JP3503438B2 - Lithium ion secondary battery and method of manufacturing secondary battery - Google Patents

Lithium ion secondary battery and method of manufacturing secondary battery

Info

Publication number
JP3503438B2
JP3503438B2 JP23740497A JP23740497A JP3503438B2 JP 3503438 B2 JP3503438 B2 JP 3503438B2 JP 23740497 A JP23740497 A JP 23740497A JP 23740497 A JP23740497 A JP 23740497A JP 3503438 B2 JP3503438 B2 JP 3503438B2
Authority
JP
Japan
Prior art keywords
active material
electrode
binder
material particles
organic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23740497A
Other languages
Japanese (ja)
Other versions
JPH1186865A (en
Inventor
幸浩 佐野
▲徳▼一 細川
英一 奥野
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP23740497A priority Critical patent/JP3503438B2/en
Publication of JPH1186865A publication Critical patent/JPH1186865A/en
Application granted granted Critical
Publication of JP3503438B2 publication Critical patent/JP3503438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、活物質粒子と有機
結着材とを含む電極を備え、有機結着材がポリフッ化ビ
ニリデンであるリチウムイオン二次電池および活物質粒
子と有機結着材とを含む電極を備える二次電池(例え
ば、リチウムイオン電池等)の製造方法に関するもので
TECHNICAL FIELD The present invention comprises an electrode containing active material particles and an organic binder , wherein the organic binder is polyvinyl fluoride.
Nilidene lithium-ion secondary battery and active material particles
Secondary battery provided with an electrode including a child and an organic binder (eg,
If, Ru <br/> Oh in a method of manufacturing a lithium-ion battery, etc.).

【0002】[0002]

【従来の技術】活物質粒子と有機結着材とを含む電極
(正極および負極)を備える二次電池としては、例え
ば、高エネルギー密度を有するリチウム(Li)イオン
二次電池がある。Liイオン二次電池の場合、正極およ
び負極に対するゲストは、Li、Liイオンである。ま
た、正極活物質としては、LiCoO2 、LiNi
2 、LiMnO2 、LiMn2 4 などの粒子を用
い、負極活物質としては、グラファイトなどのカーボン
系の粒子を用いている。
2. Description of the Related Art As a secondary battery provided with electrodes (a positive electrode and a negative electrode) containing active material particles and an organic binder, for example, there is a lithium (Li) ion secondary battery having a high energy density. In the case of a Li-ion secondary battery, guests for the positive electrode and the negative electrode are Li and Li ions. Further, as the positive electrode active material, LiCoO 2 , LiNi
Particles such as O 2 , LiMnO 2 and LiMn 2 O 4 are used, and carbon-based particles such as graphite are used as the negative electrode active material.

【0003】そして、これら正、負極活物質粒子は、有
機結着材によって電子の導電パスとなる集電体(Al、
Cu箔等)に保持されて電極を構成しているが、その有
機結着材としては、ポリフッ化ビニリデン(PVDF)
を用いている場合が多い。このようなものとしては、例
えば、特開平2−68855号公報、特開平8−250
127号公報に記載のものが提案されている。
The positive and negative electrode active material particles are made of a current collector (Al,
It is held by Cu foil or the like to form an electrode, and the organic binder is polyvinylidene fluoride (PVDF).
Is often used. Examples of such a device include, for example, Japanese Patent Laid-Open Nos. 2-68855 and 8-250.
The one described in Japanese Patent Publication No. 127 has been proposed.

【0004】[0004]

【発明が解決しようとする課題】上記の有機結着材は、
活物質粒子が分散しないように活物質粒子同士を接合す
るもの、いわゆるバインダとして、電極の結着性を維持
する役目を果たしている。しかし、一方では、有機結着
材は活物質粒子の表面を被覆して、活物質粒子へのゲス
ト(Liイオン等)の出入りを阻害(つまり、ゲストの
透過性の悪化)するため、例えば、電池の放電負荷特性
の悪化(大電流放電時の容量低下)という問題が生じて
いる。
The above organic binder is
As a so-called binder, which bonds the active material particles to each other so that the active material particles do not disperse, it plays a role of maintaining the binding property of the electrodes. However, on the other hand, since the organic binder covers the surface of the active material particles and inhibits the guest (Li ions or the like) from entering and leaving the active material particles (that is, the permeability of the guest is deteriorated). There is a problem that the discharge load characteristic of the battery is deteriorated (capacity is reduced during large current discharge).

【0005】ところで、従来の活物質粒子と有機結着材
とを含む電極構成においては、上記の電極の結着性とゲ
ストの透過性という2つの性能を両立させるような提案
はされておらず、また、有機結着材を含まない活物質粒
子だけの電極構成では電極の結着性を維持することは、
現実には困難である。本発明は上記点に鑑みて、活物質
粒子と有機結着材とを含む電極を備える二次電池におい
て、結着性およびゲストの透過性を両立させる電極構成
を実現するとを目的とする。
By the way, in the conventional electrode structure containing the active material particles and the organic binder, there has been no proposal to achieve both the above-mentioned electrode binding property and guest permeability. In addition, maintaining the binding property of the electrode in the electrode configuration of only active material particles containing no organic binder is
It is difficult in reality. The present invention is made in view of the above disadvantages, a secondary battery comprising an electrode containing the active material particles and an organic binder, and an object that you realize the electrode configuration to achieve both binding property and guests permeability .

【0006】[0006]

【課題を解決するための手段】本発明者等は、従来の活
物質粒子と有機結着材とを含む電極を備える二次電池に
おいて、その電極構造を、SEM観察等により調査検討
した。その結果、電極において結着材であるPVDF
が、活物質粒子の表面を均一に隙間無く被覆しており、
そのため、電池反応に重要な活物質へのゲストの出入り
が阻害されていることがわかった。
The present inventors investigated and examined the electrode structure of a conventional secondary battery provided with an electrode containing active material particles and an organic binder by SEM observation or the like. As a result, PVDF which is a binder in the electrode
However, the surface of the active material particles is uniformly covered without any gaps,
Therefore, it was found that the guest was prevented from entering and leaving the active material, which is important for the battery reaction.

【0007】そこで、上記検討結果に基づき、電極の活
物質粒子表面を被覆する結着材の構造に着目して鋭意研
究を進め、結着性およびゲストの透過性を両立させる電
極構成として、以下に示す技術的手段を採用することと
した。すなわち、請求項1記載の発明は、活物質粒子と
有機結着材とを含む電極を備え、有機結着材がポリフッ
化ビニリデンであるリチウムイオン二次電池において、
有機結着材が、電極のうち活物質粒子間の結着接点部で
厚く、結着接点部以外の部位で薄くなるように偏在化さ
れていることを特徴とする。
[0007] Therefore, based on the above-mentioned examination results, an earnest research is conducted by paying attention to the structure of the binder that coats the surface of the active material particle of the electrode. It was decided to adopt the technical means shown in. That is, the invention according to claim 1 is provided with an electrode containing active material particles and an organic binder, and the organic binder is a polyfluoride.
In a lithium ion secondary battery that is vinylidene chloride ,
It is characterized in that the organic binder is unevenly distributed so that it is thick at a binding contact portion between the active material particles of the electrode and thin at a portion other than the binding contact portion.

【0008】ここで、上記の結着接点部とは、活物質粒
子同士が直接もしくは有機結着材を介して接する部分を
意味し、結着接点部以外の部位で薄くなるとは、部分的
に有機結着材が存在しないものをも含むことを意味する
(図2(b)参照)。それによって、活物質粒子間の結
着に必要な部分に、結着材量が多く、一方、電池反応に
関与する部分に、結着材量が少なくなるように偏在する
ので、結着性およびゲストの透過性を両立させる電極構
成を実現でき、大電流放電時の電池容量の低下が抑制で
きる。
Here, the above-mentioned binding contact portion means a portion where the active material particles are in direct contact with each other or via an organic binding material, and thinning at a portion other than the binding contact portion means partially. It means that the organic binder does not exist (see FIG. 2B). Thereby, the amount of the binder is large in the part necessary for binding between the active material particles, while the amount of the binder is unevenly distributed in the part involved in the battery reaction so as to reduce the binding property and It is possible to realize an electrode configuration that is compatible with guest permeability, and it is possible to suppress a decrease in battery capacity during large current discharge.

【0009】また、上記の結着接点部とそれ以外の部位
における偏在化の度合について、オージェ電子分光分析
法を用いて検討を進めた結果、請求項のように、結着
接点部と結着接点部以外の部位との元素分析ピーク強度
比が2.0以上の時に、より良好な負荷特性(放電電流
4.5Aにおける放電容量80%以上)を実現できるこ
とがわかった。
Further, the degree of uneven distribution at the site of the others and the binder contacts, as a result of studying by using Auger electron spectroscopy, as claimed in claim 1, the binder contacts the binding It was found that better load characteristics (80% or more of discharge capacity at a discharge current of 4.5 A) can be realized when the elemental analysis peak intensity ratio to the portion other than the contact / contact portion is 2.0 or more.

