JP3502622B2 - Simple method for determination of volatile organic compounds in gases - Google Patents

Simple method for determination of volatile organic compounds in gases

Info

Publication number
JP3502622B2
JP3502622B2 JP2001384953A JP2001384953A JP3502622B2 JP 3502622 B2 JP3502622 B2 JP 3502622B2 JP 2001384953 A JP2001384953 A JP 2001384953A JP 2001384953 A JP2001384953 A JP 2001384953A JP 3502622 B2 JP3502622 B2 JP 3502622B2
Authority
JP
Japan
Prior art keywords
adsorbent
volatile organic
organic compound
linear saturated
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001384953A
Other languages
Japanese (ja)
Other versions
JP2003185647A (en
Inventor
菊男 竹田
高行 村上
一俊 大橋
あゆみ 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Chemical Analysis Service Ltd
Original Assignee
Sumika Chemical Analysis Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Chemical Analysis Service Ltd filed Critical Sumika Chemical Analysis Service Ltd
Priority to JP2001384953A priority Critical patent/JP3502622B2/en
Publication of JP2003185647A publication Critical patent/JP2003185647A/en
Application granted granted Critical
Publication of JP3502622B2 publication Critical patent/JP3502622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気体中の揮発性有
機化合物量を定量する方法に関するものである。更に詳
しくは、本発明は、室内空気等の気体中に存在する少な
くとも1種類以上の揮発性有機化合物を、飽和炭化水素
の検出位置を基準として求める保持指標を用いて、簡便
にかつ正確に同定し定量し得る気体中の揮発性有機化合
物量の簡易定量法に関するものである。
TECHNICAL FIELD The present invention relates to a method for quantifying the amount of volatile organic compounds in a gas. More specifically, the present invention identifies at least one or more volatile organic compounds present in a gas such as indoor air simply and accurately by using a retention index obtained based on the detection position of saturated hydrocarbon. The present invention relates to a simple method for quantifying the amount of volatile organic compounds in a gas that can be quantified.

【0002】[0002]

【従来の技術】室内空気の汚染問題について、近年その
関心が高まってきている。室内空気中の揮発性有機化合
物量は、室内の汚染具合の把握に都合よいものであり、
従って、室内空気中の揮発性有機化合物を、正確に評
価、測定することは極めて重要となってきている。室内
空気中の揮発性有機化合物の分析方法としては、室内空
気の一定量を吸着剤に吸引して含まれている揮発性有機
化合物を吸着剤に吸着後、例えば加熱脱離や溶媒脱離に
より吸着された揮発性有機化合物を脱着し、その脱着物
をガスクロマトグラフ法やガスクロマトグラフ/質量分
析法により測定する方法が知られている。この方法にお
いては、測定後検出物毎に、マススペクトル解析や標準
物質での測定結果を用いて検出物の同定を行い、また標
準物質での測定結果を用いて定量を個別に行われてい
る。あるいは、代表物質について定量を行い、その結果
から検出物毎の定量値を一括して換算する一括換算定量
の方法も知られている。
2. Description of the Related Art Interest in indoor air pollution has been increasing in recent years. The amount of volatile organic compounds in the indoor air is convenient for understanding the degree of pollution in the room,
Therefore, accurate evaluation and measurement of volatile organic compounds in indoor air have become extremely important. As a method for analyzing volatile organic compounds in indoor air, a certain amount of indoor air is sucked into the adsorbent and the contained volatile organic compounds are adsorbed to the adsorbent, and then, for example, by heat desorption or solvent desorption. A method is known in which the adsorbed volatile organic compound is desorbed and the desorbed product is measured by gas chromatography or gas chromatography / mass spectrometry. In this method, for each detected substance after measurement, the detected substance is identified using the mass spectrum analysis and the measurement result of the standard substance, and the quantification is individually performed using the measurement result of the standard substance. . Alternatively, a batch conversion quantitative method is also known in which the representative substances are quantified and the quantified values for each detected substance are collectively converted from the results.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の方法に
おいて、測定後検出物毎に、マススペクトルや標準物質
での測定結果を用いて検出物の同定を行い、また標準物
質での測定結果を用いて定量を個別に行う場合は、とき
には数百におよぶ検出物毎に、マススペクトル解析や標
準物質での確認による同定が必要であり、さらには標準
物質による測定結果を用いての定量が必要であり、多大
な時間を要する。一方、個別に定量を行わず、代表物質
での定量値を使用して一括換算定量する方法は、同じ濃
度であっても化合物毎に検出の強度が異なるため、正確
な濃度の把握が困難であるという問題があった。そこ
で、これらの問題点のない、室内空気中の揮発性有機化
合物量を求める実用的な分析方法が強く求められてい
た。
However, in the above method, after each measurement, the detected substance is identified using the mass spectrum and the measurement result of the standard substance, and the measurement result of the standard substance is determined. When performing quantification individually, it is sometimes necessary to perform identification by mass spectrum analysis or confirmation with a standard substance for each hundreds of detected substances, and further quantification using the measurement results with the standard substance is necessary. Therefore, it takes a lot of time. On the other hand, the method of batch conversion quantification using the quantified value of the representative substance instead of individual quantification makes it difficult to grasp the exact concentration because the detection intensity differs for each compound even at the same concentration. There was a problem. Therefore, there has been a strong demand for a practical analytical method for obtaining the amount of volatile organic compounds in indoor air, which is free from these problems.

【0004】本発明は、従来技術の上記の問題点を解決
し、ときには数百種類に及ぶ室内空気中に存在する揮発
性有機化合物を、個別に同定および定量を行うことな
く、簡便にかつ正確に定性および定量し得る分析方法を
提供することを目的とするものである本発明者は、鋭意
検討の結果、各種揮発性有機化合物について求めた基準
物質との検出強度の相対強度比および保持指標を使用す
ることにより、上記の目的が達成されることを見出し本
発明を完成した。
The present invention solves the above-mentioned problems of the prior art, and easily and accurately eliminates the need to individually identify and quantify volatile organic compounds present in hundreds of kinds of indoor air. The present inventor, whose purpose is to provide an analytical method capable of qualitatively and quantitatively determining, the relative intensity ratio and the retention index of the detection intensity with respect to the reference substance obtained for various volatile organic compounds, as a result of extensive studies. The present invention has been completed by finding that the above object can be achieved by using.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、下
記の第1〜3工程により求めた、1種類以上の揮発性有
機化合物についての、基準物質との検出強度比および保
持指標を使用し、かつ下記の第4〜9工程を有すること
を特徴とする気体中の揮発性有機化合物量の簡易定量法
を提供するものである。 [第1工程] 基準物質および1種類以上の揮発性有機
化合物を含有する溶液と吸着剤を接触させ、当該基準物
質および揮発性有機化合物を吸着剤に吸着させた後、基
準物質および揮発性有機化合物を吸着剤から脱着し、得
られた脱着物についてガスクロマトグラフ−質量分析ま
たはガスクロマトグラフ測定を行い、各揮発性有機化合
物についての基準物質との検出強度比および保持時間を
求める工程、 [第2工程] 2種類以上の直鎖飽和炭化水素を含有す
る溶液と吸着剤を接触させ、当該直鎖飽和炭化水素を吸
着剤に吸着させた後、直鎖飽和炭化水素を吸着剤から脱
着し、得られた脱着物についてガスクロマトグラフ−質
量分析またはガスクロマトグラフ測定を行い、各直鎖飽
和炭化水素についての保持時間を求める工程、 [第3工程] 第1工程で求めた各揮発性有機化合物に
ついての保持時間および第2工程で求めた各直鎖飽和炭
化水素についての保持時間から、各揮発性有機化合物に
ついての保持指標を求める工程、 [第4工程] 測定対象の気体の一定量を吸着剤と接触
させ当該気体中の揮発性有機化合物を吸着剤に吸着せし
めた後、吸着された揮発性有機化合物を脱着せしめ、得
られた脱着物についてガスクロマトグラフ−質量分析ま
たはガスクロマトグラフ測定を行い、各検出物について
の検出強度および保持時間を求める工程、 [第5工程] 1種類以上の直鎖飽和炭化水素を含有す
る溶液と吸着剤を接触させ、当該直鎖飽和炭化水素を吸
着剤に吸着させた後、直鎖飽和炭化水素を吸着剤から脱
着し、得られた脱着物についてガスクロマトグラフ−質
量分析またはガスクロマトグラフ測定を行い、各直鎖飽
和炭化水素についての保持時間を求める工程、 [第6工程] 第4工程で得られた各検出物についての
保持時間および第5工程で得られた各直鎖飽和炭化水素
についての保持時間から、各検出物について保持指標を
求める工程、 [第7工程] 第3工程で求めた各揮発性有機化合物に
ついての保持指標および第6工程で求めた各検出物につ
いての保持指標から、各検出物を同定する工程、 [第8工程] 複数の濃度水準の基準物質を含有する溶
液と吸着剤を接触させ、当該基準物質を吸着剤に吸着せ
しめた後、吸着された基準物質を脱着せしめ、得られた
脱着物についてガスクロマトグラフ−質量分析またはガ
スクロマトグラフ測定を行い、各濃度水準についての検
出強度を求めることにより、基準物質の各濃度水準と検
出強度との関係を求める工程、 [第9工程] 第1工程で得られた各揮発性有機化合物
についての基準物質との検出強度比、第4工程で得られ
た各検出物についての検出強度、第7工程で得られた各
検出物についての同定結果、および第8工程で得られた
基準物質の各濃度水準と検出強度との関係から、測定対
象気体中の各揮発性有機化合物濃度を求める工程。
That is, the present invention uses the detection intensity ratio with respect to a reference substance and the retention index for one or more volatile organic compounds obtained by the following first to third steps. And a simple quantification method for the amount of volatile organic compounds in a gas, which comprises the following 4th to 9th steps. [First Step] A solution containing a reference substance and one or more kinds of volatile organic compounds is brought into contact with an adsorbent, and the reference substance and the volatile organic compound are adsorbed on the adsorbent, and then the reference substance and the volatile organic compound are adsorbed. A step of desorbing the compound from the adsorbent, performing gas chromatograph-mass spectrometry or gas chromatographic measurement on the obtained desorbed product, and obtaining a detection intensity ratio with respect to a reference substance and a retention time for each volatile organic compound, [second Process] A solution containing two or more kinds of linear saturated hydrocarbons is contacted with an adsorbent, the linear saturated hydrocarbons are adsorbed on the adsorbent, and then the linear saturated hydrocarbons are desorbed from the adsorbent to obtain Gas chromatograph-mass spectrometry or gas chromatographic measurement is performed on the desorbed product thus obtained to obtain a retention time for each linear saturated hydrocarbon, [third step] A step of obtaining a retention index for each volatile organic compound from the retention time for each volatile organic compound determined in the above step and the retention time for each linear saturated hydrocarbon determined in the second step, [fourth step] After contacting a certain amount of the gas to be measured with the adsorbent to adsorb the volatile organic compound in the gas to the adsorbent, the adsorbed volatile organic compound is desorbed, and the desorbed product obtained is gas chromatograph- A step of performing mass spectrometry or gas chromatographic measurement to determine the detection intensity and retention time for each detected substance, [Fifth step] A solution containing one or more kinds of linear saturated hydrocarbons is contacted with an adsorbent, After the chain saturated hydrocarbon is adsorbed on the adsorbent, the linear saturated hydrocarbon is desorbed from the adsorbent, and the desorbed product obtained is subjected to gas chromatography-mass spectrometry or gas chromatography. A step of performing a mattograph measurement to obtain a retention time for each straight chain saturated hydrocarbon, [Sixth step] A retention time for each detected substance obtained in the fourth step, and each straight chain saturation obtained in the fifth step A step of obtaining a retention index for each detected substance from the retention time for hydrocarbons, [seventh step] a retention index for each volatile organic compound determined in the third step, and each detected substance determined in the sixth step Step of identifying each detected substance from the retention index, [Eighth step] A solution containing a plurality of concentration levels of the reference substance was brought into contact with the adsorbent, and the reference substance was adsorbed on the adsorbent and then adsorbed. Desorb the reference substance, perform gas chromatograph-mass spectrometry or gas chromatographic measurement on the obtained desorbed substance, and obtain the detection intensity at each concentration level to obtain the concentration of each reference substance. The step of obtaining the relationship between the level and the detection intensity, [9th step] the detection intensity ratio of each volatile organic compound obtained in the 1st step to the reference substance, and the detected substance obtained in the 4th step From the detection intensity, the identification result of each detected substance obtained in the seventh step, and the relationship between each concentration level of the reference substance obtained in the eighth step and the detection intensity, each volatile organic compound in the gas to be measured The process of determining the concentration.

【0006】[0006]

【発明の実施の形態】本発明の簡易定量法での測定の対
象となる揮発性有機化合物量を含有する気体としては、
室内空気が挙げられる。この室内空気としては、一般の
戸建住宅や集合住宅、オフィス、学校や病院、映画館、
ホール、デパート等の公共施設、電車や自動車等の乗り
物内の空気等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION As a gas containing an amount of a volatile organic compound to be measured by the simple quantification method of the present invention,
Room air is an example. As this indoor air, general detached houses and condominiums, offices, schools and hospitals, movie theaters,
Examples include public facilities such as halls and department stores, and air inside vehicles such as trains and automobiles.

【0007】本発明の簡易定量法での測定の対象となる
揮発性有機化合物量は特に制限されるものではないが、
通常、400℃までの沸点を有し、室内空気等の気体中
に、ガス状または粒子状で存在している有機化合物であ
る。
The amount of volatile organic compounds to be measured by the simple quantitative method of the present invention is not particularly limited,
Usually, it is an organic compound that has a boiling point of up to 400 ° C. and exists in a gaseous state or a particulate state in a gas such as indoor air.

【0008】第1工程、第2工程、第4工程、第5工
程、第8工程などで用いられる吸着剤は、特に制限され
るものではないが、カーボンモレキュラーシーブ系吸着
剤、グラファイトカーボンブラック系吸着剤、シリカゲ
ル、2,6-ジフェニレンオキサイド系吸着剤、スチレン/
ジビニルベンゼン系吸着剤、オクタデシル基化学結合型
吸着剤とそれを担持したディスク型吸着剤、石英ウール
とそのディスク状のもの、および活性炭などが例示され
る。
The adsorbent used in the first step, the second step, the fourth step, the fifth step, the eighth step, etc. is not particularly limited, but it is a carbon molecular sieve-based adsorbent or a graphite carbon black-based adsorbent. Adsorbent, silica gel, 2,6-diphenylene oxide adsorbent, styrene /
Examples thereof include a divinylbenzene-based adsorbent, an octadecyl group chemically bonded adsorbent and a disc-shaped adsorbent carrying the same, quartz wool and its disc-shaped adsorbent, and activated carbon.

【0009】本発明の第1工程は、基準物質および1種
類以上の揮発性有機化合物を含有する溶液と吸着剤を接
触させ、当該基準物質および揮発性有機化合物を吸着剤
に吸着させた後、基準物質および揮発性有機化合物を吸
着剤から脱着し、得られた脱着物についてガスクロマト
グラフ−質量分析またはガスクロマトグラフ測定を行
い、各揮発性有機化合物についての基準物質との検出強
度比および保持時間を求める工程である。基準物質およ
び1種類以上の揮発性有機化合物を含有する溶液とは、
溶媒中に、基準物質および1種類以上の揮発性有機化合
物の所定量を同時に含有する溶液であって、ここで用い
られる溶媒としては、メタノール、メタノール/水混合
液、二硫化炭素、二硫化炭素/アルコール混合液が例示
されるが、これに限定されるものではない。基準物質と
しては、トルエン等が好ましい。1種類以上の揮発性有
機化合物は、測定対象の気体中に含まれている可能性が
想定される揮発性有機化合物であって、数百種類の揮発
性有機化合物を含有させてもよい。なお、測定対象とな
る揮発性有機化合物の種類が多いほど、本発明の効果が
顕著になる。基準物質および1種類以上の揮発性有機化
合物を含有する溶液中の、基準物質およびそれぞれの揮
発性有機化合物の濃度は、各10〜500μg/mlが好ま
しい。該濃度が過少であると検出ピーク面積測定に誤差
が大きく、検出強度の比の正確さが失われる場合があ
る。一方、該濃度が過多であると分析装置の許容量を超
え同様に検出強度の比の正確さが失われる場合がある。
In the first step of the present invention, a solution containing a reference substance and one or more kinds of volatile organic compounds is contacted with an adsorbent, and the reference substance and the volatile organic compound are adsorbed on the adsorbent, The reference substance and volatile organic compound are desorbed from the adsorbent, and the obtained desorbed product is subjected to gas chromatograph-mass spectrometry or gas chromatograph measurement, and the detection intensity ratio and retention time of the reference substance for each volatile organic compound and the retention time are determined. This is the process of seeking. A solution containing a reference substance and one or more volatile organic compounds is
A solution which simultaneously contains a predetermined amount of a reference substance and one or more kinds of volatile organic compounds in a solvent, and the solvent used here is methanol, a methanol / water mixed liquid, carbon disulfide, carbon disulfide. / Alcohol mixed liquid is illustrated, but it is not limited to this. Toluene or the like is preferable as the reference substance. The one or more kinds of volatile organic compounds are volatile organic compounds assumed to be contained in the gas to be measured, and may contain several hundred kinds of volatile organic compounds. The effect of the present invention becomes more remarkable as the number of types of volatile organic compounds to be measured increases. The concentration of the reference substance and each volatile organic compound in the solution containing the reference substance and one or more volatile organic compounds is preferably 10 to 500 μg / ml. If the concentration is too low, there is a large error in the detection peak area measurement, and the accuracy of the detection intensity ratio may be lost. On the other hand, if the concentration is excessive, the accuracy of the ratio of detected intensities may be lost in the same manner as the allowable amount of the analyzer is exceeded.

【0010】基準物質および1種類以上の揮発性有機化
合物を含有する溶液と吸着剤との接触は、例えば、当該
溶液を、吸着剤を充填した吸着管に通す方法や、吸着剤
を充填した吸着管やカートリッジに当該溶液を添加する
方法等が挙げられ、このような方法により、当該基準物
質および揮発性有機化合物が吸着剤に吸着される。吸着
剤に吸着された基準物質および揮発性有機化合物は、そ
の後、吸着剤から脱着される。脱着の方法としては、加
熱による方法(加熱脱離法)および溶媒により脱着させ
る方法が例示される。加熱脱離法の場合、加熱の温度は
特に制限されないが、通常150〜300℃、特に25
0℃程度を用いる。溶媒による脱着の場合、脱着に用い
る溶媒は特に制限されないが、二硫化炭素、アルコール
を含む二硫化炭素、アセトン、ジクロロメタンなどが好
ましい。このようにして得られた脱着物は、ガスクロマ
トグラフ法またはガスクロマトグラフ/質量分析法で測
定され、各揮発性有機化合物についての基準物質との検
出強度比および保持時間を求められる。基準物質との検
出強度比を求める方法としては、基準物質のピーク面積
と揮発性有機化合物のピーク面積の比と、基準物質と揮
発性有機化合物の当該溶液中の濃度から求める方法など
があげられるが、これらに限定されない。ガスクロマト
グラフ法またはガスクロマトグラフ/質量分析法での測
定条件は通常の条件が採用される。求められた検出強度
比は分析装置および分析カラムが同一であれば変化する
ものではなく、一度求めれば以後測定の都度求める必要
は無く、継続して用いることが可能である。強度比の変
動の範囲は±20%である。
The contact between the adsorbent and the solution containing the reference substance and one or more kinds of volatile organic compounds may be carried out, for example, by passing the solution through an adsorbent tube filled with the adsorbent, or adsorbent filled with the adsorbent. Examples include a method of adding the solution to a tube or a cartridge, and the reference material and the volatile organic compound are adsorbed by the adsorbent by such a method. The reference substance and the volatile organic compounds adsorbed on the adsorbent are then desorbed from the adsorbent. Examples of the desorption method include a heating method (heat desorption method) and a solvent desorption method. In the case of the heat desorption method, the heating temperature is not particularly limited, but usually 150 to 300 ° C., especially 25
About 0 ° C. is used. In the case of desorption with a solvent, the solvent used for the desorption is not particularly limited, but carbon disulfide, carbon disulfide containing alcohol, acetone, dichloromethane and the like are preferable. The desorbed product thus obtained is measured by gas chromatography or gas chromatography / mass spectrometry, and the detection intensity ratio of each volatile organic compound to the reference substance and the retention time are obtained. Examples of methods for obtaining the detection intensity ratio with the reference substance include the ratio of the peak area of the reference substance to the peak area of the volatile organic compound and the concentration of the reference substance and the volatile organic compound in the solution. However, it is not limited to these. Ordinary conditions are adopted as the measurement conditions in the gas chromatograph method or the gas chromatograph / mass spectrometry method. The obtained detection intensity ratio does not change as long as the analyzer and the analytical column are the same, and once obtained, it is not necessary to obtain it each time after measurement, and it can be continuously used. The variation range of the intensity ratio is ± 20%.

【0011】本発明の第2工程は、2種類以上の直鎖飽
和炭化水素を含有する溶液と吸着剤を接触させ、当該直
鎖飽和炭化水素を吸着剤に吸着させた後、直鎖飽和炭化
水素を吸着剤から脱着し、得られた脱着物についてガス
クロマトグラフ−質量分析またはガスクロマトグラフ測
定を行い、各直鎖飽和炭化水素についての保持時間を求
める工程である。2種類以上の直鎖飽和炭化水素を含有
する溶液と吸着剤との接触は、例えば、当該溶液を、吸
着剤を充填した吸着管に通す方法や、吸着剤を充填した
吸着管やカートリッジに当該溶液を添加する方法等が挙
げられ、このような方法により、当該直鎖飽和炭化水素
が吸着剤に吸着される。直鎖飽和炭化水素としては、ヘ
キサン、ヘプタン、オクタン、ノナン、デカン、ウンデ
カン、ドデカン、トリデカン、テトラデカン、ペンタデ
カン、ヘキサデカンが例示される。直鎖飽和炭化水素を
含有する溶液は、溶媒中に、このような直鎖飽和炭化水
素を2種以上同時に含有する溶液であって、ここで用い
られる溶媒としては、メタノール、アセトンなどが挙げ
られるがこれに限定されるものではない。溶液中の、直
鎖飽和炭化水素の濃度としては、10〜500μg/m
lが好ましい。該濃度が過少であると検出位置に誤差が
大きく、第3工程で求められる保持指標の正確さが失わ
れる場合があり、一方、該濃度が過多であると化合物の
分離が悪く、同様に保持指標の正確さが失われる場合が
ある。吸着剤に吸着された直鎖飽和炭化水素は、その
後、吸着剤から脱着され、脱着物は、ガスクロマトグラ
フ法またはガスクロマトグラフ/質量分析法で測定さ
れ、各直鎖飽和炭化水素についての保持時間が求められ
る。脱着の方法や条件、ガスクロマトグラフ法またはガ
スクロマトグラフ/質量分析法での条件については、第
1工程の場合と同様である。
In the second step of the present invention, a solution containing two or more kinds of linear saturated hydrocarbons is contacted with an adsorbent, the linear saturated hydrocarbons are adsorbed on the adsorbent, and then the linear saturated hydrocarbon is adsorbed. In this step, hydrogen is desorbed from the adsorbent, and the desorbed material obtained is subjected to gas chromatograph-mass spectrometry or gas chromatograph measurement to determine the retention time for each linear saturated hydrocarbon. The contact between the solution containing two or more kinds of linear saturated hydrocarbons and the adsorbent can be carried out, for example, by passing the solution through an adsorbent tube filled with the adsorbent, or by adsorbing the adsorbent with an adsorbent tube or cartridge. Examples include a method of adding a solution, and the linear saturated hydrocarbon is adsorbed by the adsorbent by such a method. Examples of the straight chain saturated hydrocarbon include hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, and hexadecane. A solution containing a linear saturated hydrocarbon is a solution containing two or more kinds of such linear saturated hydrocarbons in a solvent at the same time. Examples of the solvent used here include methanol, acetone and the like. However, it is not limited to this. The concentration of the linear saturated hydrocarbon in the solution is 10 to 500 μg / m
1 is preferred. If the concentration is too low, the error in the detection position may be large, and the accuracy of the retention index required in the third step may be lost. Index accuracy may be lost. The linear saturated hydrocarbon adsorbed on the adsorbent is then desorbed from the adsorbent, and the desorbed product is measured by gas chromatography or gas chromatography / mass spectrometry, and the retention time for each linear saturated hydrocarbon is determined. Desired. The desorption method and conditions, and the conditions for gas chromatography or gas chromatography / mass spectrometry are the same as those in the first step.

【0012】本発明の第3工程は、第1工程で求めた各
揮発性有機化合物についての保持時間および第2工程で
求めた各直鎖飽和炭化水素についての保持時間から、各
揮発性有機化合物についての保持指標を求める工程であ
る。保持指標とは、保持時間の情報を相対化したもので
あって、次の式を用いて求められるPTRIが例示され
る。 PTRI=100((TA−TZ)/(TZ+1−TZ))+100
Z (式中、TAは、対象化合物の保持時間、TZは、対象化
合物の直前に溶出する直鎖飽和炭化水素の保持時間、T
Z+1は、対象化合物の直後に溶出する直鎖飽和炭化水素
のの保持時間、及びZは、対象化合物の直前に溶出する
直鎖飽和炭化水素の炭素数を表す。) 求められた保持指標は分析装置が異なっても分析カラム
が同一系統のものであれば変化するものではなく、一度
求めれば以後測定の都度求める必要は無く、継続して用
いることが可能である。保持指標の変動の範囲は±1.
5%である。このように、第1〜3工程は、各測定対象
毎に繰り返す必要はなく、一度測定すれば、その後に行
われる各測定において求められた検出強度比および保持
指標を使用することができる。
The third step of the present invention is to determine each volatile organic compound from the retention time for each volatile organic compound determined in the first step and the retention time for each linear saturated hydrocarbon determined in the second step. Is a step of obtaining a retention index for. The retention index is a relative information of retention time, and is exemplified by PTRI obtained by using the following formula. PTRI = 100 ((T A -T Z) / (T Z + 1 -T Z)) + 100
Z (where T A is the retention time of the target compound, T Z is the retention time of the straight chain saturated hydrocarbon eluted immediately before the target compound, T Z
Z + 1 represents the retention time of the linear saturated hydrocarbon that elutes immediately after the target compound, and Z represents the carbon number of the linear saturated hydrocarbon that elutes immediately before the target compound. ) The obtained retention index does not change even if the analytical device is different if the analytical column is of the same system. Once obtained, it is not necessary to obtain it each time after measurement, and it can be used continuously. . The range of fluctuation of the retention index is ± 1.
5%. As described above, the first to third steps do not have to be repeated for each measurement target, and once measured, the detection intensity ratio and the retention index obtained in each subsequent measurement can be used.

【0013】本発明の第4工程は、測定対象の気体の一
定量を吸着剤と接触させ当該気体中の揮発性有機化合物
を吸着剤に吸着せしめた後、吸着された揮発性有機化合
物を脱着せしめ、得られた脱着物についてガスクロマト
グラフ−質量分析またはガスクロマトグラフ測定を行
い、各検出物についての検出強度および保持時間を求め
る工程である。測定対象の気体の一定量を吸着剤と接触
させる方法としては、測定対象の気体の一定量を、吸着
剤を充填したカラムなどに吸引して、カラムに通す方法
が例示される。このようにして、当該気体中の揮発性有
機化合物は、吸着剤に吸着される。吸引する量は特に限
定されないが、通常0.05〜20L/minの速度で
1〜29000Lの吸引が好ましい。
In the fourth step of the present invention, a fixed amount of the gas to be measured is brought into contact with the adsorbent to adsorb the volatile organic compound in the gas to the adsorbent, and then the adsorbed volatile organic compound is desorbed. In this step, the obtained desorbed substance is subjected to gas chromatograph-mass spectrometry or gas chromatograph measurement to obtain the detection intensity and retention time for each detected substance. As a method of bringing a fixed amount of the gas to be measured into contact with the adsorbent, a method of sucking a fixed amount of the gas to be measured into a column filled with the adsorbent and passing the gas through the column is exemplified. In this way, the volatile organic compound in the gas is adsorbed by the adsorbent. The amount of suction is not particularly limited, but suction of 1 to 29000 L is usually preferable at a rate of 0.05 to 20 L / min.

【0014】吸着剤に吸着された気体中の揮発性有機化
合物は、その後、吸着剤から脱着され、脱着物は、ガス
クロマトグラフ法またはガスクロマトグラフ/質量分析
法で測定され、各検出物、すなわち気体中に含まれてい
た揮発性有機化合物、について検出強度および保持時間
が求められる。
The volatile organic compounds in the gas adsorbed on the adsorbent are then desorbed from the adsorbent, and the desorbed substances are measured by gas chromatography or gas chromatograph / mass spectrometry, and each detected substance, that is, gas. For the volatile organic compounds contained therein, the detection intensity and retention time are required.

【0015】本発明の第5工程は、1種類以上の直鎖飽
和炭化水素を含有する溶液と吸着剤を接触させ、当該直
鎖飽和炭化水素を吸着剤に吸着させた後、直鎖飽和炭化
水素を吸着剤から脱着し、得られた脱着物についてガス
クロマトグラフ−質量分析またはガスクロマトグラフ測
定を行い、各直鎖飽和炭化水素についての保持時間を求
める工程である。直鎖飽和炭化水素溶液について(例え
ば直鎖飽和炭化水素の種類や、溶媒や濃度など)、吸着
剤との接触の方法、脱着の方法や条件、ガスクロマトグ
ラフ法またはガスクロマトグラフ/質量分析法での条件
については、第2工程の場合と同様である。ただし、こ
の工程は、各測定対象の気体についての測定毎に行われ
る。
In the fifth step of the present invention, a solution containing one or more kinds of linear saturated hydrocarbons is contacted with an adsorbent, the linear saturated hydrocarbons are adsorbed to the adsorbent, and then the linear saturated hydrocarbons are adsorbed. In this step, hydrogen is desorbed from the adsorbent, and the desorbed material obtained is subjected to gas chromatograph-mass spectrometry or gas chromatograph measurement to determine the retention time for each linear saturated hydrocarbon. For linear saturated hydrocarbon solutions (for example, type of linear saturated hydrocarbon, solvent and concentration, etc.), contact method with adsorbent, desorption method and conditions, gas chromatography or gas chromatography / mass spectrometry The conditions are the same as in the case of the second step. However, this step is performed for each measurement of the gas to be measured.

【0016】本発明の第6工程は、第4工程で得られた
各検出物についての保持時間および第5工程で得られた
各直鎖飽和炭化水素についての保持時間から、各検出物
について保持指標を求める工程である。保持指標の求め
方などは、第3工程と同じであり、PTRIが保持指標
の代表例として挙げられる。本発明の第7工程は、第3
工程で求めた各揮発性有機化合物についての保持指標お
よび第6工程で求めた各検出物についての保持指標か
ら、各検出物を同定する工程である。第6工程で得られ
た保持指標と、第3工程で得られた保持指標とを比較
し、数値の一致する成分を検索することにより、検出化
合物の同定を行う。すなわち、第3工程で得られたある
成分Aの保持指標と同じ、または近い保持指標を有する
検出物は当該成分Aと同定される。このようにして、第
3工程で得られた保持指標との比較を行うだけで、多数
の検出物についての同定を容易に行うことができる。
In the sixth step of the present invention, the retention time for each detected substance is calculated from the retention time for each detected substance obtained in the fourth step and the retention time for each linear saturated hydrocarbon obtained in the fifth step. This is a process of obtaining an index. The method for obtaining the retention index is the same as in the third step, and PTRI is a representative example of the retention index. The seventh step of the present invention is the third step.
This is a step of identifying each detected substance from the retention index for each volatile organic compound determined in the step and the retention index for each detected substance determined in the sixth step. The detection compound is identified by comparing the retention index obtained in the sixth step with the retention index obtained in the third step and searching for a component having a matching numerical value. That is, a detected substance having a retention index equal to or close to the retention index of a certain component A obtained in the third step is identified as the component A. In this way, the identification of a large number of detected substances can be easily performed only by comparing with the retention index obtained in the third step.

【0017】上記のようにして、同定された各検出物に
ついて、次に説明する第8〜9工程によりその定量がさ
れる。本発明の第8工程は、複数の濃度水準の基準物質
を含有する溶液と吸着剤を接触させ、当該基準物質を吸
着剤に吸着せしめた後、吸着された基準物質を脱着せし
め、得られた脱着物についてガスクロマトグラフ−質量
分析またはガスクロマトグラフ測定を行い、各濃度水準
についての検出強度を求めることにより、基準物質の各
濃度水準と検出強度との関係を求める工程である。基準
物質の溶液としては、トルエン等の基準物質を含有する
メタノール溶液、基準物質を含有する二硫化炭素溶液、
基準物質を含有する二硫化炭素/アルコール混合溶液を
挙げることができるが、これに限定されるものではな
い。基準物質の濃度水準としては、複数選ばれるが、1
0〜500μg/ml内のできるだけ広い範囲内の3点
以上が好ましい。吸着剤との接触の方法、脱着の方法や
条件、ガスクロマトグラフ法またはガスクロマトグラフ
/質量分析法での条件については、第1工程の場合と同
様である。このようにして、基準物質の各濃度水準と検
出強度との関係が求められるが、この関係は、通常、一
方を縦軸、他方を横軸とした検量線で表される。
Each of the detected substances identified as described above is quantified by the steps 8 to 9 described below. The eighth step of the present invention was obtained by contacting a solution containing a plurality of concentration levels of a reference substance with an adsorbent, causing the adsorbent to adsorb the reference substance, and then desorbing the adsorbed reference substance. This is a step of obtaining the relationship between each concentration level of the reference substance and the detection intensity by performing gas chromatograph-mass spectrometry or gas chromatograph measurement on the desorbed substance and obtaining the detection intensity at each concentration level. As the solution of the reference substance, a methanol solution containing the reference substance such as toluene, a carbon disulfide solution containing the reference substance,
A carbon disulfide / alcohol mixed solution containing a reference substance may be mentioned, but the present invention is not limited thereto. Multiple concentration levels of the reference substance are selected, but 1
It is preferably 3 points or more within the widest possible range of 0 to 500 μg / ml. The method of contact with the adsorbent, the method and conditions of desorption, and the conditions of gas chromatography or gas chromatography / mass spectrometry are the same as in the case of the first step. In this way, the relationship between each concentration level of the reference substance and the detected intensity is obtained, and this relationship is usually represented by a calibration curve with one as the vertical axis and the other as the horizontal axis.

【0018】本発明の第9工程は、第1工程で得られた
各揮発性有機化合物についての基準物質との検出強度
比、第4工程で得られた各検出物についての検出強度、
第7工程で得られた各検出物についての同定結果、およ
び第8工程で得られた基準物質の各濃度水準と検出強度
との関係から、測定対象気体中の各揮発性有機化合物濃
度を求める工程である。この工程では、例えば、第4工
程で得られた各検出物(第7工程で同定され揮発性有機
化合物名が判明している)についての検出強度を、第1
工程で得られた各揮発性有機化合物についての検出強度
比を使用して基準物質の検出強度に換算し、その換算値
と第8工程で得られた基準物質の各濃度水準と検出強度
との関係(例えば検量線)を用いてそれぞれの濃度が求
められる。また、第8工程で得られた基準物質の各濃度
水準と検出強度との関係(例えば検量線)を、第1工程
で得られた各揮発性有機化合物についての検出強度比を
使用して、各揮発性有機化合物の各濃度水準と検出強度
との関係(例えば検量線)を求め、この関係と第4工程
で得られた各検出物(第7工程で同定され揮発性有機化
合物名が判明している)についての検出強度から、それ
ぞれの濃度を求める方法、第4工程で得られた各検出物
(第7工程で同定され揮発性有機化合物名が判明してい
る)についての検出強度と第8工程で得られた基準物質
の各濃度水準と検出強度との関係(例えば検量線)か
ら、各成分の基準物質換算濃度を求め、第1工程で求め
た基準物質と各成分の検出強度比を乗じてそれぞれの濃
度を求める方法、なども挙げられる。このようにするこ
とにより、試薬標準品で調整した検量線により定量する
濃度とほぼ同等の正確さの値を得ることができる。
In the ninth step of the present invention, the detection intensity ratio of each volatile organic compound obtained in the first step to the reference substance, the detection intensity of each detected substance obtained in the fourth step,
The concentration of each volatile organic compound in the gas to be measured is obtained from the identification result of each detected substance obtained in the seventh step and the relationship between each concentration level of the reference substance obtained in the eighth step and the detected intensity. It is a process. In this step, for example, the detection intensity of each detected substance obtained in the fourth step (the volatile organic compound name identified in the seventh step is known) is
The detection intensity ratio for each volatile organic compound obtained in the step is used to convert to the detection intensity of the reference substance, and the converted value and each concentration level of the reference substance obtained in the eighth step and the detection intensity Each concentration is obtained using a relationship (for example, a calibration curve). In addition, the relationship between each concentration level of the reference substance obtained in the eighth step and the detection intensity (for example, a calibration curve), using the detection intensity ratio for each volatile organic compound obtained in the first step, The relationship (for example, a calibration curve) between each concentration level of each volatile organic compound and the detection intensity was obtained, and this relationship and each detected substance obtained in the fourth step (the volatile organic compound name identified in the seventh step was identified) The detection intensity for each of the detected substances obtained in the fourth step (the volatile organic compound name is identified in the seventh step) and From the relationship between each concentration level of the reference substance obtained in the 8th step and the detection intensity (for example, a calibration curve), the reference substance conversion concentration of each component is obtained, and the detection intensity of the reference substance and each component obtained in the 1st step There is also a method of multiplying the ratio to obtain each concentration, etc. That. By doing so, it is possible to obtain a value with an accuracy almost equivalent to the concentration quantified by the calibration curve adjusted with the reagent standard product.

【0019】本発明の最大の特徴は、室内空気などの気
体中の数百に及ぶ揮発性有機化合物を、個別にマススペ
クトル解析などを行うことなく、各化合物を定性し、基
準物質との検出強度比を使用することで、試薬標準品を
用いて定量することと同等の正確さの定量値を得、簡便
かつ正確に揮発性有機化合物量を求めることが可能な点
にある。
The greatest feature of the present invention is that the qualitative determination of hundreds of volatile organic compounds in a gas such as indoor air without performing individual mass spectrum analysis and the like, and the detection with reference substances By using the intensity ratio, it is possible to obtain a quantitative value with the same accuracy as the quantitative determination using a reagent standard, and to easily and accurately determine the amount of volatile organic compounds.

【0020】次に、実施例により本発明を説明するが、
実施例によって本発明方法が制限されるものではない。
The present invention will be described below with reference to examples.
The examples do not limit the method according to the invention.

【0021】実施例 (1)第1工程 トルエンおよび表1記載の揮発性有機化合物を、それぞ
れ100μg/ml含有するメタノール/水溶液(SU
PELCO製の室内大気分析用混合標準液)を吸着剤T
enaxGR(2,6−ジフェニレンオキサイドと活性
炭の混合による吸着剤、ジーエルサイエンス社製)に通
し、トルエンおよび揮発性有機化合物を吸着剤に吸着さ
せた後、加熱脱離装置CP2020を使用して、加熱脱
離法により脱着し、得られた脱着物についてガスクロマ
トグラフ−質量分析を行い、各揮発性有機化合物につい
てのトルエンとの検出強度比および保持時間を求めた。
ガスクロマトグラフ−質量分析は、QP−5000(島
津製作所製)を使用し、下記の条件で行った。 カラム:DB−5(0.25i.d.×60m×0.2
5μm film(J&W)) 温度:40℃(5分)−10℃/分で昇温−250℃
(15分) キャリアーガス:ヘリウム(1ml/min)
Example (1) First step Methanol / water solution (SU containing 100 μg / ml each of toluene and the volatile organic compounds shown in Table 1)
PELCO mixed standard solution for indoor air analysis) is adsorbent T
After passing through enaxGR (adsorbent by mixing 2,6-diphenylene oxide and activated carbon, manufactured by GL Sciences Inc.) to adsorb toluene and volatile organic compounds to the adsorbent, using a heat desorption device CP2020, Desorption was performed by the thermal desorption method, and the obtained desorbed material was subjected to gas chromatography-mass spectrometry to determine the detection intensity ratio with toluene and the retention time for each volatile organic compound.
The gas chromatograph-mass spectrometry was performed using QP-5000 (manufactured by Shimadzu Corporation) under the following conditions. Column: DB-5 (0.25 id x 60 m x 0.2
5 μm film (J & W) Temperature: 40 ° C. (5 minutes) Temperature rise at −10 ° C./min −250 ° C.
(15 minutes) Carrier gas: Helium (1 ml / min)

【0022】(2)第2工程、第3工程 吸着剤TenaxGRに、ヘキサン、ヘプタン、オクタ
ン、ノナン、デカン、ウンデカン、ドデカン、トリデカ
ン、テトラデカン、ペンタデカンおよびヘキサデカンを
それぞれ100μg/ml含有するメタノール溶液を通
してこれらの直鎖飽和炭化水素を吸着させ、同様に脱着
およびガスクロマトグラフ−質量分析を行い、各直鎖飽
和炭化水素についての保持時間を求めた。この保持時間
と(1)第1工程で得られた各揮発性有機化合物について
の保持時間から、各揮発性有機化合物についての保持指
標(PTRI)を求めた。このようにして求められたト
ルエンとの検出強度比および保持指標(PTRI)を表
1に示す。
(2) Second and third steps Adsorbent Tenax GR was passed through a methanol solution containing hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane and hexadecane, respectively, at 100 μg / ml. The straight chain saturated hydrocarbon of was adsorbed, desorption and gas chromatograph-mass spectrometry were similarly performed, and the retention time for each straight chain saturated hydrocarbon was determined. The retention index (PTRI) for each volatile organic compound was determined from this retention time and (1) the retention time for each volatile organic compound obtained in the first step. Table 1 shows the detection intensity ratios with toluene and the retention index (PTRI) thus obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】(3)第4工程 新築マンションのリビング内の空気を、吸着剤Tena
xGRに100ml/minで吸引して3L捕集し吸着
させた後、加熱脱離装置CP2020を使用して、加熱
脱離法により脱着し、得られた脱着物についてガスクロ
マトグラフ−質量分析を行い、各検出物についての検出
強度および保持時間を求めた。ガスクロマトグラフ−質
量分析法の条件は(1)第1工程と同じである。
(3) Fourth step The air in the living room of the newly built condominium is treated with the adsorbent Tena.
After suctioning and absorbing 3 L to xGR at a rate of 100 ml / min, the thermal desorption device CP2020 was used to desorb by desorption, and the resulting desorbed product was subjected to gas chromatography-mass spectrometry. The detection intensity and retention time for each detected substance were determined. The conditions for gas chromatography-mass spectrometry are the same as in (1) Step 1.

【0025】(4)第5工程、第6工程、第7工程 吸着剤TenaxGRに、ヘキサン、ヘプタン、オクタ
ン、ノナン、デカン、ウンデカン、ドデカン、トリデカ
ン、テトラデカン、ペンタデカンおよびヘキサデカンを
それぞれ100μg/ml含有するメタノール溶液を通
してこれらの直鎖飽和炭化水素を吸着させ、同様に脱着
およびガスクロマトグラフ−質量分析を行い、各直鎖飽
和炭化水素についての保持時間を求めた。この保持時間
と(3)第4工程で得られた各検出物についての保持時
間から、各検出物についての保持指標(PTRI)を求
めた。その結果を表2に示す。
(4) Fifth Step, Sixth Step, Seventh Step Adsorbent Tenax GR contains hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane and hexadecane at 100 μg / ml each. These linear saturated hydrocarbons were adsorbed through a methanol solution, and desorption and gas chromatograph-mass spectrometry were performed in the same manner to determine the retention time for each linear saturated hydrocarbon. The retention index (PTRI) for each detected substance was determined from this retention time and the retention time for each detected substance obtained in the (3) fourth step. The results are shown in Table 2.

【0026】このようにして求めた室内空気中に検出さ
れた物質の保持指標と、(2)の第3工程で求めた保持
指標とを比較することによって、各検出物について、同
定(定性)を行った。その結果を表2に示す。また、従
来通りマススペクトルから化合物を同定する方法でも行
い、両者を比較した結果も表2に示した。表2から明ら
かなように、本発明の方法により、従来法と同様の定性
結果が得られた。
By comparing the retention index of the substance detected in the room air thus obtained with the retention index obtained in the third step (2), the identification (qualitative) of each detected substance is obtained. I went. The results are shown in Table 2. In addition, the method of identifying the compound from the mass spectrum as in the conventional method was also performed, and the results of comparing the two are also shown in Table 2. As is clear from Table 2, the method of the present invention gave the same qualitative results as the conventional method.

【0027】(4)第8工程、第9工程 トルエン10μg/ml、50μg/ml、100μg
/ml、200μg/mlのメタノール溶液を作成し、
吸着剤TenaxGRに吸着させて、(1)第1工程と
同様にして各濃度のトルエンの検出強度を求めた。この
ようにして得られた検出強度と濃度から検量線を作成し
た。(4)の第7工程で定性された各物質について、こ
の検量線から、トルエンに換算した定量を行った。その
後、(1)で求めた検出強度比を乗じて各物質について
の定量値を求め、すべての定量値を合計して揮発性有機
化合物総量を求めその結果を表2に示した。従来どお
り、定性された化合物の試薬による検量線を用いて定量
して求める方法でも行い比較した結果も表2に示した。
本発明方法により、従来法とほぼ同様の結果が得られる
ことが判明した。
(4) Steps 8 and 9 Toluene 10 μg / ml, 50 μg / ml, 100 μg
/ Ml, 200μg / ml methanol solution to make,
After adsorbing to the adsorbent Tenax GR, the detection intensity of toluene at each concentration was obtained in the same manner as in (1) Step 1. A calibration curve was created from the detection intensity and the concentration thus obtained. For each substance qualified in the 7th step of (4), the quantitative conversion to toluene was carried out from this calibration curve. Then, the quantitative value for each substance was obtained by multiplying the detection intensity ratio obtained in (1), and the total amount of volatile organic compounds was obtained by summing all the quantitative values. The results are shown in Table 2. Table 2 also shows the comparison results obtained by the conventional method of quantifying the qualitative compounds using a calibration curve with reagents.
It has been found that the method of the present invention can obtain almost the same results as the conventional method.

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明の気体中の総揮発性有機化合物量
の簡易定量法により、ときには数百種類に及ぶ室内空気
中に存在する揮発性有機化合物を、個別に同定および定
量を行うことなく、簡便にかつ正確に定性および定量し
得る。
The simple quantification method of the total amount of volatile organic compounds in the gas of the present invention enables the volatile organic compounds present in the indoor air, which sometimes reaches several hundred kinds, to be individually identified and quantified. , Which can be easily and accurately qualitatively and quantitatively determined.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 あゆみ 千葉県袖ヶ浦市北袖9番地1 株式会社 住化分析センター内 (56)参考文献 特開2003−139755(JP,A) 特開 平8−313510(JP,A) 特開 平5−72191(JP,A) 特開 平5−93719(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 30/00 - 30/96 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ayumi Hasegawa 1 9 Kita-sode, Sodegaura-shi, Chiba Sumika Chemical Analysis Service Co., Ltd. (56) References JP2003-139755 (JP, A) JP8- 313510 (JP, A) JP-A-5-72191 (JP, A) JP-A-5-93719 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 30/00-30 / 96

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の第1〜3工程により求めた、1種類
以上の揮発性有機化合物についての基準物質との検出強
度比および保持指標を使用し、かつ下記の第4〜9工程
を有することを特徴とする気体中の揮発性有機化合物量
の簡易定量法、 [第1工程] 基準物質および1種類以上の揮発性有機
化合物を含有する溶液と吸着剤を接触させ、当該基準物
質および揮発性有機化合物を吸着剤に吸着させた後、基
準物質および揮発性有機化合物を吸着剤から脱着し、得
られた脱着物についてガスクロマトグラフ−質量分析ま
たはガスクロマトグラフ測定を行い、各揮発性有機化合
物についての基準物質との検出強度比および保持時間を
求める工程、 [第2工程] 2種類以上の直鎖飽和炭化水素を含有す
る溶液と吸着剤を接触させ、当該直鎖飽和炭化水素を吸
着剤に吸着させた後、直鎖飽和炭化水素を吸着剤から脱
着し、得られた脱着物についてガスクロマトグラフ−質
量分析またはガスクロマトグラフ測定を行い、各直鎖飽
和炭化水素についての保持時間を求める工程、 [第3工程] 第1工程で求めた各揮発性有機化合物に
ついての保持時間および第2工程で求めた各直鎖飽和炭
化水素についての保持時間から、各揮発性有機化合物に
ついての保持指標を求める工程、 [第4工程] 測定対象の気体の一定量を吸着剤と接触
させ当該気体中の揮発性有機化合物を吸着剤に吸着せし
めた後、吸着された揮発性有機化合物を脱着せしめ、得
られた脱着物についてガスクロマトグラフ−質量分析ま
たはガスクロマトグラフ測定を行い、各検出物について
の検出強度および保持時間を求める工程、 [第5工程] 1種類以上の直鎖飽和炭化水素を含有す
る溶液と吸着剤を接触させ、当該直鎖飽和炭化水素を吸
着剤に吸着させた後、直鎖飽和炭化水素を吸着剤から脱
着し、得られた脱着物についてガスクロマトグラフ−質
量分析またはガスクロマトグラフ測定を行い、各直鎖飽
和炭化水素についての保持時間を求める工程、 [第6工程] 第4工程で得られた各検出物についての
保持時間および第5工程で得られた各直鎖飽和炭化水素
についての保持時間から、各検出物について保持指標を
求める工程、 [第7工程] 第3工程で求めた各揮発性有機化合物に
ついての保持指標および第6工程で求めた各検出物につ
いての保持指標から、各検出物を同定する工程、 [第8工程] 複数の濃度水準の基準物質を含有する溶
液と吸着剤を接触させ、当該基準物質を吸着剤に吸着せ
しめた後、吸着された基準物質を脱着せしめ、得られた
脱着物についてガスクロマトグラフ−質量分析またはガ
スクロマトグラフ測定を行い、各濃度水準についての検
出強度を求めることにより、基準物質の各濃度水準と検
出強度との関係を求める工程、 [第9工程] 第1工程で得られた各揮発性有機化合物
についての基準物質との検出強度比、第4工程で得られ
た各検出物についての検出強度、第7工程で得られた各
検出物についての同定結果、および第8工程で得られた
基準物質の各濃度水準と検出強度との関係から、測定対
象気体中の各揮発性有機化合物濃度を求める工程。
1. Using the detection intensity ratio and retention index of one or more kinds of volatile organic compounds with a reference substance, which are obtained by the following first to third steps, and having the following fourth to ninth steps. A simple method for quantifying the amount of a volatile organic compound in a gas, which is characterized in that [First Step] A solution containing a reference substance and one or more kinds of volatile organic compounds is brought into contact with an adsorbent, and the reference substance and the volatile substance are volatilized. After adsorbing the volatile organic compound to the adsorbent, desorbing the reference substance and the volatile organic compound from the adsorbent, and subjecting the obtained desorbed material to gas chromatograph-mass spectrometry or gas chromatograph measurement, for each volatile organic compound Of the detection intensity ratio with respect to the reference substance and the retention time, [Second step] A solution containing two or more kinds of linear saturated hydrocarbons is brought into contact with an adsorbent to obtain the linear saturated hydrocarbons. Was adsorbed on the adsorbent, the linear saturated hydrocarbon was desorbed from the adsorbent, the obtained desorbed product was subjected to gas chromatograph-mass spectrometry or gas chromatographic measurement, and the retention time for each linear saturated hydrocarbon was determined. Step to be determined, [Third step] From the retention time for each volatile organic compound determined in the first step and the retention time for each linear saturated hydrocarbon determined in the second step, the retention for each volatile organic compound is determined. Step of obtaining index, [Fourth step] After contacting a certain amount of the gas to be measured with the adsorbent to adsorb the volatile organic compound in the gas to the adsorbent, desorb the adsorbed volatile organic compound , A step of performing gas chromatograph-mass spectrometry or gas chromatograph measurement on the obtained desorbed product to obtain the detection intensity and retention time for each detected product, Step] A solution containing one or more kinds of linear saturated hydrocarbons is contacted with an adsorbent, the linear saturated hydrocarbons are adsorbed on the adsorbent, and then the linear saturated hydrocarbons are desorbed from the adsorbent to obtain Gas chromatograph-mass spectrometry or gas chromatographic measurement is performed on the desorbed product thus obtained to obtain a retention time for each linear saturated hydrocarbon, [Sixth step] Retention time for each detected substance obtained in the fourth step. And a step of obtaining a retention index for each detected substance from the retention time for each linear saturated hydrocarbon obtained in the fifth step, [Seventh step] Retention index for each volatile organic compound obtained in the third step And a step of identifying each detected substance from the retention index for each detected substance obtained in the sixth step, [8th step] contacting a solution containing a plurality of concentration-level reference substances with an adsorbent, After adsorbing the quasi-substance to the adsorbent, desorb the adsorbed reference substance, perform gas chromatograph-mass spectrometry or gas chromatograph measurement on the obtained desorbed product, by determining the detection intensity for each concentration level, A step of obtaining the relationship between each concentration level of the reference substance and the detected intensity, [9th step] the detection intensity ratio of the reference substance for each volatile organic compound obtained in the 1st step, obtained in the 4th step From the detection intensity of each detected substance, the identification result of each detected substance obtained in the seventh step, and the relationship between each concentration level of the reference substance obtained in the eighth step and the detected intensity, The step of obtaining the concentration of each volatile organic compound.
【請求項2】揮発性有機化合物が、沸点400℃以下
で、気体中にガス状または粒子状で存在するものである
ことを特徴とする請求項1に記載の簡易定量法。
2. The simple quantitative method according to claim 1, wherein the volatile organic compound has a boiling point of 400 ° C. or less and is present in a gas in a gaseous or particulate form.
【請求項3】気体が、室内空気であることを特徴とする
請求項1または2に記載の簡易定量法。
3. The simple quantitative method according to claim 1, wherein the gas is room air.
【請求項4】保持指標が、次の式により求められるPT
RIであることを特徴とする請求項1ないし3に記載の
簡易定量法。 PTRI=100((TA−TZ)/(TZ+1−TZ))+100
Z (式中、TAは、対象化合物の保持時間、TZは、対象化
合物の直前に溶出する直鎖飽和炭化水素の保持時間、T
Z+1は、対象化合物の直後に溶出する直鎖飽和炭化水素
の保持時間、及びZは、対象化合物の直前に溶出する直
鎖飽和炭化水素の炭素数を表す。)
4. The retention index PT obtained by the following formula:
The simplified quantification method according to claim 1, wherein the method is RI. PTRI = 100 ((T A -T Z) / (T Z + 1 -T Z)) + 100
Z (where T A is the retention time of the target compound, T Z is the retention time of the straight chain saturated hydrocarbon eluted immediately before the target compound, T Z
Z + 1 represents the retention time of the linear saturated hydrocarbon that elutes immediately after the target compound, and Z represents the carbon number of the linear saturated hydrocarbon that elutes immediately before the target compound. )
【請求項5】吸着剤からの脱着が、加熱または溶媒によ
る脱着であることを特徴とする請求項1ないし4に記載
の簡易定量法。
5. The simple quantitative method according to claim 1, wherein the desorption from the adsorbent is a desorption by heating or a solvent.
【請求項6】直鎖飽和炭化水素が、ヘキサン、ヘプタ
ン、オクタン、ノナン、デカン、ウンデカン、ドデカ
ン、トリデカン、テトラデカン、ペンタデカンおよびヘ
キサデカンであることを特徴とする請求項1ないし5に
記載の簡易定量法。
6. The simple quantitative determination according to claim 1, wherein the linear saturated hydrocarbon is hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane and hexadecane. Law.
【請求項7】基準物質の各濃度水準と検出強度との関係
が、検量線であることを特徴とする請求項1ないし6に
記載の簡易定量法。
7. The simple quantitative method according to claim 1, wherein the relationship between each concentration level of the reference substance and the detected intensity is a calibration curve.
JP2001384953A 2001-12-18 2001-12-18 Simple method for determination of volatile organic compounds in gases Expired - Fee Related JP3502622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384953A JP3502622B2 (en) 2001-12-18 2001-12-18 Simple method for determination of volatile organic compounds in gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384953A JP3502622B2 (en) 2001-12-18 2001-12-18 Simple method for determination of volatile organic compounds in gases

Publications (2)

Publication Number Publication Date
JP2003185647A JP2003185647A (en) 2003-07-03
JP3502622B2 true JP3502622B2 (en) 2004-03-02

Family

ID=27594551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384953A Expired - Fee Related JP3502622B2 (en) 2001-12-18 2001-12-18 Simple method for determination of volatile organic compounds in gases

Country Status (1)

Country Link
JP (1) JP3502622B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351122B2 (en) 2004-07-12 2008-04-01 Tyco Electronics Amp Kk Receptacle terminal
CN109668972A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The detection method of volatile organic matter in Petrochemical Enterprises air and waste gas

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860591B1 (en) * 2003-10-03 2005-12-16 Actaris Gaszaehlerbau Gmbh METHOD FOR IDENTIFYING COMPONENTS OF A NATURAL GAS BY GAS CHROMATOGRAPHY.
CN109540590A (en) * 2018-11-14 2019-03-29 华新方 A kind of water sampling tool of the environmental monitoring with flexible D-M (Determiner-Measure) construction
KR102123642B1 (en) * 2018-12-14 2020-06-16 연세대학교 원주산학협력단 Hazardous substance reduction apparatus for real-time analyzing performance of adsorbent and method for analyzing performance of absorbents thereof
CN113984917B (en) * 2021-03-01 2023-06-09 天津中医药大学 Method for detecting volatile chemical components in Weichangan pills
CN114002343A (en) * 2021-09-30 2022-02-01 深圳市普瑞美泰环保科技有限公司 VOCs concentration determination method, equipment and readable storage medium
CN114034848A (en) * 2021-11-23 2022-02-11 通标标准技术服务有限公司 Method for measuring allergic aromatic in plastic toy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351122B2 (en) 2004-07-12 2008-04-01 Tyco Electronics Amp Kk Receptacle terminal
CN109668972A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The detection method of volatile organic matter in Petrochemical Enterprises air and waste gas

Also Published As

Publication number Publication date
JP2003185647A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
Bruno et al. Reliability of a BTEX radial diffusive sampler for thermal desorption: field measurements
US8969083B2 (en) Method for detecting fish-like odor from air conditioner, reproducing fish-like odor and preparing corresponding fish-like odor composition
Lipari et al. 2, 4-Dinitrophenylhydrazine-coated Florisil sampling cartridges for the determination of formaldehyde in air
CN106290595B (en) On-line monitoring method for volatile organic compounds in atmosphere
KR20140039882A (en) Detecting method of stench of urine from air conditioner and reproducing method thereof, and the stench of urine composition the same
Bouchonnet Introduction to GC-MS coupling
JP3502622B2 (en) Simple method for determination of volatile organic compounds in gases
CN111398460A (en) Method for detecting content of aldehydes and ketones in human exhaled air
Liu et al. Application of thermal desorption methods for airborne polycyclic aromatic hydrocarbon measurement: A critical review
Cody et al. Coated glass capillaries as SPME devices for DART mass spectrometry
JPH11218526A (en) Analyzing method
Ueta et al. Simultaneous extraction and determination of volatile organic compounds and semi-volatile organic compounds in indoor air using multi-bed solid phase extraction device
Beiner et al. Oddy tests: Adding the analytical dimension
Martins et al. Determination of gaseous polycyclic aromatic hydrocarbons by a simple direct method using thermal desorption–gas chromatography–mass spectrometry
MUELLER et al. Determination of airborne organic vapor mixtures using charcoal tubes
Sheldon et al. Review of analytical methods for volatile organic compounds in the indoor environment
de Paula Pereira et al. Determination of methanol and ethanol by gas chromatrography following air sampling onto florisil cartridges and their concentrations at urban sites in the three largest cities in Brazil
Pilling et al. A catalogue of urban hydrocarbons for the city of Leeds: atmospheric monitoring of volatile organic compounds by thermal desorption-gas chromatography
RU2648018C1 (en) Method of determination of styrene concentration in atmospheric air by high-performance liquid chromatography
Saba et al. Determination of benzene at trace levels in air by a novel method based on solid‐phase microextraction gas chromatography/mass spectrometry
Castello et al. Automated gas chromatographic analysis of volatile organic compounds in air
JPH1164316A (en) Method for analyzing air in clean room for organic gas
KR20130132182A (en) Detecting method of foul odor from air conditioner and reproducing method thereof, and the foul odor composition the same
CN115166111B (en) Determination method for deodorizing performance of paper diaper
Sagona et al. Sequential derivatization of polar organic compounds in cloud water using O-(2, 3, 4, 5, 6-pentafluorobenzyl) hydroxylamine hydrochloride, N, O-bis (trimethylsilyl) trifluoroacetamide, and gas-chromatography/mass spectrometry analysis

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031205

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees