measurement conditions, and the incident angle is gradually increased. The X-ray source irradiates the target sample with X-rays while changing the intensity, and the X-ray detector detects the intensity of the diffracted X-rays diffracted by the target sample and passing through the aperture stop means, The calculation unit stores the integrated value obtained by integrating the detected intensity in the storage unit as the diffracted X-ray intensity of the target sample at a narrow aperture angle,
The calculation unit reads the X-ray intensity of the target sample at a narrow aperture angle and the X-ray intensity of the target sample at a wide aperture angle from the storage unit, and calculates the X-ray intensity of the target sample at a narrow aperture angle as a wide aperture angle. And dividing the divided value by the X-ray intensity of the target sample in the storage unit as a diffracted X-ray intensity ratio of the target sample,
A reference sample in which the integrity of the crystal is guaranteed is held in the sample holder, and the reflection index is an independently selected reflection index with respect to the first measurement condition, but the other measurement conditions are the same. The X-ray source irradiates the reference sample with X-rays while gradually changing the incident angle under conditions, and the X-ray detector detects the intensity of the diffracted X-ray diffracted by the reference sample, and the calculation The unit stores an integrated value obtained by integrating the detected intensity as the diffracted X-ray intensity of the reference sample at a wide aperture angle in the storage unit,
The X-ray source while gradually changing the incident angle under the fourth measurement condition in which the reflection index is set to the reflection index selected in the third measurement condition with respect to the second measurement condition but the other measurement conditions are the same. The reference sample is irradiated with X-rays, the intensity of the diffracted X-rays diffracted by the reference sample and passed through the aperture stop means is detected by the X-ray detector, and the calculation unit detects the detected intensity Is stored in the storage unit as the diffracted X-ray intensity of the reference sample at a narrow aperture angle,
The calculation unit reads the X-ray intensity of the reference sample at a narrow aperture angle and the X-ray intensity of the reference sample at a wide aperture angle from the storage unit, and calculates the X-ray intensity of the reference sample at a narrow aperture angle as a wide aperture angle. And dividing the divided value by the X-ray intensity of the reference sample in the storage unit as the diffracted X-ray intensity ratio of the reference sample,
The calculation unit reads the diffraction X-ray intensity ratio of the target sample and the diffraction X-ray intensity ratio of the reference sample from the storage unit, and divides the diffraction X-ray intensity ratio of the target sample by the diffraction X-ray intensity ratio of the reference sample. A crystal structure analysis apparatus characterized in that the division value is used as a normalized diffraction X-ray intensity ratio, and the crystal structure state of the target sample is determined from the normalized diffraction X-ray intensity ratio value.
請求項5乃至請求項7の何れか一項において、
前記参照試料は、完全結晶基板である、Si基板結晶、またはGe基板結晶、またはGaAs基板結晶、またはInP基板結晶であることを特徴とする結晶の構造解析装置。
In any one of Claims 5 thru | or 7,
The crystal structure analysis apparatus, wherein the reference sample is a Si substrate crystal, a Ge substrate crystal, a GaAs substrate crystal, or an InP substrate crystal, which is a complete crystal substrate.
JP2007034289A 2007-02-15 2007-02-15 Crystal structure analysis method and crystal structure analyzer Withdrawn JP2008197025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034289A JP2008197025A (en) 2007-02-15 2007-02-15 Crystal structure analysis method and crystal structure analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034289A JP2008197025A (en) 2007-02-15 2007-02-15 Crystal structure analysis method and crystal structure analyzer

Publications (1)

Publication Number Publication Date
JP2008197025A true JP2008197025A (en) 2008-08-28

Family

ID=39756109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034289A Withdrawn JP2008197025A (en) 2007-02-15 2007-02-15 Crystal structure analysis method and crystal structure analyzer

Country Status (1)

Country Link
JP (1) JP2008197025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076165A4 (en) * 2013-11-26 2017-06-21 Rigaku Corporation X-ray diffractometer and x-ray diffractometry method
CN113287005A (en) * 2018-11-22 2021-08-20 株式会社理学 Single crystal X-ray structure analysis device and method, sample holder used for the same, and applicator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076165A4 (en) * 2013-11-26 2017-06-21 Rigaku Corporation X-ray diffractometer and x-ray diffractometry method
CN113287005A (en) * 2018-11-22 2021-08-20 株式会社理学 Single crystal X-ray structure analysis device and method, sample holder used for the same, and applicator

Similar Documents

Publication Publication Date Title
US7769135B2 (en) X-ray diffraction wafer mapping method for rhombohedral super-hetero-epitaxy
US8437450B2 (en) Fast measurement of X-ray diffraction from tilted layers
Tweedie et al. X-ray characterization of composition and relaxation of AlxGa1− xN (≤ x≤ 1) layers grown on GaN/sapphire templates by low pressure organometallic vapor phase epitaxy
Tanner et al. Advanced X-ray scattering techniques for the characterization of semiconducting materials
JP2008197025A (en) Crystal structure analysis method and crystal structure analyzer
US6907107B1 (en) Method and apparatus for the analysis of material composition
Hu et al. High-speed three-dimensional reciprocal-space mapping during molecular beam epitaxy growth of InGaAs
Shokhovets et al. Anisotropic optical constants, birefringence, and dichroism of wurtzite GaN between 0.6 eV and 6 eV
JP2009047443A (en) Structure analyzing method of crystal
JP2008197024A (en) Crystal structure analysis method and crystal structure analyzer
JPH09167789A (en) Evaluation method for semiconductor device
JP5373660B2 (en) Crystal structure analysis method
Nicolai et al. Application of electron tomography for comprehensive determination of III-V interface properties
JP5165498B2 (en) Crystal structure analysis method
Tilli et al. Composition determination of quaternary GaAsPN layers from single X-ray diffraction measurement of quasi-forbidden (002) reflection
JP2905659B2 (en) X-ray apparatus and evaluation analysis method using the apparatus
Journot et al. Combining Borrmann and weak-beam diffraction images to study defects in a high-quality CdTe (Zn) crystal
JP5154334B2 (en) Crystal structure analysis method
Skauli et al. Mapping of CdZnTe substrates and CdHgTe epitaxial layers by X-ray diffraction
JP5350124B2 (en) Crystal structure analysis method
Zaumseil X-ray investigation of strained epitaxial layer systems by reflections in skew geometry
Kujofsa et al. Resolution of X-Ray Rocking Curve Measurements Made with Finite Counting Statistics
JP2008039710A (en) Structure analysis method of crystal
Simbrunner et al. In situ X‐ray diffraction during MOCVD of III‐nitrides
Hung et al. Application of Inline X-ray Metrology for Defect Characterization of III-V/Si Heterostructures

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511