JP3503076B2 - Gear shaft manufacturing method - Google Patents

Gear shaft manufacturing method

Info

Publication number
JP3503076B2
JP3503076B2 JP10301994A JP10301994A JP3503076B2 JP 3503076 B2 JP3503076 B2 JP 3503076B2 JP 10301994 A JP10301994 A JP 10301994A JP 10301994 A JP10301994 A JP 10301994A JP 3503076 B2 JP3503076 B2 JP 3503076B2
Authority
JP
Japan
Prior art keywords
diameter
preform
hole
gear
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10301994A
Other languages
Japanese (ja)
Other versions
JPH07308728A (en
Inventor
庄介 川▲崎▼
Original Assignee
株式会社川▲崎▼精工機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社川▲崎▼精工機 filed Critical 株式会社川▲崎▼精工機
Priority to JP10301994A priority Critical patent/JP3503076B2/en
Publication of JPH07308728A publication Critical patent/JPH07308728A/en
Application granted granted Critical
Publication of JP3503076B2 publication Critical patent/JP3503076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、一槽式電気洗濯機の
回転駆動機構に用いられるギヤシャフトを製造する方法
に関するものである。 【0002】 【従来の技術】従来から、洗濯と脱水を単一槽内で連続
的に行う一槽式電気洗濯機では、回転駆動機構として、
例えば図8に示すような構造のものが一般的に用いられ
ている。すなわち、脱水槽10とパルセータ11を回転
させるギヤシャフト12の下端部に、クラッチボス23
を介してワンウェイバネクラッチ14が取り付けられて
おり、プーリ20を介してこのワンウェイバネクラッチ
14が締まる方向に回転駆動が与えられると、ギヤシャ
フト12に外嵌された外筒13が、ギヤシャフト12と
一体的に高速回転するようになっている。この高速回転
は、ギヤシャフト12の上端部に形成されたギヤ部12
aから遊星歯車群17およびこれとかみ合う外輪歯車2
2を内蔵したギヤケース15に伝達され、ギヤケース1
5から上方に延びるガイド筒16を介して脱水槽10に
伝達される。これにより、脱水動作が行われる。なお、
18は上記遊星歯車群17の各回転軸を上下から一体的
に保持する保持ガイドである。そして、上記外筒13
は、第1のベアリング26を介して、洗濯機本体に固定
された下軸受カバー25に回転自在に支受されている。
また、上記ガイド筒16は、第2のベアリング21を介
して、同じく洗濯機本体に固定された上軸受カバー27
に回転自在に支受されている。一方、プーリ20を介し
て上記ワンウェイバネクラッチ14が緩む方向に回転駆
動が与えられると、外筒13は回転せず、ギヤシャフト
12のみが回転する。この回転は、ギヤケース15内の
遊星歯車群17に伝達され、減速された回転がパルセー
タシャフト19に伝達される。これにより、パルセータ
シャフト19上端に取り付けられたパルセータ11が低
速回転し、洗濯・すすぎ動作が行われる。なお、2は外
筒13がギヤシャフト12と共回りすることを防止する
ためのワンウェイベアリング、3はその軸受である。 【0003】上記回転駆動機構に用いられるギヤシャフ
ト12は、通常、つぎのようにして製造されている。す
なわち、まず図9(a)に示すように、棒状の鋼材(S
35C等)を所定長に切断したのち、同図(b)に示す
ように切削加工して、上端部に大径部31を形成し、中
間部32の下側に、第1の小径部33と第2の小径部3
4を形成する。そして、上下両端面中央にセンター穴3
5,36を穿設する。つぎに、同図(c)に示すよう
に、上記大径部31にギヤ歯を刻設してギヤ部37を形
成するとともに、上記第1の小径部33の周面の四個所
を面取りして、クラッチボス23(図8参照)を一体的
に係合させるための回り止め部38を形成する。また、
上記第2の小径部34の外周面に、転造もしくは切削に
よってねじ部39を形成する。そして、焼入れ後、同図
(d)に示すように、中間部32を研磨仕上げして、目
的とするギヤシャフト12を得ることができる。あるい
は、図9(b)の形状のものを、連続多段圧造機によっ
て連続的に成形し、以下上記の製法と同様にしてギヤシ
ャフト12を得るようにしてもよい。なお、上記連続多
段圧造機は、図10に示すように、巻き芯40の周囲に
コイル状に巻かれた線材41を解舒しながら装置内に取
り込み、これを所定長に切断したのちつぎつぎと異なる
金型ツールに装着し段階的に複数の圧縮成形を行って塑
性変形を与えることを連続的に繰り返すことにより、連
続的に成形品を得ることができるようになっているもの
である。また、上記図9(b)の形状にし、さらに第1
の小径部33に対し回り止め部38(同図《c》参照)
を形成することを、上記連続多段圧造機で行うようにし
てもよい。 【0004】 【発明が解決しようとする課題】しかしながら、これら
の製法では、切削代が多いため材料コストおよび加工コ
ストが高いという問題がある。また、大径部31にギヤ
部37を形成するために、いちいちその部分に歯切加工
を施してギヤ歯の凹凸を刻設しなければならず、煩雑な
手間を要するという問題もある。しかも、上記のように
して形成されたギヤ歯は面粗度が悪く相手歯車(具体的
には遊星歯車群17、図8参照)の摩耗が著しく騒音も
生じやすいという問題がある。したがって、これらの問
題の解決が強く望まれている。 【0005】この発明は、このような事情に鑑みなされ
たもので、ギヤ歯の形成まで含めた最終形状に近い形状
を一体的に成形することができ、成形後の切削代が少な
い、優れたギヤシャフトの製法の提供をその目的とす
る。 【0006】 【課題を解決するための手段】上記の目的を達成するた
め、この発明のギヤシャフトの製法は、シャフト上端部
が大径のギヤ部に形成され、シャフト下端部が小径ねじ
部に形成され、このねじ部より上側の外周面の少なくと
も一部に回り止め用の面取り部が形成されているギヤシ
ャフトの製法であって、所定長の金属製棒状体を、金型
内で圧縮し塑性変形させることにより、棒状体上端部が
大径部に形成され中間部の下側が段落としされて第1の
小径部に絞られその下側の下端部がさらに段落としされ
て第2の小径部に絞られてなる予備成形体を準備する工
程と、円柱部を有し、この円柱部中央から上向きに、下
部が上記予備成形体の大径部外径と同一径で上部がギヤ
歯を賦形しうる凹凸に形成された貫通孔が形成され、上
記貫通孔内に、上方から昇降ピンが挿通されているオス
上型と、上面に上記オス上型の円柱部外径と同一径の凹
部が形成され、この凹部内中央から上向きに円柱部が立
設され、この円柱部の中央から下向きに、上記予備成形
体の中間部外径と同一径の内径を有する貫通孔が形成さ
れ、この貫通孔下部が小径に縮径され内周面の所定部分
が目的とするギヤシャフトの回り止め部を賦形しうる形
状に形成されているメス下型とを組み合わせてなる金型
を準備し、上記メス下型の貫通孔内に上記予備成形体の
下部を挿入し上部が上方に突出した状態で予備成形体を
装着し、上方から上記オス上型を、その円柱部を上記メ
ス下型の凹部内に入り込ませながら下降させ、オス上型
の昇降ピン下端で上記予備成形体の上端面を押圧して上
記予備成形体を下方に押し下げることにより、上記予備
成形体の第1の小径部を上記メス下型の貫通孔下部内で
塑性変形させて回り止め部を賦形し、つぎに、上記オス
上型をさらに下降させ、上記メス下型の中央円柱部を上
記オス上型の貫通孔内に入り込ませながら予備成形体の
大径部を上記オス上型の貫通孔上部内に押し込み、上記
予備成形体大径部を上記オス下型貫通孔上部内で塑性変
形させてギヤ歯を賦形するようにしたという構成をと
る。 【0007】 【作用】すなわち、本発明では、ギヤシャフトを製造す
るに際し、金属製棒状体を、金型内で圧縮し塑性変形さ
せることにより、上部に大径部が形成され下部に第1の
小径部と第2の小径部が形成された予備成形体を得たの
ち、さらに特殊な金型で圧縮し塑性変形させることによ
り、上記大径部にギヤ歯を賦形してギヤ部を形成すると
ともに、上記第1の小径部に回り止め部を形成するよう
にしたものである。本製法によれば、ギヤ部の形成をも
含めた成形が、上記塑性変形によって精度よく行われる
ため、ギヤ歯形成部の面粗度が、従来の歯切加工によっ
て得られたものに比べ良好で、この部分と噛み合う相手
部品の摩耗が少なくなり耐久性が向上するという利点を
有する。また、全体形状が、棒状体を塑性変形すること
によって得られるため、切削代が最小限で済み、材料に
無駄がなく工程も簡単であるという利点を有する。 【0008】つぎに、この発明を実施例にもとづいて詳
細に説明する。 【0009】 【実施例】まず、目的とするギヤシャフト12の形状
は、図9(d)に示すような形状とする。すなわち、シ
ャフト上端部が大径のギヤ部37に形成されており、シ
ャフト下端部が小径のねじ部39に形成されている。ま
た、このねじ部39より上側の外周面の四個所が面取り
されて回り止め部38が形成されている。このギヤシャ
フトの全長Lは107mm、ギヤ部37形成部分の長さ
Mは19mm、中間部32の長さNは55mmである。
そして、ねじ部39の長さPは10mmである。また、
上記ギヤ部37の外径外径D1 は18mm、中間部32
の外径D2 は10mm、ねじ部39の外径D3 は8mm
である。さらに、上記回り止め部38が形成された部分
の外径D4 は9mmである。 【0010】そして、上記ギヤシャフト12をつくるた
めに、S35C製の線材(直径10.3mm)をコイル
状に巻いたものを準備し、連続多段圧造機に供給して、
装置内で、長さ132mmに切断した。そして、この切
断品を、第1の圧縮工程にかけることにより、図1
(a)に示すように、下端面を、面取りがなされたきれ
いな形状に塑性変形させた。つぎに、第2の圧縮工程に
かけることにより、同図(b)に示すように、下端部を
小径に絞った。つぎに、第3の圧縮工程にかけることに
より、同図(c)に示すように、小径下端部の上側を、
やや小径に絞った。この上側の小径部を第1の小径部4
3、下端部の小径部を第2の小径部44という。また、
上記成形と同時に、上端部からやや下に下がった部分
を、略円錐台状に拡径した(略円錐台状部45)。つぎ
に、第4の圧縮工程にかけることにより、図2(a)に
示すように、上記第1の小径部43の長さをわずかに延
ばすとともに、上記略円錐台状部45の周面の傾斜が緩
くなるよう上部側を拡径した。そして、第5の圧縮工程
にかけることにより、同図(b)に示すように、上記略
円錐台状部45の上部側をさらに拡径して、この部分を
円柱状の大径部46に形成した。この一連の工程を繰り
返すことにより、上記連続多段圧造機から連続して、上
記特殊な形状の予備成形体50を得ることができた。 【0011】一方、図3に示すような特殊な金型51を
準備した。上記金型51のオス上型52は、円柱部53
を有し、その下面53aの中央から上向きに貫通孔54
が形成されている。この貫通孔54の下部は、上記予備
成形体50(図2《b》参照)の大径部46外径と同一
径に形成されている。なお、上記「同一径」とは、文字
通りの「同一径」に限らず、互いに嵌め合うことのでき
る程度に公差が設けられた寸法の径をも含むものであ
り、以下の「同一径」も同様の趣旨で用いている。ま
た、上記貫通孔54の上部は、下部よりも縮径されて、
この小径部54aにギヤ歯賦形用の凹凸が形成されてい
る。なお、上記貫通孔54が形成された部分の周囲は、
オス上型52の本体とは異なる別部材55で形成されて
いる。そして、上記貫通孔54には、昇降自在な昇降ピ
ン56が、上方から挿通されている。 【0012】また、上記金型51のメス下型57は、外
筒58と上下2段の内筒59,60を組み合わせて構成
されており、上記内筒59の上面が、外筒58の上面よ
りも下になるよう配されて、メス下型57の上面に、凹
部61が形成されている。この凹部61の内径(すなわ
ち、外筒58の内径)は、上記オス上型52における円
柱部53の外径と同一径に設定されている。また、上記
凹部61内中央から上向きに円柱部62が立設され、こ
の円柱部62の中央から下向きに、前記予備成形体50
の中間部32外径と同一径の内径を有する貫通孔63
が、上記内筒59,60を貫通して形成されている。た
だし、この貫通孔63は、下段の内筒60においてやや