【0010】また、活物質粒子と有機結着材とを含む電
極を備える二次電池において、その製造方法の面からも
実験検討を進め、有機結着材が、電極のうち活物質粒子
間の結着接点部で厚く、結着接点部以外の部位で薄くな
るように偏在化されている二次電池を製造するために
は、請求項記載の発明の製造方法とすればよいこ
とを見出した。すなわち、請求項記載の発明は、活物
質粒子と有機結着材とを含む電極と、この電極を保持し
且つ電子の導電パスとなる集電体とを備える二次電池の
製造方法において、有機結着材を前記有機結着材の貧溶
媒に加熱により均一に溶解させるとともに、活物質粒子
を混合してペースト状の混合物を作製し、このペースト
状の混合物を集電体上に塗布し、その後貧溶媒を蒸発さ
せることにより、有機結着材が、電極のうち活物質粒子
間の結着接点部で厚く、結着接点部以外の部位で薄くな
るように偏在化させることを特徴とする。
Further, in a secondary battery including an electrode containing active material particles and an organic binder, an experimental study is advanced from the viewpoint of the manufacturing method, and the organic binder is the active material particles among the electrodes.
Thicker at the contact points between contacts, and thinner at areas other than the contact points
It has been found that the manufacturing method of the invention described in claims 2 to 4 can be used to manufacture the secondary battery unevenly distributed . That is, the invention according to claim 2 is a method of manufacturing a secondary battery, comprising: an electrode containing active material particles and an organic binder; and a current collector that holds the electrode and serves as an electron conductive path. While the organic binder is uniformly dissolved in the poor solvent of the organic binder by heating, active material particles are mixed to prepare a paste-like mixture, and the paste-like mixture is applied onto a current collector. The organic binder is then unevenly distributed by thickening the organic solvent by thickening the binding solvent between the active material particles and thinning it at a site other than the binding contact by evaporating the poor solvent. To do.

【0011】ここで、貧溶媒とは、結着材の溶解性の悪
いものであり、溶解性の良い良溶媒の反対の意味で使わ
れる言葉で、非良溶媒ともいう。それによって、後述す
る図4に示すように、貧溶媒の蒸発過程において結着材
の溶解度が低くなるため、蒸発初期の段階で有機結着材
の偏在(偏析)が起こり始める。ここで、活物質粒子間
の結着接合部は、それ以外の活物質粒子表面に対してく
びれており、この偏析した有機結着材が集まりやすくな
っているため、結着接点部に有機結着材が移動し、最終
的に活物質粒子間に結着材が偏在した電極構造にするこ
とができる。
Here, the poor solvent has a poor solubility of the binder and is a term used in the opposite sense of a good solvent having a good solubility, and is also called a poor solvent. As a result, as shown in FIG. 4 described later, the solubility of the binder decreases in the process of vaporizing the poor solvent, so that uneven distribution (segregation) of the organic binder begins to occur in the initial stage of evaporation. Here, the binding joint between the active material particles is constricted with respect to the surface of the other active material particles, and this segregated organic binder easily gathers. An electrode structure in which the binder moves and finally the binder is unevenly distributed among the active material particles can be obtained.

【0012】また、請求項記載の発明は、請求項
載の製造方法において、ペースト状の混合物を集電体上
に塗布する工程と、貧溶媒を蒸発させる工程との間で、
ペースト状の混合物を冷却することを特徴とする。
[0012] According to a third aspect of the invention, among the manufacturing method according to claim 2, wherein the steps of applying a paste-like mixture on the current collector, a step of evaporating the poor solvent,
It is characterized in that the pasty mixture is cooled.

【0013】本発明では、上記両工程の間で、冷却工程
を行うため、貧溶媒の溶解性をより速く低下させること
ができ、結着材の偏在化を促進することができる。ま
た、請求項記載の発明は、有機結着材の貧溶媒とこの
貧溶媒よりも沸点が低い良溶媒との混合溶媒に、有機結
着材を溶解させるとともに、活物質粒子を混合してペー
スト状の混合物を作製し、このペースト状の混合物を集
電体上に塗布し、その後混合溶媒を蒸発させることによ
り、有機結着材が、電極のうち活物質粒子間の結着接点
部で厚く、結着接点部以外の部位で薄くなるように偏在
化させることを特徴とする。
In the present invention, since the cooling step is performed between the both steps, the solubility of the poor solvent can be reduced more quickly, and the uneven distribution of the binder can be promoted. In the invention according to claim 4 , the organic binder is dissolved in a mixed solvent of a poor solvent for the organic binder and a good solvent having a lower boiling point than the poor solvent, and the active material particles are mixed. A paste-like mixture is prepared, the paste-like mixture is applied onto a current collector, and then the mixed solvent is evaporated, whereby the organic binder is formed at the binding contact portion between the active material particles of the electrode. It is characterized in that it is thick and unevenly distributed so as to be thin at a portion other than the binding contact portion.

【0014】本発明では、貧溶媒と良溶媒との混合溶媒
を用いているため、良溶媒の作用によって結着材の均一
溶解が行われる。従って、上記請求項4および請求項5
のように、結着材の均一溶解のために加熱する工程を省
略することができる。また、混合溶媒を蒸発するときに
は、沸点の低い良溶媒が先に蒸発するため、蒸発に伴っ
て溶解性が低くなり上記の偏析作用によって、最終的に
活物質粒子間に結着材が偏在した電極構造にすることが
できる。従って、本発明においても、請求項1記載の発
明と同等の効果を有する二次電池を製造する製造方法を
提供することができる。
In the present invention, since the mixed solvent of the poor solvent and the good solvent is used, the binder is uniformly dissolved by the action of the good solvent. Therefore, the above claims 4 and 5
As described above, the heating step for uniformly dissolving the binder can be omitted. Further, when the mixed solvent is evaporated, a good solvent having a low boiling point is evaporated first, so that the solubility becomes low with the evaporation and the segregation action described above finally causes uneven distribution of the binder between the active material particles. It can have an electrode structure. Therefore, also in the present invention, it is possible to provide the manufacturing method for manufacturing the secondary battery having the same effect as that of the invention described in claim 1.

【0015】ここで、上記請求項〜請求項における
有機結着材および貧溶媒としては、請求項記載のよう
に、両者の溶解度パラメータの差が0.5以上であるも
のを用いることが好ましい。
Here, as the organic binder and the poor solvent in the above-mentioned claims 2 to 4 , those having a solubility parameter difference of 0.5 or more as described in claim 5 are used. Is preferred.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
説明するが、本実施形態は、Liイオン二次電池とした
ものである。本実施形態は、例えば、携帯電話や携帯用
パソコン等の携帯機器に用いることができる。図1に本
実施形態の二次電池の電極構造を示す。1は電池の正極
であり、主成分である正極活物質粒子(例えば、リチウ
ムコバルト酸化物)と、導電材(例えば、グラファイ
ト)と、バインダとしての有機結着材(例えば、ポリフ
ッ化ビニリデン)とから成る。2は、正極を構造的に保
持しかつ電子の導電パスとなる正極集電体(例えば、ア
ルミニウム箔)であり、正極1は有機結着材によってこ
の正極集電体2に固定されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below, but the present embodiment is a Li-ion secondary battery. This embodiment can be used, for example, in a mobile device such as a mobile phone or a portable personal computer. FIG. 1 shows the electrode structure of the secondary battery of this embodiment. Reference numeral 1 denotes a positive electrode of a battery, which is a main component of positive electrode active material particles (for example, lithium cobalt oxide), a conductive material (for example, graphite), and an organic binder as a binder (for example, polyvinylidene fluoride). Consists of. Reference numeral 2 denotes a positive electrode current collector (for example, aluminum foil) that structurally holds the positive electrode and serves as an electron conductive path, and the positive electrode 1 is fixed to the positive electrode current collector 2 by an organic binder.

【0017】3は、正極と負極を電気的に絶縁するため
のセパレータ(例えば、ポリエチレン多孔フィルム)で
ある。4は電池の負極であり、主成分である負極活物質
粒子(例えば、球状グラファイト)と、バインダとして
の有機結着材(例えば、ポリフッ化ビニリデン、以下P
VDFという)とからなる。5は負極を構造的に保持し
かつ、電子の導電パスとなる負極集電体(例えば、銅
箔)であり、負極4は有機結着材によってこの負極集電
体5に固定されている。
Reference numeral 3 is a separator (for example, a polyethylene porous film) for electrically insulating the positive electrode and the negative electrode. Reference numeral 4 denotes a negative electrode of a battery, which is a main component of negative electrode active material particles (for example, spherical graphite) and an organic binder (for example, polyvinylidene fluoride, hereinafter P).
VDF). Reference numeral 5 denotes a negative electrode current collector (for example, copper foil) that structurally holds the negative electrode and serves as an electron conductive path, and the negative electrode 4 is fixed to the negative electrode current collector 5 with an organic binder.

【0018】次に、本発明の特徴である活物質粒子と有
機結着材の結着構造について、図2を参照して説明す
る。比較として、従来の一般的な二次電池の結着構造を
図3に示す。なお、図3の従来の二次電池の電極構造の
全体的な構成は、図1と同様である。また、有機結着材
は、以下、結着材ということとする。また、以下主とし
て負極4について、その構成、製法等述べるが、正極1
についても同様のことがいえる。
Next, the binding structure of the active material particles and the organic binding material, which is a feature of the present invention, will be described with reference to FIG. As a comparison, FIG. 3 shows a binding structure of a conventional general secondary battery. The overall structure of the conventional secondary battery electrode structure of FIG. 3 is similar to that of FIG. The organic binder will be referred to as a binder hereinafter. In addition, the configuration, manufacturing method, and the like of the negative electrode 4 will be mainly described below.
The same can be said for.