小径に絞られ、この小径部64の内周面の四個所に、目
的とするギヤシャフト12の回り止め部38(図9
《d》参照)を賦形しうるよう四個の平面部65が形成
されている。そして、上記貫通孔63には、上記内筒6
0の下側に設けられた基台66の中央穴67内を昇降す
るガイドピン68の上端部が、下側から入り込んでい
る。なお、上記貫通孔63の周囲は、内筒59,60の
本体とは異なる別部材69,70で形成されている。 【0013】したがって、上記金型51のメス下型57
の貫通孔63内に、図4に示すように、予備成形体50
の下部を挿入し、貫通孔63の下部の小径部64に予備
成形体50の第2の小径部44を嵌入し上部を上方に突
出させた状態で装着したのち、図5に示すように、上方
からオス上型52を下降させることにより、オス上型5
2の円柱部53をメス下型57の凹部61内に入り込ま
せながら、オス上型52の昇降ピン56下端で上記予備
成形体50の上端面を押圧し、予備成形体50の中間部
32から下の部分を全て、メス下型57の貫通孔63の
小径部64内に押し込む。このとき、予備成形体50の
大径部46の下端面がメス下型57の中央円柱部62の
上端面に当たり、また下方では、ガイドピン68の上端
面が予備成形体50の下端面に当たるため、予備成形体
50はそれ以上、下に押し下げられることはない。この
動作により、上記予備成形体50の第1の小径部43に
は、貫通孔63の小径部64内で塑性変形し、その外周
の四個所が平面に押し潰されて、目的とする回り止め部
38(図9《d》参照)が賦形される。 【0014】つぎに、図6に示すように、オス上型52
をさらに下降させてオス上型52の円柱部53とメス下
型57の凹部61との重なりを深くして、予備成形体5
0の大径部46およびメス下型57の円柱部62を、オ
ス上型52の貫通孔54内に入り込ませる。この動作に
より、上記予備成形体50の大径部46が、貫通孔54
の上部側に設けられたギヤ歯賦形用の小径部54a内に
おいて塑性変形され、目的するギヤ部37が形成され
た。そこで、図7に示すように、オス上型52を上昇さ
せ、メス下型57の下方からガイドピン68を上昇させ
ることにより、成形された予備成形体50を脱型した。 【0015】このようにしてギヤ部37および回り止め
部38が形成された予備成形体50に対し、図9(c)
に示すように、転造もしくは切削によってねじ切り加工
を施し、さらに焼入れ・研磨仕上げをして、図9(d)
に示すような、目的とするギヤシャフト12を得ること
ができた。 【0016】上記ギヤシャフト12は、何ら加熱される
ことなく、塑性変形により回り止め部38とギヤ部37
とが形成されるため、歯切加工や面取りのための切削加
工が不要となり、工程が簡単になる。しかも、得られる
ギヤ部37の面粗度が良好となる。ちなみに、従来の歯
切加工によるギヤ部37の面粗度が5〜6Sであるとこ
ろ、上記実施例の方法によるギヤシャフト12のそれは
3Sとなり、使用に際し、この部分と噛み合う相手部品
(遊星歯車群)の摩擦が少なくなり耐久性が向上する。
また、がたつきも少ないため、騒音防止効果も高い。そ
して、最終形状に近似する形状が塑性変形によって賦形
されるため、棒状体から全て削り出す場合に比べ、切削
代が大幅に少なくてすみ、経済的であるという利点を有
する。 【0017】なお、上記実施例では、ギヤシャフト12
の材料として、S35C製の線材を用いたが、材料は必
ずしもこれに限るものではなく、各種ステンレス鋼が用
いられる。なかでも、剛性,靱性等の観点から、上記S
35CやSUS410が好適である。さらに、ステンレ
ス鋼に限らず、高強度の各種金属,合金等を用いること
もできる。 【0018】また、上記実施例では、線材をコイル状に
巻いたものを用い、これを連続多段圧造機にかけて連続
的に予備成形体50を得るようにしているが、必ずしも
連続多段圧造機を利用する必要はなく、線材、あるいは
棒材を予め所定寸法に切断しておき、これを順次、金型
形状の異なる圧造機にかけて、予備成形体50を得るよ
うにしてもよい。この方法によれば、上記連続多段圧造
機を用いる場合に比べると、工程数が多くなりコスト的
にも多少高くなるが、従来法に比べると、工程的にもコ
スト的にも有利である。 【0019】さらに、上記実施例では、線材を切断した
切断品の変形を、図1(a)〜(c)および図2
(a),(b)の5工程により行っているが、必ずしも
この5工程に限る必要はなく、適宜の工程数で行うこと
ができる。 【0020】また、上記実施例では、ギヤシャフト12
の回り止め部38を、四個所の面取り形状によって形成
しているが、その形状は必ずしもこれに限るものではな
く、この部分に取り付けるクラッチボス23(図8参
照)の取り付け態様に応じて適宜の回り止め形状にする
ことができる。 【0021】 【発明の効果】以上のように、この発明のギヤシャフト
の製法は、金属製棒状体を、金型内で圧縮し塑性変形さ
せることにより、上部に大径部が形成され下部に第1の
小径部と第2の小径部が形成された予備成形体を得たの
ち、さらに特殊な金型で圧縮し塑性変形させることによ
り、上記大径部にギヤ歯を賦形してギヤ部を形成すると
ともに、上記第1の小径部に回り止め部をつくるように
したものである。本製法によれば、ギヤ部の形成をも含
めた成形が、上記塑性変形によって精度よく行われるた
め、ギヤ歯形成部の面粗度が、従来の歯切加工によって
得られたものに比べ良好で、この部分と噛み合う相手部
品の摩耗が少なくなり耐久性が向上するという利点を有
する。また、全体形状が、棒状体を塑性変形することに
よって得られるため、切削代が最小限で済み、材料に無
駄がなく工程も簡単であるという利点を有する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gear shaft used for a rotary drive mechanism of a one-tub type electric washing machine. 2. Description of the Related Art Conventionally, in a single-tub type electric washing machine in which washing and dehydration are continuously performed in a single tub, a rotary drive mechanism is
For example, a structure as shown in FIG. 8 is generally used. That is, the clutch boss 23 is provided at the lower end of the gear shaft 12 for rotating the dewatering tank 10 and the pulsator 11.
A one-way spring clutch 14 is attached via a pulley 20. When a rotational drive is applied through a pulley 20 in a direction in which the one-way spring clutch 14 is tightened, the outer cylinder 13 externally fitted to the gear shaft 12 It is designed to rotate at high speed integrally with the camera. This high-speed rotation is performed by the gear portion 12 formed at the upper end of the gear shaft 12.
a to planetary gear group 17 and outer ring gear 2 meshing therewith
2 is transmitted to the gear case 15 containing the
It is transmitted to the dehydration tub 10 via a guide cylinder 16 extending upward from 5. Thereby, a dehydration operation is performed. In addition,
Reference numeral 18 denotes a holding guide that integrally holds the rotating shafts of the planetary gear group 17 from above and below. And the outer cylinder 13
Is rotatably supported by a lower bearing cover 25 fixed to the main body of the washing machine via a first bearing 26.
In addition, the guide cylinder 16 is provided with an upper bearing cover 27 similarly fixed to the main body of the washing machine via a second bearing 21.
It is rotatably supported by On the other hand, when the one-way spring clutch 14 is rotationally driven through the pulley 20 in a loosening direction, the outer cylinder 13 does not rotate, and only the gear shaft 12 rotates. This rotation is transmitted to the planetary gear group 17 in the gear case 15, and the reduced rotation is transmitted to the pulsator shaft 19. As a result, the pulsator 11 attached to the upper end of the pulsator shaft 19 rotates at a low speed, and the washing / rinsing operation is performed. Reference numeral 2 denotes a one-way bearing for preventing the outer cylinder 13 from rotating together with the gear shaft 12, and reference numeral 3 denotes its bearing. [0003] The gear shaft 12 used for the above-mentioned rotary drive mechanism is usually manufactured as follows. That is, as shown in FIG. 9A, first, as shown in FIG.
35C) is cut into a predetermined length, and then cut as shown in FIG. 3B to form a large-diameter portion 31 at the upper end and a first small-diameter portion 33 below the intermediate portion 32. And the second small diameter portion 3
4 is formed. And center hole 3 in the center of both upper and lower sides
Drill 5,36. Next, as shown in FIG. 4C, gear teeth 37 are formed by engraving gear teeth on the large diameter portion 31 and four peripheral portions of the first small diameter portion 33 are chamfered. Thus, a detent portion 38 for integrally engaging the clutch boss 23 (see FIG. 8) is formed. Also,
A screw portion 39 is formed on the outer peripheral surface of the second small diameter portion 34 by rolling or cutting. Then, after quenching, the intermediate portion 32 is polished and finished, as shown in FIG. Alternatively, the gear shaft shown in FIG. 9B may be continuously formed by a continuous multi-stage forging machine, and the gear shaft 12 may be obtained in the same manner as in the above-described manufacturing method. As shown in FIG. 10, the continuous multistage forging machine takes in the wire 41 wound in a coil shape around the winding core 40 while unwinding the wire 41, cuts the wire 41 into a predetermined length, and successively cuts it. A molded product can be obtained continuously by continuously mounting a plurality of compression moldings in different mold tools and applying plastic deformation in a stepwise manner. Further, the shape shown in FIG.
Detent portion 38 against small diameter portion 33 (see << c >> in the figure)
May be performed by the continuous multistage forging machine. [0004] However, in these production methods, there is a problem that the material cost and the processing cost are high due to the large cutting allowance. Further, in order to form the gear portion 37 in the large-diameter portion 31, it is necessary to perform a tooth cutting process on each of the portions to engrave irregularities of the gear teeth, and there is also a problem that complicated work is required. In addition, the gear teeth formed as described above have a problem that the surface roughness is poor and the mating gears (specifically, the planetary gear group 17, see FIG. 8) are significantly worn and noise is apt to occur. Therefore, it is strongly desired to solve these problems. The present invention has been made in view of such circumstances, and is capable of integrally molding a shape close to the final shape including the formation of gear teeth, and has a small cutting allowance after molding, and is excellent. It is an object of the present invention to provide a method of manufacturing a gear shaft. In order to achieve the above object, a method of manufacturing a gear shaft according to the present invention is characterized in that the upper end of the shaft is formed in a large-diameter gear portion, and the lower end of the shaft is formed in a small-diameter screw portion. A method of manufacturing a gear shaft in which a chamfered portion for preventing rotation is formed on at least a part of an outer peripheral surface above the screw portion, wherein a metal rod having a predetermined length is compressed in a mold. By plastically deforming, the upper end of the rod-shaped body is formed into a large diameter portion, the lower side of the intermediate portion is formed as a paragraph, narrowed down to a first small diameter portion, and the lower lower end thereof is further formed as a paragraph and formed as a second small diameter. A step of preparing a preformed body narrowed to a portion, and having a cylindrical portion, upward from the center of the cylindrical portion, the lower portion has the same diameter as the outer diameter of the large diameter portion of the preformed body, and the upper portion has the gear teeth. A through-hole formed in the shape that can be shaped is formed. In the through hole, a male upper die through which a lifting pin is inserted from above and a concave portion having the same diameter as the outer diameter of the cylindrical portion of the male upper die are formed on the upper surface, and the cylindrical portion stands upright from the center in the concave portion. A through-hole having the same inner diameter as the outer diameter of the intermediate portion of the preformed body is formed downward from the center of the cylindrical portion, and the lower portion of the through-hole is reduced in diameter to a predetermined portion of the inner peripheral surface. Prepare a mold in combination with a lower knife that is formed in a shape capable of shaping the detent portion of the gear shaft, and lower the preformed body in a through hole of the lower knife. Is inserted and the preform is mounted with the upper part protruding upward, and the male upper die is lowered from above while the cylindrical portion is inserted into the recess of the female lower die, and the male upper die lifting pin Press the upper end surface of the preform with the lower end to lower the preform By lowering, the first small diameter portion of the preformed body is plastically deformed in the lower part of the through hole of the female lower die to form a detent portion, and then the male upper die is further lowered, The large-diameter part of the preform is pushed into the upper part of the through-hole of the male upper mold while the central cylindrical part of the female lower mold is inserted into the through-hole of the male upper mold, and the large-diameter part of the preform is formed. The gear teeth are shaped by plastically deforming the upper part of the male lower die through-hole. That is, according to the present invention, when manufacturing a gear shaft, a metal rod is compressed in a mold and plastically deformed to form a large-diameter portion on the upper portion and a first portion on the lower portion. After obtaining a preformed body having a small diameter portion and a second small diameter portion, the gear portion is formed by forming gear teeth on the large diameter portion by compressing and plastically deforming with a special mold. In addition, a detent portion is formed in the first small diameter portion. According to the present manufacturing method, the molding including the formation of the gear portion is performed with high precision by the plastic deformation, so that the surface roughness of the gear tooth forming portion is better than that obtained by the conventional gear cutting process. Thus, there is an advantage that the wear of the mating part that engages with this part is reduced and the durability is improved. Further, since the entire shape is obtained by plastically deforming the rod-shaped body, there is an advantage that the cutting allowance is minimized, the material is not wasted, and the process is simple. Next, the present invention will be described in detail based on embodiments. First, the desired shape of the gear shaft 12 is as shown in FIG. 9 (d). That is, the upper end of the shaft is formed in the large-diameter gear portion 37, and the lower end of the shaft is formed in the small-diameter screw portion 39. In addition, four portions of the outer peripheral surface above the screw portion 39 are chamfered to form a rotation preventing portion 38. The total length L of this gear shaft is 107 mm, the length M of the portion where the gear portion 37 is formed is 19 mm, and the length N of the intermediate portion 32 is 55 mm.
The length P of the screw portion 39 is 10 mm. Also,
The outer diameter D 1 of the gear portion 37 is 18 mm,
Outer diameter D 2 is 10 mm, the outer diameter D 3 of the threaded portion 39 of 8mm
It is. Further, the outer diameter D 4 of the portion where the rotation stopper 38 is formed is 9 mm. [0010] In order to manufacture the gear shaft 12, a wire made of S35C (diameter 10.3mm) wound in a coil shape is prepared and supplied to a continuous multi-stage forging machine.
In the apparatus, it was cut to a length of 132 mm. Then, this cut product is subjected to a first compression step, whereby FIG.
As shown in (a), the lower end face was plastically deformed into a clean chamfered shape. Next, the lower end was narrowed down to a small diameter as shown in FIG. Next, by performing a third compression step, as shown in FIG.
I narrowed it down to a slightly smaller diameter. This upper small-diameter portion is connected to a first small-diameter portion 4.
3. The small diameter portion at the lower end is referred to as a second small diameter portion 44. Also,
Simultaneously with the above-mentioned molding, the diameter of the portion slightly lowered from the upper end was increased to a substantially truncated cone shape (substantially truncated cone portion 45). Next, by performing a fourth compression step, as shown in FIG. 2A, the length of the first small diameter portion 43 is slightly extended, and the peripheral surface of the substantially truncated conical portion 45 is formed. The diameter of the upper side was enlarged so that the inclination became gentle. Then, by performing a fifth compression step, the upper side of the substantially frustoconical portion 45 is further expanded as shown in FIG. 4B, and this portion is formed into a cylindrical large diameter portion 46. Formed. By repeating this series of steps, the preformed body 50 having the special shape was continuously obtained from the continuous multistage forging machine. On the other hand, a special mold 51 as shown in FIG. 3 was prepared. The male upper mold 52 of the mold 51 has a cylindrical portion 53.
And a through hole 54 extending upward from the center of the lower surface 53a.
Is formed. The lower portion of the through hole 54 is formed to have the same diameter as the outer diameter of the large diameter portion 46 of the preform 50 (see FIG. 2B). Note that the “same diameter” is not limited to the literal “same diameter”, but also includes a diameter having a dimension with a tolerance that can be fitted to each other. It is used for the same purpose. Also, the upper portion of the through hole 54 is smaller in diameter than the lower portion,
The small-diameter portion 54a is formed with irregularities for gear tooth shaping. The periphery of the portion where the through hole 54 is formed is
The male upper mold 52 is formed of a separate member 55 different from the main body. A vertically movable pin 56 is inserted into the through hole 54 from above. The female lower mold 57 of the mold 51 is constituted by combining an outer cylinder 58 and two upper and lower inner cylinders 59 and 60, and the upper surface of the inner cylinder 59 is formed on the upper surface of the outer cylinder 58. The concave portion 61 is formed on the upper surface of the female lower die 57 so as to be lower than the lower portion. The inner diameter of the concave portion 61 (that is, the inner diameter of the outer cylinder 58) is set to the same diameter as the outer diameter of the cylindrical portion 53 in the male upper die 52. A cylindrical portion 62 is erected upward from the center of the concave portion 61, and the preformed body 50 extends downward from the center of the cylindrical portion 62.
Through hole 63 having the same inner diameter as the outer diameter of intermediate portion 32
Are formed through the inner cylinders 59 and 60. However, the through holes 63 are narrowed down to a slightly smaller diameter in the lower inner cylinder 60, and are provided at four locations on the inner peripheral surface of the small diameter portion 64 with the detent portions 38 (see FIG.
<< d >>) are formed to form four flat portions 65. The through-hole 63 is provided in the inner cylinder 6.
The upper end of the guide pin 68 which moves up and down in the center hole 67 of the base 66 provided below the base 0 enters from below. The periphery of the through-hole 63 is formed by another member 69, 70 different from the main body of the inner cylinder 59, 60. Therefore, the female lower mold 57 of the mold 51 is used.
As shown in FIG.
After the lower part of the preform 50 is inserted into the small diameter part 64 at the lower part of the through-hole 63 and the upper part is protruded upward, as shown in FIG. By lowering the male upper mold 52 from above, the male upper mold 5
While pressing the second cylindrical portion 53 into the concave portion 61 of the female lower die 57, the lower end of the elevating pin 56 of the male upper die 52 presses the upper end surface of the preformed body 50, and The entire lower part is pushed into the small diameter part 64 of the through hole 63 of the female lower die 57. At this time, the lower end surface of the large-diameter portion 46 of the preform 50 contacts the upper end surface of the central cylindrical portion 62 of the female lower die 57, and the lower end surface of the guide pin 68 contacts the lower end surface of the preform 50 below. The preform 50 will not be pushed down any further. By this operation, the first small-diameter portion 43 of the preformed body 50 is plastically deformed in the small-diameter portion 64 of the through-hole 63, and four locations on the outer periphery thereof are crushed into a plane, and the intended detent is stopped. The part 38 (see FIG. 9 << d >>) is shaped. Next, as shown in FIG.
Is further lowered to deepen the overlap between the cylindrical portion 53 of the male upper mold 52 and the concave portion 61 of the female lower mold 57, and the preform 5
The large-diameter portion 46 and the cylindrical portion 62 of the female lower die 57 are inserted into the through holes 54 of the male upper die 52. By this operation, the large diameter portion 46 of the preformed body 50 is
Is plastically deformed in the small-diameter portion 54a for gear shaping provided on the upper side of the gear, and the target gear portion 37 is formed. Then, as shown in FIG. 7, the male upper die 52 was raised, and the guide pin 68 was raised from below the female lower die 57, whereby the formed preform 50 was released. The preformed body 50 on which the gear portion 37 and the detent portion 38 are formed as described above is shown in FIG.
As shown in FIG. 9D, thread cutting is performed by rolling or cutting, and further quenching and polishing are performed.
The target gear shaft 12 as shown in FIG. The gear shaft 12 is not heated at all and the rotation preventing portion 38 and the gear portion 37 are plastically deformed.
Are formed, cutting work for gear cutting and chamfering becomes unnecessary, and the process is simplified. In addition, the surface roughness of the obtained gear portion 37 is improved. Incidentally, when the surface roughness of the gear portion 37 by the conventional gear cutting is 5-6S, that of the gear shaft 12 according to the method of the above embodiment is 3S, and the mating part (planetary gear group) that meshes with this portion in use. ) Is reduced and the durability is improved.
Also, since there is little rattling, the noise prevention effect is high. Further, since the shape close to the final shape is formed by plastic deformation, there is an advantage that the cutting allowance is significantly reduced and the cost is reduced as compared with the case where all the shapes are cut out from the bar. In the above embodiment, the gear shaft 12
Although the S35C wire was used as the material for the above, the material is not necessarily limited to this, and various stainless steels are used. Above all, from the viewpoint of rigidity, toughness, etc., the above S
35C and SUS410 are preferred. Further, not only stainless steel but also various kinds of high-strength metals and alloys can be used. Further, in the above embodiment, the wire is wound in a coil shape, and the wire is passed through a continuous multi-stage forging machine so as to obtain the preform 50 continuously. However, the continuous multi-stage forging machine is not necessarily used. It is not necessary to cut the wire or the bar into a predetermined size in advance, and the preformed body 50 may be obtained by successively passing through a forging machine having a different mold shape. According to this method, the number of steps is increased and the cost is slightly higher than in the case of using the continuous multi-stage forging machine, but it is more advantageous in terms of steps and cost than the conventional method. Further, in the above embodiment, the deformation of the cut product obtained by cutting the wire rod is shown in FIGS. 1 (a) to 1 (c) and FIG.
Although the process is performed in the five steps (a) and (b), the process is not necessarily limited to the five steps and can be performed in an appropriate number of steps. In the above embodiment, the gear shaft 12
Is formed by four chamfered shapes, but the shape is not necessarily limited to this, and the shape is not necessarily limited to this, and may be appropriately determined according to the mounting mode of the clutch boss 23 (see FIG. 8) mounted on this portion. A non-rotating shape can be provided. As described above, in the method of manufacturing a gear shaft according to the present invention, a metal rod is compressed in a mold and plastically deformed to form a large-diameter portion on an upper portion and a lower portion on a lower portion. After obtaining a preformed body in which the first small diameter portion and the second small diameter portion are formed, the preformed body is further compressed and plastically deformed by a special mold to form gear teeth on the large diameter portion to form a gear. And a detent portion is formed in the first small diameter portion. According to the present manufacturing method, the molding including the formation of the gear portion is accurately performed by the plastic deformation, so that the surface roughness of the gear tooth forming portion is better than that obtained by the conventional gear cutting process. Therefore, there is an advantage that the wear of the mating part that engages with this portion is reduced and the durability is improved. Further, since the entire shape is obtained by plastically deforming the rod-shaped body, there is an advantage that the cutting allowance is minimized, the material is not wasted, and the process is simple.

【図面の簡単な説明】 【図1】(a),(b),(c)はいずれもこの発明の
一実施例における予備成形体の成形工程の説明図であ
る。 【図2】(a),(b)はいずれも上記実施例における
予備成形体の成形工程の説明図である。 【図3】上記実施例に用いる金型の説明図である。 【図4】上記実施例に用いる金型の動作説明図である。 【図5】上記実施例に用いる金型の動作説明図である。 【図6】上記実施例に用いる金型の動作説明図である。 【図7】上記実施例に用いる金型の動作説明図である。 【図8】電気洗濯機の回転駆動機構の一般的な説明図で
ある。 【図9】(a),(b),(c),(d)はいずれも従
来のギヤシャフトの製法の説明図である。 【図10】ギヤシャフトの製造に用いる線材の説明図で
ある。 【符号の説明】 12 ギヤシャフト 32 中間部 37 ギヤ部 38 回り止め部 39 ねじ部 50 予備成形体 51 金型 52 オス上型 53 円柱部 54 貫通孔 54a 小径部 56 昇降ピン 57 メス下型 61 凹部 62 円柱部 63 貫通孔 64 小径部
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 (a), 1 (b), and 1 (c) are explanatory views of a forming step of a preform in one embodiment of the present invention. FIGS. 2 (a) and 2 (b) are explanatory views of a forming step of a preform in the above embodiment. FIG. 3 is an explanatory diagram of a mold used in the embodiment. FIG. 4 is an operation explanatory view of a mold used in the above embodiment. FIG. 5 is an operation explanatory view of a mold used in the above embodiment. FIG. 6 is an explanatory diagram of an operation of a mold used in the embodiment. FIG. 7 is an operation explanatory view of a mold used in the embodiment. FIG. 8 is a general explanatory view of a rotation drive mechanism of the electric washing machine. 9 (a), (b), (c) and (d) are explanatory views of a conventional method for manufacturing a gear shaft. FIG. 10 is an explanatory diagram of a wire used for manufacturing a gear shaft. [Explanation of Symbols] 12 Gear shaft 32 Intermediate part 37 Gear part 38 Detent part 39 Screw part 50 Preform 51 Mold 52 Male upper mold 53 Cylindrical part 54 Through hole 54a Small diameter part 56 Elevating pin 57 Female lower mold 61 Recess 62 cylindrical part 63 through hole 64 small diameter part

Claims (1)

(57)【特許請求の範囲】 【請求項1】 シャフト上端部が大径のギヤ部に形成さ
れ、シャフト下端部が小径ねじ部に形成され、このねじ
部より上側の外周面の少なくとも一部に回り止め用の面
取り部が形成されているギヤシャフトの製法であって、
所定長の金属製棒状体を、金型内で圧縮し塑性変形させ
ることにより、棒状体上端部が大径部に形成され中間部
の下側が段落としされて第1の小径部に絞られその下側
の下端部がさらに段落としされて第2の小径部に絞られ
てなる予備成形体を準備する工程と、円柱部を有し、こ
の円柱部中央から上向きに、下部が上記予備成形体の大
径部外径と同一径で上部がギヤ歯を賦形しうる凹凸に形
成された貫通孔が形成され、上記貫通孔内に、上方から
昇降ピンが挿通されているオス上型と、上面に上記オス
上型の円柱部外径と同一径の凹部が形成され、この凹部
内中央から上向きに円柱部が立設され、この円柱部の中
央から下向きに、上記予備成形体の中間部外径と同一径
の内径を有する貫通孔が形成され、この貫通孔下部が小
径に縮径され内周面の所定部分が目的とするギヤシャフ
トの回り止め部を賦形しうる形状に形成されているメス
下型とを組み合わせてなる金型を準備し、上記メス下型
の貫通孔内に上記予備成形体の下部を挿入し上部が上方
に突出した状態で予備成形体を装着し、上方から上記オ
ス上型を、その円柱部を上記メス下型の凹部内に入り込
ませながら下降させ、オス上型の昇降ピン下端で上記予
備成形体の上端面を押圧して上記予備成形体を下方に押
し下げることにより、上記予備成形体の第1の小径部を
上記メス下型の貫通孔下部内で塑性変形させて回り止め
部を賦形し、つぎに、上記オス上型をさらに下降させ、
上記メス下型の中央円柱部を上記オス上型の貫通孔内に
入り込ませながら予備成形体の大径部を上記オス上型の
貫通孔上部内に押し込み、上記予備成形体大径部を上記
オス下型貫通孔上部内で塑性変形させてギヤ歯を賦形す
るようにしたことを特徴とするギヤシャフトの製法。
(57) [Claim 1] An upper end of a shaft is formed in a large-diameter gear portion, and a lower end of the shaft is formed in a small-diameter screw portion, and at least a part of an outer peripheral surface above the screw portion. A method of manufacturing a gear shaft in which a chamfer for rotation prevention is formed on
By compressing and plastically deforming a predetermined length of a metal rod in a mold, the upper end of the rod is formed into a large-diameter portion, the lower side of the middle portion is formed as a paragraph, and is squeezed to a first small-diameter portion. A step of preparing a preform formed by lowering the lower end portion into a further paragraph and narrowing it to the second small diameter portion; and having a column portion, wherein the preform is upward from the center of the column portion, and the lower portion is the preform body. A male upper die in which a through-hole is formed with the same diameter as the outer diameter of the large-diameter portion and the upper part is formed in irregularities capable of shaping gear teeth, and a lifting pin is inserted from above in the through-hole, A concave portion having the same diameter as the outer diameter of the cylindrical portion of the male upper die is formed on the upper surface, a cylindrical portion is erected upward from the center of the concave portion, and an intermediate portion of the preformed body is formed downward from the center of the cylindrical portion. A through-hole having the same inner diameter as the outer diameter is formed. A mold is prepared by combining a lower part of the scalpel with a predetermined portion of which is formed in a shape capable of shaping the detent portion of the gear shaft of interest, and the preforming is performed in a through hole of the lower part of the scalpel. Insert the preform with the lower part of the body inserted and the upper part protruding upward, lower the male upper die from above while lowering its cylindrical part into the recess of the female lower die, By pressing the upper end surface of the preform with the lower end of the lifting pin and pushing the preform downward, the first small diameter portion of the preform is plastically deformed in the lower part of the through hole of the female lower die. To form a detent, then lower the male upper die further,
The large-diameter part of the preform is pushed into the upper part of the through-hole of the male upper mold while the central cylindrical part of the female lower mold is inserted into the through-hole of the male upper mold, and the large-diameter part of the preform is formed. A method of manufacturing a gear shaft, wherein gear teeth are shaped by plastically deforming the upper portion of a male lower die through-hole.
JP10301994A 1994-05-17 1994-05-17 Gear shaft manufacturing method Expired - Lifetime JP3503076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10301994A JP3503076B2 (en) 1994-05-17 1994-05-17 Gear shaft manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10301994A JP3503076B2 (en) 1994-05-17 1994-05-17 Gear shaft manufacturing method

Publications (2)

Publication Number Publication Date
JPH07308728A JPH07308728A (en) 1995-11-28
JP3503076B2 true JP3503076B2 (en) 2004-03-02

Family

ID=14342943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10301994A Expired - Lifetime JP3503076B2 (en) 1994-05-17 1994-05-17 Gear shaft manufacturing method

Country Status (1)

Country Link
JP (1) JP3503076B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100598484B1 (en) * 2004-09-03 2006-07-11 (주)애드테크 Pivot for Gear
CN111536219A (en) * 2020-04-30 2020-08-14 上海建桥学院 Gear shaft and numerical control machining method thereof

Also Published As

Publication number Publication date
JPH07308728A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
CN1337284A (en) Manufacture of combining tooth blank for automobile gear box
JPH0469496B2 (en)
JP3503076B2 (en) Gear shaft manufacturing method
JP3323626B2 (en) Manufacturing method of gear case for electric washing machine
JP3377974B2 (en) Molding method of molded article having external teeth
JPS6182944A (en) Production of shaft component with large-sized flange
JP3285697B2 (en) Dehydration shaft manufacturing method
JPS5923894B2 (en) How to manufacture gears from flat plate materials
KR200395452Y1 (en) Rolling dies for drive shaft processing
JP2003062636A (en) Manufacturing method of forged product with helical part
JP2006212665A (en) Apparatus and method for molding helical gear
JPH07227490A (en) Production of pulsator shaft
KR100357978B1 (en) Washing machine
JPH0231262B2 (en)
JP3690631B2 (en) Rack shaft manufacturing method and apparatus
JP3403687B2 (en) Manufacturing method of multi-stage gear
KR100562799B1 (en) Gear and the processing method
KR20010102623A (en) Forming process of helical gear and apparatus
JP3319863B2 (en) Manufacturing method of clutch shaft
JPH0357527A (en) Method and apparatus for extruding helical gear having axial hole
JP2638199B2 (en) Manufacturing method of pipe with upset inside pipe end
JP3980307B2 (en) Crowning gear mold manufacturing method
JP2003220442A (en) Method for forge-forming gear with crowning and device used in the same
JP3056094B2 (en) Helical gear processing apparatus and processing method
JP2002301538A (en) Helical gear stock machining method

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 11

EXPY Cancellation because of completion of term