【0019】図2および図3は、負極4をSEM(走査
型電子顕微鏡)等により観察し、その様子を拡大した模
式図である。図3に示す従来の結着構造では、負極活物
質粒子4aの表面にほぼ均一に結着材4bが被覆してお
り、どこの部分を比較しても結着材4bの被覆膜厚は略
同じである。ところが、図2(a)および(b)に示す
本実施形態の結着構造においては、負極活物質粒子4a
間のくびれた部分である結着接点部(界面)4cに結着
材4bが厚く、それ以外の負極活物質粒子4a表面すな
わち結着接点部4c以外の部位においては、結着材4b
の被覆膜厚を薄くした、あるいは図2(b)のように、
被覆膜厚が薄く且つ部分的に結着材4bが存在しない偏
在構造としている。
2 and 3 are schematic views in which the negative electrode 4 is observed by an SEM (scanning electron microscope) or the like and its appearance is enlarged. In the conventional binding structure shown in FIG. 3, the surface of the negative electrode active material particles 4a is almost uniformly covered with the binder 4b, and no matter which part is compared, the coating film thickness of the binder 4b is It is almost the same. However, in the binding structure of the present embodiment shown in FIGS. 2A and 2B, the negative electrode active material particles 4a
The binding material 4b is thick on the binding contact portion (interface) 4c which is a narrowed portion, and the binding material 4b is formed on the other surface of the negative electrode active material particles 4a, that is, the portion other than the binding contact portion 4c.
The coating film thickness of is reduced, or as shown in FIG.
The unevenly distributed structure has a thin coating film thickness and partially does not have the binder 4b.

【0020】このため負極活物質粒子4a間の結着に必
要な部分に、結着材4bが多く偏在し、負極4の結着性
を確保できる。なお、このような偏在構造は、後述する
ようにSEMおよびオージェ電子分光法にて確認でき
る。ところで、活物質粒子と結着材とを結着させる製法
においては、従来は、結着材(例えば、PVDF)の良
溶媒(例えば、N−メチル−2−ピロリドン、以下NM
Pという)を用いていた(後述の図5参照)。これは、
結着材の溶解性に優れた良溶媒を用いると、活物質粒子
と混合してペーストにする上で、均一なペーストが得ら
れやすいという利点があるためである。そして、このペ
ーストを集電体に塗布して、良溶媒を乾燥蒸発させて電
極を形成していた。
Therefore, a large amount of the binder 4b is unevenly distributed in the portion required for binding between the negative electrode active material particles 4a, and the binding property of the negative electrode 4 can be secured. Note that such an uneven distribution structure can be confirmed by SEM and Auger electron spectroscopy as described later. By the way, in the manufacturing method for binding the active material particles and the binder, conventionally, a good solvent (for example, N-methyl-2-pyrrolidone, hereinafter NM) for the binder (for example, PVDF) is used.
(Referred to as P) was used (see FIG. 5 described later). this is,
This is because the use of a good solvent that is excellent in the solubility of the binder has the advantage that a uniform paste is easily obtained in mixing with the active material particles to form a paste. Then, this paste was applied to a current collector, and a good solvent was dried and evaporated to form an electrode.

【0021】しかし、上記従来製法による電極の結着構
造においては、図3に示すように、電極状態において負
極活物質粒子4aの表面を結着材4bが均一にすきまな
く被覆してしまい、電池反応に重要な活物質粒子へのL
iイオンの出入りを阻害し、大電流放電時の容量低下と
いう問題が生じてしまう。これに対して、本実施形態で
は、活物質粒子と結着材とを結着させる製法として、結
着材(例えば、PVDF)の貧溶媒(例えば、アセト酢
酸エチル)を用いたものとしている。ここで、貧溶媒と
は、結着材の溶解性の悪いものであり、上記の良溶媒の
反対の意味で使われる言葉で、非良溶媒ともいう。
However, in the electrode binding structure according to the above conventional manufacturing method, as shown in FIG. 3, the surface of the negative electrode active material particles 4a is uniformly covered with the binding material 4b in the electrode state, and the battery is L to active material particles important for reaction
There is a problem that the i-ion is prevented from entering and exiting, and the capacity is lowered at the time of discharging a large current. On the other hand, in the present embodiment, a poor solvent (for example, ethyl acetoacetate) for the binder (for example, PVDF) is used as the manufacturing method for binding the active material particles and the binder. Here, the poor solvent has poor solubility in the binder, and is a term used in the opposite sense of the above good solvent, and is also called a non-good solvent.

【0022】この貧溶媒を用いた製法としては、種々の
方法(後述)が考えられるが、例えば、次のような方法
でできる。貧溶媒を加熱して溶解性を上げることで結着
材を均一に溶解させ、この均一溶解状態を保ったまま活
物質粒子を混合してペースト状の混合物を作成する。そ
して、この混合物を集電体上に塗布し、その後、貧溶媒
を乾燥して蒸発させる。この蒸発時には、貧溶媒の温度
が下がり、溶解性も下がるため、貧溶媒中で結着材の偏
析が起こる。
Although various methods (described later) can be considered as the manufacturing method using this poor solvent, for example, the following method can be used. The binder is uniformly dissolved by heating the poor solvent to increase the solubility, and the active material particles are mixed while maintaining this uniform dissolved state to prepare a paste-like mixture. Then, this mixture is applied onto a current collector, and then the poor solvent is dried and evaporated. During this evaporation, the temperature of the poor solvent decreases and the solubility also decreases, so that the binder segregates in the poor solvent.

【0023】なお、従来においては、このような結着材
の偏析は、電極における均一な結着性を実現するために
は、好ましくないと考えられていた。しかし、本発明者
等は、図2に示すように、負極活物質粒子4a間の結着
接合部4cは、それ以外の活物質粒子4a表面に対して
くびれており、偏析した結着材が集まりやすいのではな
いかと考え、発想の転換を図り、むしろこの偏析を積極
的に利用することとした。
Incidentally, it has been conventionally considered that such segregation of the binding material is not preferable in order to realize a uniform binding property in the electrode. However, the present inventors have found that, as shown in FIG. 2, the binding joint portion 4c between the negative electrode active material particles 4a is constricted with respect to the surface of the other active material particles 4a, and the segregated binding material is We thought that it would be easier to get together, so we decided to change the way of thinking and rather to actively utilize this segregation.

【0024】この結着のメカニズムを図4に示す説明図
を参照して説明する。乾燥過程において結着材の溶解度
が低いため、乾燥初期の段階で結着材の偏在(偏析)が
起こり始める。そして、活物質粒子と結着材との濡れ性
の違いによって、安定な結着接点部に偏析した結着材が
移動し、最終的に活物質粒子間に結着材が偏在した図2
に示すような電極構造にすることができる。
The binding mechanism will be described with reference to the explanatory view shown in FIG. Since the binder has a low solubility in the drying process, uneven distribution (segregation) of the binder begins to occur in the initial stage of drying. Then, due to the difference in wettability between the active material particles and the binder, the segregated binder migrates to the stable binder contact portion, and finally the binder is unevenly distributed among the active material particles.
The electrode structure as shown in FIG.

【0025】なお、本作製法において、貧溶媒の溶解度
を小さくして結着材の偏在化を促進させるために、混合
物塗布工程と貧溶媒蒸発工程との間に、冷却工程を入れ
ても同様の電極構造が実現できる。このように結着材の
偏析を利用して、各集電体2および5上に正極1および
負極4を作製することができる。そして、図1に示すよ
うに、各電極1、4、各集電体2、5、およびセパレー
タ3を積層して、複数の層(積層体)とし、各電極1、
4にリード(図示せず)を接続する。続いて、積層体を
電池のケース(図示せず)に収納し、各リードをケース
に設けられた端子(正極端子、負極端子)に接続し、電
解液をケース内に注入封止することで本実施形態のLi
イオン二次電池が完成する。
In this production method, in order to reduce the solubility of the poor solvent and promote the uneven distribution of the binder, a cooling step may be provided between the mixture application step and the poor solvent evaporation step. The electrode structure can be realized. In this way, the positive electrode 1 and the negative electrode 4 can be formed on each of the current collectors 2 and 5 by utilizing the segregation of the binder. Then, as shown in FIG. 1, the electrodes 1, 4, the current collectors 2, 5, and the separator 3 are laminated to form a plurality of layers (laminates).
A lead (not shown) is connected to 4. Then, the laminated body is housed in a battery case (not shown), each lead is connected to a terminal (a positive electrode terminal, a negative electrode terminal) provided on the case, and an electrolytic solution is injected and sealed in the case. Li of the present embodiment
The ion secondary battery is completed.

【0026】そして、本実施形態のLiイオン二次電池
および従来の結着構造を有するLiイオン二次電池にお
いて、後述する電流パルス緩和法によりLiイオン(ゲ
スト)の化学拡散係数を測定したところ、本実施形態は
従来に比べて大きな化学拡散係数を有することが確認で
きた。従って、結着材接点部4c以外の活物質粒子4a
表面における結着材4b膜厚を薄くすることを可能に
し、活物質粒子4aへのリチウムインタカレーション、
デインタカレーションをしやすくすることができ、各電
極1、4において良好なゲストの透過性を実現できる。
Then, in the Li ion secondary battery of the present embodiment and the Li ion secondary battery having the conventional binding structure, the chemical diffusion coefficient of Li ion (guest) was measured by the current pulse relaxation method described later, It was confirmed that this embodiment has a larger chemical diffusion coefficient than the conventional one. Therefore, the active material particles 4a other than the binder contact portion 4c
It is possible to reduce the thickness of the binder 4b on the surface, and to perform lithium intercalation on the active material particles 4a,
Deintercalation can be facilitated, and good guest transparency can be realized in each of the electrodes 1 and 4.

【0027】以上のように、本実施形態によれば、活物
質粒子と有機結着材とを含む電極1、4を備える二次電
池において、活物質粒子4a間の結着に必要な部分に、
結着材量が多く、一方、電池反応に関与する部分に、結
着材量が少なくなるように偏在するので、結着性および
ゲストの透過性を両立させる電極構成を実現でき、大電
流放電時の電池容量の低下が抑制できる。
As described above, according to the present embodiment, in the secondary battery provided with the electrodes 1 and 4 containing the active material particles and the organic binder, the portion necessary for the binding between the active material particles 4a is formed. ,
Since the amount of binder is large and the amount of binder is unevenly distributed in the part that is involved in the battery reaction so that the amount of binder is small, it is possible to realize an electrode configuration that achieves both binder properties and guest permeability, resulting in high current discharge. It is possible to suppress a decrease in battery capacity at that time.

【0028】次に、本実施形態を以下に示す各実施例1
〜5、および比較例に基づいて、更に詳細に説明する
が、本実施形態は、これら実施例に限定されるものでは
ない。 (実施例1)本実施例は、図1のLiイオン二次電池の
電極構造において、負極4を図2に示す本実施形態の結
着構造とし、正極1は図3に示す従来結着構造としたも
のである。正極1は、正極活物質粒子であるリチウムコ
バルト酸化物94wt%、導電材であるグラファイト4
wt%、結着材であるPVDF2wt%から成る。正極
集電体2はAl箔から成り、セパレータ3はポリエチレ
ン多孔フィルムから成る。負極4は、負極活物質粒子で
ある球状グラファイト92.5wt%、結着材であるP
VDF7.5wt%からなる。負極集電体5は銅(C
u)箔である。
Next, each Example 1 showing the present embodiment will be described below.
5 and a comparative example, a more detailed description will be given, but the present embodiment is not limited to these examples. (Example 1) In this example, in the electrode structure of the Li-ion secondary battery of FIG. 1, the negative electrode 4 is the binding structure of this embodiment shown in FIG. 2, and the positive electrode 1 is the conventional binding structure shown in FIG. It is what The positive electrode 1 is composed of positive electrode active material particles of 94 wt% lithium cobalt oxide and conductive material of graphite 4.
wt% and PVDF 2 wt% as a binder. The positive electrode current collector 2 is made of Al foil, and the separator 3 is made of polyethylene porous film. The negative electrode 4 was composed of 92.5 wt% of spherical graphite as the negative electrode active material particles and P as the binder.
It is composed of 7.5 wt% of VDF. The negative electrode current collector 5 is made of copper (C
u) foil.

【0029】次に、本実施例の負極1の作製方法につい
て、述べる。本実施例では、結着材PVDFの溶媒とし
て、PVDFの貧溶媒であるアセト酢酸エチルを選定し
た。アセト酢酸エチルの溶解度パラメータは10であり
PVDFの11に対して約1離れており、常温ではPV
DFを溶解できない。まずアセト酢酸エチルとPVDF
とを混合し、120℃まで加熱することによりPVDF
を均一に溶解させた。
Next, a method for manufacturing the negative electrode 1 of this embodiment will be described. In this example, ethyl acetoacetate, which is a poor solvent for PVDF, was selected as the solvent for the binder PVDF. The solubility parameter of ethyl acetoacetate is 10, which is about 1 distant from 11 of PVDF.
DF cannot be dissolved. First, ethyl acetoacetate and PVDF
PVDF by mixing with and heating to 120 ℃
Was dissolved uniformly.

【0030】次に、この溶液をゲル化させないために、
110℃に保った状態で負極活物質粒子4aである球状
グラファイトと混合し、ニーダ、攪拌機等により均一に
分散させ、ペースト状の混合物(以下、ペーストとい
う)とした。続いて、負極集電体5上にペーストを塗
布、乾燥し、その後ロールプレス等により電極を圧縮
し、電極密度を高め、ブランク型により電極形状に打ち
抜いた。なお、負極集電体5へのペースト塗布は、塗布
前のゲル化による凝集を防ぐために、ペースト温度を1
10℃に保つとともに、基材となる負極集電体5も90
℃に保った状態で行った。
Next, in order to prevent this solution from gelling,
The mixture was mixed with spherical graphite that is the negative electrode active material particles 4a in a state of being maintained at 110 ° C., and uniformly dispersed by a kneader, a stirrer, etc. to obtain a paste-like mixture (hereinafter referred to as paste). Subsequently, the paste was applied onto the negative electrode current collector 5 and dried, and then the electrode was compressed by a roll press or the like to increase the electrode density, and punched into an electrode shape by a blank die. It should be noted that the paste temperature is set to 1 in order to prevent the aggregation due to gelation before the application, in order to apply the paste to the negative electrode current collector 5.
While maintaining at 10 ° C., the negative electrode current collector 5 serving as a base material is also 90
It was carried out with the temperature kept at ℃.

【0031】以上のように作製された本実施例の負極1
は、図2に示す結着構造を有する。 (比較例)図1に示す電極構造において、負極4につい
て従来の具体的な作製方法を以下に示す。この従来の負
極作製方法では、結着構造は図3に示すものとなる。な
お、負極4は上記実施例1と同じく、負極活物質粒子で
ある球状グラファイト92.5wt%、結着材であるP
VDF7.5wt%からなるものとし、負極集電体5は
銅箔としている。
The negative electrode 1 of this example manufactured as described above
Has the binding structure shown in FIG. (Comparative Example) In the electrode structure shown in FIG. 1, a specific conventional manufacturing method of the negative electrode 4 will be described below. In this conventional negative electrode manufacturing method, the binding structure is as shown in FIG. In addition, the negative electrode 4 is the same as in the above-described first embodiment, 92.5 wt% of spherical graphite as the negative electrode active material particles, and P as the binder.
The negative electrode current collector 5 is made of copper foil and is made of 7.5 wt% VDF.

【0032】結着材PVDFを、PVDFの良溶媒であ
るNMPに常温で均一に溶解させ、そこへ負極活物質粒
子4aである球状グラファイトを混合し、ニーダ、攪拌
機等により均一に分散させ、負極集電体5上にペースト
を塗布、乾燥し、その後ロールプレス等により電極を圧
縮し、電極密度を高め、ブランク型により電極形状に打
ち抜いていた。この方法では、結着材の溶媒に対する溶
解度が高く、電極の乾燥時に均一な結着材分布となり
(図5参照)、最終的に図3に示す従来の結着構造を有
する電極となる。
The binder PVDF is uniformly dissolved in NMP, which is a good solvent for PVDF, at room temperature, and the spherical graphite, which is the negative electrode active material particles 4a, is mixed and uniformly dispersed by a kneader, a stirrer, etc. The paste was applied on the current collector 5 and dried, and then the electrode was compressed by a roll press or the like to increase the electrode density and punched into an electrode shape by a blank mold. According to this method, the binder has a high solubility in a solvent, a uniform binder distribution is obtained when the electrode is dried (see FIG. 5), and finally an electrode having the conventional binder structure shown in FIG. 3 is obtained.

【0033】ところで、上述のように、本実施形態で
は、電極表面の結着材の偏在状態を評価するために、S
EM観察およびマイクロオージェ電子分光法による元素
分析を行っている。次に、この評価方法を、上記実施例
1および比較例を用いた場合について説明する。サンプ
ルは両例の負極を用い電極をφ15mmに打ち抜き作製
した。SEM観察結果より負極活物質粒子間の結着接点
部、それ以外の場所を限定し分析を行った。分析装置は
アルバックファイ製、型式PHI670を使用し、加速
電圧10KeV、ビームスポット径約30nm、電子ビ
ーム電流10nAで行った。
By the way, as described above, in this embodiment, in order to evaluate the uneven distribution of the binder on the electrode surface, S
Elemental analysis is performed by EM observation and micro Auger electron spectroscopy. Next, this evaluation method will be described in the case of using the above-mentioned Example 1 and the comparative example. The sample was manufactured by using the negative electrodes of both examples and punching the electrode to a diameter of 15 mm. From the results of SEM observation, the analysis was performed by limiting the binding contact points between the negative electrode active material particles and the other places. The analyzer used was a model PHI670 manufactured by ULVAC-PHI, and the acceleration voltage was 10 KeV, the beam spot diameter was about 30 nm, and the electron beam current was 10 nA.

【0034】図6は、結着構造のSEM像であり、
(a)が上記実施例1、(b)が比較例のものである。
また図7は、図6の模式図であり、(a)が上記実施例
1、(b)が比較例のものである。各例における元素分
析部位は、図7(a)および(b)中に、×印A1、A
2、B1、B2として示した。これら分析部位における
マイクロオージェ分析結果を、図8に示す。このよう
に、各分析部位において、負極活物質粒子(球状グラフ
ァイト)中の炭素(C)ピークと結着材中のフッ素
(F)ピークが現れる。従って、負極活物質粒子上の結
着材PVDFの量は、結着材中のフッ素ピーク強度によ
って求められる。ここで、炭素ピーク強度はどこもほぼ
一定であるので、フッ素ピーク強度は、炭素ピーク強度
に対する割合として規格化したものを用いた。
FIG. 6 is an SEM image of the binding structure,
(A) is the above example 1, and (b) is the comparative example.
Further, FIG. 7 is a schematic diagram of FIG. 6, in which (a) is the example 1 and (b) is the comparative example. The elemental analysis sites in each example are shown by crosses A1 and A in FIGS. 7 (a) and 7 (b).
2, B1 and B2. The results of the micro Auger analysis at these analysis sites are shown in FIG. Thus, at each analysis site, the carbon (C) peak in the negative electrode active material particles (spherical graphite) and the fluorine (F) peak in the binder appear. Therefore, the amount of the binder PVDF on the negative electrode active material particles is determined by the peak fluorine intensity in the binder. Here, since the carbon peak intensity is almost constant everywhere, the fluorine peak intensity was standardized as a ratio to the carbon peak intensity.

【0035】図8に示すように、実施例1では、結着接
点部(図7(a)中、界面A1)のフッ素ピーク強度が
大きく、それ以外の部位(図7(a)中、表面A2)で
のフッ素ピーク強度は殆ど見えない位に小さくなってお
り、両分析部位のフッ素ピーク強度比(A1でのフッ素
ピーク強度/A2でのフッ素ピーク強度)は、およそ4
であった。よって、実施例1においては、結着材が活物
質粒子の結着接点部に多く集まり、それ以外の場所での
被覆膜厚が薄くなっていることが確認できた。
As shown in FIG. 8, in Example 1, the fluorine peak intensity of the binding contact portion (interface A1 in FIG. 7 (a)) was high, and the other portion (surface in FIG. 7 (a), surface). The fluorine peak intensity in A2) is so small that it is almost invisible, and the fluorine peak intensity ratio (fluorine peak intensity in A1 / fluorine peak intensity in A2) of both analysis sites is about 4
Met. Therefore, in Example 1, it was confirmed that a large amount of the binding material gathered at the binding contact portions of the active material particles, and the coating film thickness was thin in other places.

【0036】これに対し、上記比較例すなわち従来製法
による負極では、結着接点部(図7(b)中、界面B
1)、それ以外の場所(図7(b)中、表面B2)でも
同様のフッ素ピーク強度が得られ、フッ素ピーク両ピー
クの強度比はおよそ1であった。従って、上記比較例で
は、負極活物質粒子上の結着材PVDF膜厚は、部位に
よらず均一であることがわかる。
On the other hand, in the above-mentioned comparative example, that is, the negative electrode manufactured by the conventional method, the binding contact portion (in FIG.
1), the same fluorine peak intensity was obtained at other locations (surface B2 in FIG. 7B), and the intensity ratio of both fluorine peaks was about 1. Therefore, in the above comparative example, it is understood that the film thickness of the binder PVDF on the negative electrode active material particles is uniform regardless of the site.

【0037】また、上述のように、本実施形態では、ゲ
ストの透過性を定量的に把握するために、電流パルス緩
和法によるLiイオンの化学拡散係数(以下、Liイオ
ン拡散係数という)Dの測定を行っている。次に、この
測定を、上記実施例1および比較例の負極を用いた場合
について説明する。Liイオン拡散係数Dの測定は加圧
セルを用いた。実施例1と同じペーストを厚さ18μm
の銅箔(負極集電体)上に塗布し、φ15mmに打ち抜
き図2に示す結着構造を有する負極を作製した。対極に
はニッケルメッシュに圧着したリチウム金属を用い、セ
パレータはポリエチレン製厚さ25μmを用い、電解液
は1MLiPF6 /EC(炭酸エチレン):EMC(炭
酸エチルメチル)=50:50を用いて行った。また、
比較例についても同様に加圧セルを作製した。
Further, as described above, in this embodiment, in order to quantitatively grasp the permeability of the guest, the chemical diffusion coefficient (hereinafter, referred to as Li ion diffusion coefficient) D of Li ion by the current pulse relaxation method is used. Taking measurements. Next, this measurement will be described using the negative electrodes of Example 1 and Comparative Example described above. A pressure cell was used to measure the Li ion diffusion coefficient D. The same paste as in Example 1 was formed to a thickness of 18 μm.
Was coated on a copper foil (negative electrode current collector) and punched to a diameter of 15 mm to prepare a negative electrode having the binding structure shown in FIG. Lithium metal pressed onto a nickel mesh was used as the counter electrode, a separator having a thickness of 25 μm made of polyethylene was used, and an electrolytic solution was 1M LiPF 6 / EC (ethylene carbonate): EMC (ethyl methyl carbonate) = 50: 50. . Also,
A pressure cell was similarly prepared for the comparative example.

【0038】評価条件は大電流放電時の影響をみるため
にグラファイト負極の電位を0.005V以下まで下げ
た状態で、グラファイト中からLiイオンを引き抜く方
向に20mAの電流を10秒間流し、その後のグラファ
イト負極電位の経時変化を測定することにより求めた。
Liイオン拡散係数Dの計算は、下記の数式1を用いて
行った。
To evaluate the effect of discharging a large current, the evaluation conditions were such that the potential of the graphite negative electrode was lowered to 0.005 V or less, a current of 20 mA was applied for 10 seconds in the direction of extracting Li ions from the graphite, and thereafter, It was determined by measuring the change with time of the graphite negative electrode potential.
The calculation of the Li ion diffusion coefficient D was performed using the following formula 1.

【0039】[0039]

【数1】 [Equation 1]

【0040】 但し、VM :電極のモル体積 dE/dx:開路電圧−組成(x)曲線のLi組成xに
おける傾き i:電流(A) τ:電流パルスの継続時間(s) n:反応に関与する電子の個数 F:ファラデー常数(C/m) a:電極面積(cm2 ) ΔE:電位変化 t:時間 である。
Where V M : molar volume of the electrode dE / dx: open circuit voltage-slope of Li composition x of composition (x) curve i: current (A) τ: duration of current pulse (s) n: reaction Number of electrons involved F: Faraday constant (C / m) a: Electrode area (cm 2 ) ΔE: Potential change t: Time.

【0041】そして、実施例1および比較例の負極につ
いて求めたLiイオン拡散係数D(m2 /s)と、上記
した両例の結着接点部(界面)と結着接点部以外の部位
(表面)とのフッ素ピーク強度比(以下、単に、ピーク
強度比という)との関係をプロットした。その結果を図
9に示す。ここで、図9中、●マークは実施例1を示
し、□マークは比較例を示す。
Then, the Li ion diffusion coefficient D (m 2 / s) obtained for the negative electrodes of Example 1 and the comparative example, and the binding contact portion (interface) and the portion other than the binding contact portion of both of the above examples ( The relationship between the surface intensity) and the fluorine peak intensity ratio (hereinafter, simply referred to as peak intensity ratio) was plotted. The result is shown in FIG. Here, in FIG. 9, a ● mark indicates Example 1, and a □ mark indicates a comparative example.

【0042】図9において、ピーク強度比が大きくなる
ほど負極のLiイオン拡散係数Dは大きくなり、両者は
相関性があることがわかった。ここで、負極のLiイオ
ン拡散係数Dと放電容量との関係を図10に示す。ここ
で負極電流密度は、各々17枚の正極(正極面積387
cm2 =3.70cm×3.08cm×17枚×2)と
負極(負極面積422cm2 =3.90cm×3.18
cm×17枚×2)とからなる電池において、高負荷の
放電電流4.5Aを実現する負極電流密度10.7mA
/cm2 (放電電流4.5Aに相当)としている。そし
て、この負極電流密度における、2つの実測値(図10
中■マーク)と電池内部のLiイオン移動のシミュレー
ション値(図10中●マーク)から求めている。
In FIG. 9, it was found that the Li ion diffusion coefficient D of the negative electrode increases as the peak intensity ratio increases, and the two have a correlation. Here, FIG. 10 shows the relationship between the Li ion diffusion coefficient D of the negative electrode and the discharge capacity. Here, the negative electrode current density is 17 positive electrodes (positive electrode area 387).
cm 2 = 3.70cm × 3.08cm × 17 sheets × 2) and the negative electrode (negative electrode area 422cm 2 = 3.90cm × 3.18
cm × 17 sheets × 2), a negative electrode current density of 10.7 mA that realizes a high load discharge current of 4.5 A.
/ Cm 2 (corresponding to a discharge current of 4.5 A). Then, two measured values (FIG.
It is obtained from the middle square mark) and the simulated value of Li ion transfer inside the battery (black mark in FIG. 10).

【0043】図10から、放電電流4.5Aにおける放
電容量を、電池公称容量(0.2C=240mA)の8
0%(目標値)以上とするためには、負極Liイオン拡
散係数Dを、3.10×10-14 2 /s以上、また、
電池公称容量(0.2C=240mA)の90%以上と
するためには、負極Liイオン拡散係数Dを、5.24
×10-14 2 /s以上、にする必要があることがわか
る。
From FIG. 10, the discharge capacity at a discharge current of 4.5 A was calculated as 8% of the battery nominal capacity (0.2 C = 240 mA).
In order to achieve 0% (target value) or more, the negative electrode Li ion diffusion coefficient D is 3.10 × 10 −14 m 2 / s or more, and
In order to make it 90% or more of the battery's nominal capacity (0.2 C = 240 mA), the negative electrode Li ion diffusion coefficient D was set to 5.24.
It can be seen that it is necessary to set it to × 10 −14 m 2 / s or more.

【0044】そして、上記の図9に示すLiイオン拡散
係数Dとピーク強度比との関係において、負極Liイオ
ン拡散係数Dが3.10×10-14 2 /s以上となる
には、ピーク強度比は、2.0以上が好ましい。よっ
て、本実施形態の電極構造にすることにより活物質粒子
表面の結着材被覆膜厚を薄くすることができ、電池内部
へのLiイオン拡散係数を大きくすることができる。
In the relationship between the Li ion diffusion coefficient D and the peak intensity ratio shown in FIG. 9 described above, the peak intensity ratio must be set so that the negative electrode Li ion diffusion coefficient D becomes 3.10 × 10 −14 m 2 / s or more. Is preferably 2.0 or more. Therefore, by adopting the electrode structure of the present embodiment, the binder coating film thickness on the surface of the active material particles can be reduced, and the Li ion diffusion coefficient inside the battery can be increased.

【0045】さらに、本実施形態の結着構造の効果を、
実際に電池の放電負荷特性として確認するために、図1
の電極構造において、実施例1の負極を用いて、083
448サイズの角形電池(厚さ8mm、幅34mm、高
さ48mm)を試作し、これを本実施形態の電池として
大電流放電時の特性評価を行った。正極1は、リチウム
コバルト酸化物94wt%、導電材(KS−6)4wt
%、結着材PVDF2wt%、Nメチル2ピロリドン3
5wt%、負極4は球状グラファイト92.5wt%、
結着材PVDF7.5wt%、アセト酢酸エチル90w
t%を混合し電極を作製した。これらの電極を正極17
枚、負極18枚積層して角形電池を作製した。
Furthermore, the effect of the binding structure of this embodiment is
In order to confirm the actual discharge load characteristics of the battery,
In the electrode structure of No. 083, using the negative electrode of Example 1,
A 448 size prismatic battery (thickness 8 mm, width 34 mm, height 48 mm) was prototyped, and this battery was used as the battery of the present embodiment to evaluate the characteristics during large current discharge. The positive electrode 1 is composed of 94 wt% lithium cobalt oxide and 4 wt% conductive material (KS-6).
%, Binder PVDF 2 wt%, N-methyl 2 pyrrolidone 3
5 wt%, the negative electrode 4 is 92.5 wt% spherical graphite,
Binder PVDF 7.5wt%, ethyl acetoacetate 90w
An electrode was prepared by mixing t%. These electrodes are used as the positive electrode 17
A rectangular battery was manufactured by stacking 18 sheets of the negative electrode.

【0046】ここで、この本実施形態の電池において、
正極1は従来の結着構造であり、負極4は実施例1の負
極を用いているため、図2に示す本実施形態の結着構造
である。この角形電池の大電流放電特性を図11に示す
(図11中●マーク)。なお、縦軸の放電容量比は、放
電負荷0.2C時の放電容量を1として規格化した値で
ある。
Here, in the battery of this embodiment,
Since the positive electrode 1 has a conventional binding structure and the negative electrode 4 uses the negative electrode of Example 1, it has the binding structure of this embodiment shown in FIG. The large-current discharge characteristics of this prismatic battery are shown in FIG. 11 (marked with ● in FIG. 11). The discharge capacity ratio on the vertical axis is a value normalized with the discharge capacity at a discharge load of 0.2 C as 1.

【0047】また、図11には、従来の電池における放
電負荷特性として、上記角形電池の負極を上記比較例の
負極に置き換えたもの、すなわち正極、負極共に従来の
結着構造とした角形電池の値(図11中□マーク)も示
してある。さらに、これら電池における負極のLiイオ
ン拡散係数Dと大電流特性の関係を図12に示す(図1
2中、実施例1の負極を●マーク、比較例の負極を□マ
ークとして示す)。
FIG. 11 shows the discharge load characteristics of a conventional battery in which the negative electrode of the prismatic battery is replaced with the negative electrode of the comparative example, that is, the prismatic battery having the conventional binding structure for both the positive electrode and the negative electrode. Values (□ mark in FIG. 11) are also shown. Further, the relationship between the Li ion diffusion coefficient D of the negative electrode and the large current characteristics in these batteries is shown in FIG.
2), the negative electrode of Example 1 is shown as a ● mark, and the negative electrode of Comparative Example is shown as a □ mark).

【0048】本実施形態の電池は、実施例1の負極を用
いた電池としており、負極側でのLiイオン拡散係数D
が増大したことにより、従来の電池に比べて大電流放電
性が向上している。次に、本実施形態の他の実施例を以
下に示す。 (実施例2)上記実施例1の負極製造方法において、P
VDFの貧溶媒として、アセト酢酸エチルの代わりにプ
ロピレンカーボネート(溶解度パラメータ13.3)を
用いた場合でも、Liイオン拡散係数Dは2.50×1
-13 (m2 /S)とほぼ同じ値を示す。尚、さらに種
々の貧溶媒について検討したところ、PVDFと溶媒の
溶解度パラメータの差の0.5以上離れているものを用
いれば、上記実施例1とほぼ同等の効果を得ることがで
きることがわかった。 (実施例3)本例は、上記実施例1の負極製造方法にお
いて、結着材偏在化の方法として、ペースト調合時には
加熱せず結着材PVDFの良溶媒と貧溶媒を用いた例を
示す。良溶媒としてジメチルイミダゾリジノン(沸点1
07℃)を用い、貧溶媒としてシクロヘキサノン(沸点
155℃)を用い、球状グラファイト:PVDF:ジメ
チルイミダゾリジノン:シクロヘキサノンを92.5:
7.5:50:50の重量比で混合し、均一に溶解させ
る。
The battery of this embodiment is a battery using the negative electrode of Example 1, and the Li ion diffusion coefficient D on the negative electrode side.
As a result, the large current dischargeability is improved as compared with the conventional battery. Next, another example of this embodiment will be described below. (Example 2) In the negative electrode manufacturing method of Example 1 above, P
Even when propylene carbonate (solubility parameter 13.3) was used instead of ethyl acetoacetate as a poor solvent for VDF, the Li ion diffusion coefficient D was 2.50 × 1.
It shows almost the same value as 0 -13 (m 2 / S). In addition, when various poor solvents were examined, it was found that the same effect as that of the above-mentioned Example 1 could be obtained by using those having a difference in solubility parameter between PVDF and solvent of 0.5 or more. . (Example 3) This example shows an example of using the good solvent and the poor solvent of the binder PVDF without heating during the preparation of the paste, as a method for unevenly distributing the binder in the negative electrode manufacturing method of the above-mentioned Example 1. . Dimethylimidazolidinone as a good solvent (boiling point 1
07.degree. C.), cyclohexanone (boiling point 155.degree. C.) as a poor solvent, and spherical graphite: PVDF: dimethylimidazolidinone: cyclohexanone 92.5:
Mix in a weight ratio of 7.5: 50: 50 and dissolve uniformly.

【0049】次にこのペーストを銅箔(負極集電体)に
塗布し、80℃に保った雰囲気中で乾燥させることによ
り、良溶媒であるジメチルイミダゾリジノンが先に蒸発
し、図2に示す結着材の偏在化した電極構造を作製する
ことができる。本作製法による電極のLiイオン拡散係
数は2.32×10-13 (m2 /S)であった。 (実施例4)上記実施例1において、負極の結着材とし
てPVDF以外の樹脂を用いた実施例を示す。結着材と
して硝酸セルロースを用い、球状グラファイト:硝酸セ
ルロース:酢酸メチル:エタノール:ブタノール:水:
グリセリンを92.5:7.5:56:26:13.
6:3.0:1.4の重量比で混合し、均一に溶解させ
る。次にこのペーストを銅箔(負極集電体)に塗布し、
80℃に保った雰囲気中で乾燥させることにより図2に
示す結着材の偏在した電極構造を実現できる。
Next, this paste was applied to a copper foil (negative electrode current collector) and dried in an atmosphere kept at 80 ° C., so that dimethylimidazolidinone, which was a good solvent, was evaporated first, and as shown in FIG. The electrode structure in which the binder shown is unevenly distributed can be manufactured. The Li ion diffusion coefficient of the electrode according to this production method was 2.32 × 10 −13 (m 2 / S). (Example 4) An example in which a resin other than PVDF is used as the binder for the negative electrode in the above Example 1 will be described. Cellulose nitrate is used as a binder, and spherical graphite: cellulose nitrate: methyl acetate: ethanol: butanol: water:
Glycerin was added to 92.5: 7.5: 56: 26: 13.
Mix in a weight ratio of 6: 3.0: 1.4 and dissolve uniformly. Next, apply this paste to copper foil (negative electrode current collector),
By drying in an atmosphere kept at 80 ° C., the electrode structure in which the binder is unevenly distributed as shown in FIG. 2 can be realized.

【0050】本作製法による電極のLiイオン拡散係数
は2.40×10-13 (m2 /S)であった。 (実施例5)正極に本実施形態の電極製法を適用した場
合の実施例を示す。リチウムコバルト酸化物:導電材グ
ラファイト:PVDF:アセト酢酸エチルを94:4:
2:100の重量比で混合し均一に溶解させる。次に、
このペーストをアルミ箔(正極集電体)を塗布し、80
℃に保った雰囲気中で乾燥させることにより、図2に示
す結着材の偏在した電極構造を実現できる。
The Li ion diffusion coefficient of the electrode prepared by this method was 2.40 × 10 -13 (m 2 / S). (Example 5) An example in which the electrode manufacturing method of the present embodiment is applied to the positive electrode will be described. Lithium cobalt oxide: conductive material graphite: PVDF: ethyl acetoacetate 94: 4:
Mix in a weight ratio of 2: 100 and dissolve uniformly. next,
Apply this paste to aluminum foil (positive electrode current collector) and apply
By drying in an atmosphere kept at ° C, the electrode structure in which the binder is unevenly distributed as shown in Fig. 2 can be realized.

【0051】本作製法による電極のLiイオン拡散係数
は2.40×10-12 (m2 /S)であり、従来構造の
正極のLiイオン拡散係数2.80×10-13 (m2
S)に比べて1桁大きい値を示す。なお、本実施形態に
おいて、PVDFのほかに結着材として、オレフィン系
樹脂、フッ素系樹脂、イミド系樹脂、アミド系樹脂、ビ
ニル系樹脂や、ゴム系結着材として、ブチルゴム、ブタ
ジエンゴム、SBR、EPDM等を用いても良い。 (他の実施形態)なお、図2に示す偏在化した結着構造
を有する電極は、上述した従来の電極作製方法によって
調整されたペーストに添加剤を加え、結着材を溶かした
ペーストの活物質粒子への濡れ性を悪くすることによっ
ても作製可能である。このような方法でも、結着材が活
物質粒子間に偏在した図2に示すような電極構造になっ
ていることが確認された。その一例を以下の実施例6に
示す。 (実施例6)従来方法で調整された負極ペーストに、添
加剤として蓚酸を0.1重量%加えたもので作製した電
極を用いて、上記の方法に従って角型電池を作製した。
これらの電池の大電流放電特性を図13(図13中○マ
ーク:実施例6、□マーク:比較例)に示す。本実施例
では、乾燥工程で起きた結着材の偏在化により、従来構
造の電極に比べて大電流放電性が向上している。
The Li ion diffusion coefficient of the electrode according to this manufacturing method is 2.40 × 10 -12 (m 2 / S), and the Li ion diffusion coefficient of the positive electrode having the conventional structure is 2.80 × 10 -13 (m 2 / S).
The value is one digit larger than that of S). In this embodiment, in addition to PVDF, as the binder, an olefin resin, a fluorine resin, an imide resin, an amide resin, a vinyl resin, and as a rubber binder, butyl rubber, butadiene rubber, SBR. , EPDM, etc. may be used. (Other Embodiments) In addition, in the electrode having the unevenly distributed binding structure shown in FIG. 2, an additive is added to the paste prepared by the above-described conventional electrode manufacturing method to activate the paste in which the binding material is melted. It can also be produced by reducing the wettability to the substance particles. Even with such a method, it was confirmed that the binder had an electrode structure as shown in FIG. 2 in which the binder was unevenly distributed among the active material particles. An example thereof is shown in Example 6 below. Example 6 A rectangular battery was manufactured according to the above method using an electrode prepared by adding 0.1% by weight of oxalic acid as an additive to the negative electrode paste prepared by the conventional method.
The large-current discharge characteristics of these batteries are shown in FIG. 13 (mark in FIG. 13: Example 6, mark: Comparative example). In this example, due to the uneven distribution of the binder that occurred in the drying step, the large current discharge property was improved as compared with the electrode having the conventional structure.

【0052】なお、他に添加剤として、エチレングリコ
ール、ジヨードメタン、テトラブロモエタン、トリニト
ロトルエン、ニトログリセリン、ニトロフェノール、ピ
リダジシ、ホルムアミド、マロン酸ニトリル、メタンス
ルホン酸等を用いてもよい。なお、上記各実施形態およ
び各実施例において、正極活物質としてリチウムコバル
ト酸化物以外のリチウムニッケル酸化物、リチウムマン
ガン酸化物等のカルコゲン化合物を用いても良い。負極
活物質として球状グラファイト以外の繊維状のグラファ
イト、鱗状グラファイト、塊状グラファイト、アモルフ
ァスカーボン、アモルファスコートグラファイト等のカ
ーボンを用いても良い。
Other additives such as ethylene glycol, diiodomethane, tetrabromoethane, trinitrotoluene, nitroglycerin, nitrophenol, pyridazide, formamide, malonic acid nitrile, methanesulfonic acid and the like may be used. In each of the above embodiments and examples, a chalcogen compound such as lithium nickel oxide or lithium manganese oxide other than lithium cobalt oxide may be used as the positive electrode active material. As the negative electrode active material, carbon other than spherical graphite such as fibrous graphite, scaly graphite, lump graphite, amorphous carbon, and amorphous coated graphite may be used.

【0053】また、電解液のリチウム塩としては、Li
PF6 以外にLiClO4 、LiBF4 、LiCF3
3 、有機溶媒はエチレンカーボネート、プロピレンカ
ーボネート、ブチレンカーボネート、γ−ブチロラクト
ン、ジメチルカーボネート、ジエチルカーボネート、
1、2−ジメトキシエタン、テトラヒドロフラン、アセ
トニトリル、エチルメチルカーボネート等の中から選定
し使用しても良い。
As the lithium salt of the electrolytic solution, Li
Other than PF 6 , LiClO 4 , LiBF 4 , LiCF 3 S
O 3 , the organic solvent is ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate,
It may be used by selecting from 1,2-dimethoxyethane, tetrahydrofuran, acetonitrile, ethylmethyl carbonate and the like.

【0054】なお、上記実施例1においては、結着材が
PVDFであったため、オージェ電子分光法による分析
は、下地の負極活物質粒子のグラファイトの炭素と重な
らないように、結着材を構成する元素としてフッ素とし
たが、フッ素以外にも結着材の種類に応じて炭素以外の
元素を選択してもよい。また、上記各実施形態は、ゲス
トとしてLiイオンを用いたものに限定されるものでは
なく、例えば,Hイオン、Naイオン等であってもよ
い。
In Example 1, since the binder was PVDF, the binder was constructed so that the analysis by Auger electron spectroscopy did not overlap with the carbon of the graphite of the negative electrode active material particles of the base. Although fluorine is used as the element to be applied, an element other than carbon may be selected in addition to fluorine, depending on the type of binder. Further, the above-described embodiments are not limited to those using Li ions as guests, and may be H ions, Na ions, or the like, for example.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る二次電池の電極構造を
示す断面図である。
FIG. 1 is a sectional view showing an electrode structure of a secondary battery according to an embodiment of the present invention.

【図2】上記実施形態における活物質粒子と有機結着材
の結着構造を示す模式図である。
FIG. 2 is a schematic diagram showing a binding structure of active material particles and an organic binding material in the above embodiment.

【図3】従来の活物質粒子と有機結着材の結着構造を示
す模式図である。
FIG. 3 is a schematic diagram showing a binding structure of conventional active material particles and an organic binding material.

【図4】上記実施形態における結着のメカニズムを示す
説明図である。
FIG. 4 is an explanatory diagram showing a binding mechanism in the embodiment.

【図5】従来の結着のメカニズムを示す説明図である。FIG. 5 is an explanatory diagram showing a conventional binding mechanism.

【図6】結着構造のSEM像であり、(a)は本発明の
実施例1を示し、(b)は、比較例を示す。
FIG. 6 is an SEM image of a binding structure, (a) shows Example 1 of the present invention, and (b) shows a comparative example.

【図7】図6のSEM像の模式図であり、(a)は本発
明の実施例1を示し、(b)は、比較例を示す。
7 is a schematic diagram of the SEM image of FIG. 6, in which (a) shows Example 1 of the present invention and (b) shows a comparative example.

【図8】マイクロオージェ分析結果を示すスペクトル図
であり、(a)は上記実施例1を示し、(b)は上記比
較例を示す。
8A and 8B are spectrum diagrams showing the results of micro-Auger analysis, in which FIG. 8A shows the example 1 and FIG. 8B shows the comparative example.

【図9】負極Liイオン拡散係数Dとフッ素ピーク強度
比(結着接点部(界面)/結着接点部以外の部位(表
面))との関係を示すグラフである。
FIG. 9 is a graph showing a relationship between a negative electrode Li ion diffusion coefficient D and a fluorine peak intensity ratio (binding contact portion (interface) / portion other than binding contact portion (surface)).

【図10】負極のLiイオン拡散係数Dと放電容量との
関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the Li ion diffusion coefficient D of the negative electrode and the discharge capacity.

【図11】上記実施形態に係る電池と比較例に係る電池
の大電流放電特性を示すグラフである。
FIG. 11 is a graph showing large current discharge characteristics of the battery according to the above embodiment and the battery according to the comparative example.

【図12】負極Liイオン拡散係数Dと大電流特性の関
係を示すグラフである。
FIG. 12 is a graph showing the relationship between negative electrode Li ion diffusion coefficient D and large current characteristics.

【図13】本発明の実施例6に係る電池と比較例に係る
電池の大電流放電特性を示すグラフである。
FIG. 13 is a graph showing large current discharge characteristics of a battery according to Example 6 of the present invention and a battery according to a comparative example.

【符号の説明】[Explanation of symbols]

1…正極、2…正極集電体、3…セパレータ、4…負
極、4a…負極活物質粒子、4b…結着材、4c…結着
接点部、5…負極集電体。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Positive electrode collector, 3 ... Separator, 4 ... Negative electrode, 4a ... Negative electrode active material particles, 4b ... Binder, 4c ... Binding contact part, 5 ... Negative electrode collector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 学 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内 (56)参考文献 特開 平7−169465(JP,A) 特開 平7−153453(JP,A) 特開 平10−199569(JP,A) 特開 平10−214629(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Manabu Yamada, 1-1, Showa-cho, Kariya city, Aichi Prefecture, DENSO CORPORATION (56) References JP-A-7-169465 (JP, A) JP-A-7-153453 (JP, A) JP 10-199569 (JP, A) JP 10-214629 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4 / 62 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活物質粒子と有機結着材とを含む電極を
備え、前記有機結着材がポリフッ化ビニリデンであるリ
チウムイオン二次電池において、 前記有機結着材が、前記電極のうち前記活物質粒子間の
結着接点部で厚く、前記結着接点部以外の部位で薄くな
るように偏在化されており、 前記偏在化の度合として、前記有機結着材を構成する元
素のうちフッ素をオージェ電子分光法により分析したと
きに、前記結着接点部と前記結着接点部以外の部位との
元素分析ピーク強度比が2.0以上である ことを特徴と
するリチウムイオン二次電池。
1. An electrode comprising active material particles and an organic binder , wherein the organic binder is polyvinylidene fluoride.
In lithium ion secondary batteries, the organic binder is thicker in the binder contacts between the active material particles of the electrode, are unevenly distributed to be thinner at a site other than the binder contacts the As a degree of uneven distribution, the elements forming the organic binder are
Of the elements, fluorine was analyzed by Auger electron spectroscopy.
Of the binding contact part and a part other than the binding contact part.
A lithium ion secondary battery having an elemental analysis peak intensity ratio of 2.0 or more .
【請求項2】 活物質粒子と有機結着材とを含む電極
と、この電極を保持し且つ電子の導電パスとなる集電体
とを備える二次電池の製造方法において、 前記有機結着材を前記有機結着材の貧溶媒に加熱により
均一に溶解させるとともに、前記活物質粒子を混合して
ペースト状の混合物を作製し、 前記ペースト状の混合物を前記集電体上に塗布し、その
後前記貧溶媒を蒸発させることにより、前記有機結着材
が、前記電極のうち前記活物質粒子間の結着接点部で厚
く、前記結着接点部以外の部位で薄くなるように偏在化
させることを特徴とする二次電池の製造方法。
2. A method of manufacturing a secondary battery, comprising: an electrode containing active material particles and an organic binder; and a current collector that holds the electrode and serves as an electron conductive path. While uniformly dissolved in a poor solvent of the organic binder by heating, to prepare a paste mixture by mixing the active material particles, the paste mixture is applied on the current collector, then By evaporating the poor solvent, the organic binder is unevenly distributed so that it is thick at the binding contact portion between the active material particles of the electrode and thin at a portion other than the binding contact portion. And a method for manufacturing a secondary battery.
【請求項3】 前記ペースト状の混合物を前記集電体上
に塗布する工程と、前記貧溶媒を蒸発させる工程との間
で、前記ペースト状の混合物を冷却することを特徴とす
る請求項に記載の二次電池の製造方法。
3. A step of applying the paste-like mixture on the current collector, according to claim 2, wherein the poor solvent with the step of evaporating, characterized by cooling the paste-like mixture A method for manufacturing a secondary battery according to 1.
【請求項4】 活物質粒子と有機結着材とを含む電極
と、この電極を保持し且つ電子の導電パスとなる集電体
とを備える二次電池の製造方法において、 前記有機結着材の貧溶媒とこの貧溶媒よりも沸点が低い
良溶媒との混合溶媒に、前記有機結着材を溶解させると
ともに、前記活物質粒子を混合してペースト状の混合物
を作製し、 前記ペースト状の混合物を前記集電体上に塗布し、その
後前記混合溶媒を蒸発させることにより、前記有機結着
材が、前記電極のうち前記活物質粒子間の結着接点部で
厚く、前記結着接点部以外の部位で薄くなるように偏在
化させることを特徴とする二次電池の製造方法。
4. A method for manufacturing a secondary battery, comprising: an electrode containing active material particles and an organic binder; and a current collector that holds the electrode and serves as an electron conductive path. In a mixed solvent of a poor solvent and a good solvent having a lower boiling point than this poor solvent, while dissolving the organic binder, to prepare a paste-like mixture by mixing the active material particles, the paste-like By applying a mixture on the current collector, and then evaporating the mixed solvent, the organic binder is thick at the binding contact portion between the active material particles of the electrode, the binding contact portion A method of manufacturing a secondary battery, characterized in that it is unevenly distributed so as to be thin in a region other than the above.
【請求項5】 前記有機結着材および前記貧溶媒とし
て、両者の溶解度パラメータの差が0.5以上であるも
のを用いることを特徴とする請求項ないしのいずれ
か一つに記載の二次電池の製造方法。
5. The organic binder and the poor solvent having a solubility parameter difference of 0.5 or more are used as the organic binder and the poor solvent according to any one of claims 2 to 4 . Manufacturing method of secondary battery.
JP23740497A 1997-09-02 1997-09-02 Lithium ion secondary battery and method of manufacturing secondary battery Expired - Fee Related JP3503438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23740497A JP3503438B2 (en) 1997-09-02 1997-09-02 Lithium ion secondary battery and method of manufacturing secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23740497A JP3503438B2 (en) 1997-09-02 1997-09-02 Lithium ion secondary battery and method of manufacturing secondary battery

Publications (2)

Publication Number Publication Date
JPH1186865A JPH1186865A (en) 1999-03-30
JP3503438B2 true JP3503438B2 (en) 2004-03-08

Family

ID=17014896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23740497A Expired - Fee Related JP3503438B2 (en) 1997-09-02 1997-09-02 Lithium ion secondary battery and method of manufacturing secondary battery

Country Status (1)

Country Link
JP (1) JP3503438B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190043157A (en) * 2016-08-31 2019-04-25 더 리전트 오브 더 유니버시티 오브 캘리포니아 Apparatus comprising carbon-based material and its manufacture
US11569538B2 (en) 2014-06-16 2023-01-31 The Regents Of The University Of California Hybrid electrochemical cell
US11810716B2 (en) 2014-11-18 2023-11-07 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US11842850B2 (en) 2016-01-22 2023-12-12 The Regents Of The University Of California High-voltage devices
US11915870B2 (en) 2012-03-05 2024-02-27 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11961667B2 (en) 2016-03-23 2024-04-16 The Regents Of The University Of California Devices and methods for high voltage and solar applications

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312524A (en) * 1998-04-27 1999-11-09 Tdk Corp Manufacture of electrode for nonaqueous electrolyte battery
JP5365107B2 (en) 2008-09-02 2013-12-11 Tdk株式会社 Method for producing electrode for electrochemical device
WO2011118026A1 (en) * 2010-03-26 2011-09-29 トヨタ自動車株式会社 Process for production of electrode active material
WO2012124582A1 (en) * 2011-03-15 2012-09-20 三洋電機株式会社 Method for producing positive electrode for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5788730B2 (en) * 2011-07-29 2015-10-07 株式会社Uacj Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP5780871B2 (en) * 2011-07-29 2015-09-16 株式会社Uacj Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP5500158B2 (en) 2011-12-05 2014-05-21 トヨタ自動車株式会社 Method for producing solid battery electrode
JP6476974B2 (en) * 2015-02-18 2019-03-06 株式会社Gsユアサ Electric storage element and method for manufacturing electric storage element
JP7116461B2 (en) * 2016-12-09 2022-08-10 ユニチカ株式会社 Binder solution, coating solution, and method for producing storage element electrode
JP7029922B2 (en) * 2017-10-10 2022-03-04 日産自動車株式会社 Manufacturing method of electrodes for non-aqueous electrolyte secondary batteries
KR102273894B1 (en) * 2019-04-19 2021-07-05 홍익대학교 산학협력단 Electrode using porous polymer composite scaffold and Li battery comprising the same
KR20230097080A (en) * 2020-10-23 2023-06-30 도요타 지도샤(주) Manufacturing method of electrode member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11915870B2 (en) 2012-03-05 2024-02-27 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11569538B2 (en) 2014-06-16 2023-01-31 The Regents Of The University Of California Hybrid electrochemical cell
US11810716B2 (en) 2014-11-18 2023-11-07 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US11842850B2 (en) 2016-01-22 2023-12-12 The Regents Of The University Of California High-voltage devices
US11961667B2 (en) 2016-03-23 2024-04-16 The Regents Of The University Of California Devices and methods for high voltage and solar applications
KR20190043157A (en) * 2016-08-31 2019-04-25 더 리전트 오브 더 유니버시티 오브 캘리포니아 Apparatus comprising carbon-based material and its manufacture
KR102535218B1 (en) * 2016-08-31 2023-05-22 더 리전트 오브 더 유니버시티 오브 캘리포니아 Devices Including Carbon-Based Materials and Their Preparation
US11791453B2 (en) 2016-08-31 2023-10-17 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof

Also Published As

Publication number Publication date
JPH1186865A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
JP3503438B2 (en) Lithium ion secondary battery and method of manufacturing secondary battery
CN101212051B (en) Cathode mixture, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
DE102018100278A1 (en) POROUS CELLULOSE SUBSTRATES FOR LITHIUM ION BATTERY ELECTRODES
DE102017110902A1 (en) A Polymerization Process for Forming Polymeric Ultrathin Conformal Coatings on Electrode Materials
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
US20120052386A1 (en) Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery
DE102018123086A1 (en) HYBRID METAL ORGANIC SCAFFOLDING SEPARATORS FOR ELECTROCHEMICAL CELLS
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
WO2011052533A1 (en) Lithium secondary battery
JP3917754B2 (en) Lithium battery
JP4992203B2 (en) Lithium ion secondary battery
JP2006302617A (en) Manufacturing method of electrode for secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2002319405A (en) Lithium secondary battery
US20220037642A1 (en) Formulation and fabrication of thick cathodes
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP7106748B2 (en) Electrodes, batteries and battery packs
WO2023120622A1 (en) Secondary battery positive electrode, production method therefor, and secondary battery
JP2002324550A (en) Non-aqueous electrolyte secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP4120439B2 (en) Lithium ion secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP2003168427A (en) Nonaqueous electrolyte battery
EP2680345B1 (en) Nonaqueous-electrolyte secondary battery

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees