JP3502546B2 - Optical amplification repeater transmission system - Google Patents

Optical amplification repeater transmission system

Info

Publication number
JP3502546B2
JP3502546B2 JP22906498A JP22906498A JP3502546B2 JP 3502546 B2 JP3502546 B2 JP 3502546B2 JP 22906498 A JP22906498 A JP 22906498A JP 22906498 A JP22906498 A JP 22906498A JP 3502546 B2 JP3502546 B2 JP 3502546B2
Authority
JP
Japan
Prior art keywords
dispersion
wavelength
transmission line
optical
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22906498A
Other languages
Japanese (ja)
Other versions
JP2000059314A (en
Inventor
俊哉 松田
誠 村上
崇雅 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22906498A priority Critical patent/JP3502546B2/en
Publication of JP2000059314A publication Critical patent/JP2000059314A/en
Application granted granted Critical
Publication of JP3502546B2 publication Critical patent/JP3502546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ伝送路
および光増幅中継器を介して波長多重光信号を伝送する
光増幅中継伝送システムに関する。特に、光ファイバ伝
送路に所定の間隔で分散補償器を挿入し、伝送路全体の
平均の分散値を零とする光増幅中継伝送システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplification repeater transmission system for transmitting a wavelength division multiplexed optical signal through an optical fiber transmission line and an optical amplification repeater. In particular, the present invention relates to an optical amplification repeater transmission system in which a dispersion compensator is inserted in an optical fiber transmission line at a predetermined interval so that the average dispersion value of the entire transmission line becomes zero.

【0002】[0002]

【従来の技術】光ファイバ伝送路を用いた光伝送システ
ムでは、光ファイバのもつ群速度分散による光信号波形
の劣化を抑えるために、零分散波長付近の光信号波長が
用いられている。
2. Description of the Related Art In an optical transmission system using an optical fiber transmission line, an optical signal wavelength near a zero dispersion wavelength is used in order to suppress deterioration of an optical signal waveform due to group velocity dispersion of an optical fiber.

【0003】一方、波長多重光信号を伝送する場合に、
その波長を零分散波長付近に設定すると、光ファイバの
もつ非線形効果により発生する四光波混合光のパワーが
大きくなり、伝送特性を劣化させる大きな要因となる。
On the other hand, when transmitting a WDM optical signal,
If the wavelength is set near the zero-dispersion wavelength, the power of the four-wave mixing light generated by the non-linear effect of the optical fiber becomes large, which is a major factor that deteriorates the transmission characteristics.

【0004】これを回避するためには、光ファイバ伝送
路に所定の間隔で分散補償器を挿入して伝送路全体の平
均の分散値を零とし、波長多重光信号の波長を伝送路全
体の零分散波長付近に設定する方法が有効になってい
る。これは、光ファイバ伝送路の分散値を十分に大きく
とって四光波混合光の発生を抑圧し、伝送路全体では平
均の分散値を零とすることにより波形劣化を抑圧すると
いうものである。
In order to avoid this, a dispersion compensator is inserted in the optical fiber transmission line at a predetermined interval to set the average dispersion value of the entire transmission line to zero, and the wavelength of the wavelength division multiplexed optical signal is set to the wavelength of the entire transmission line. The method of setting near zero dispersion wavelength is effective. This is to suppress the generation of four-wave mixing light by making the dispersion value of the optical fiber transmission line sufficiently large, and suppress the waveform deterioration by setting the average dispersion value to zero in the entire transmission line.

【0005】図6は、分散補償を行う従来の光増幅中継
伝送システムの構成例を示す。図において、送信装置1
と受信装置2との間には、光ファイバ伝送路3と光増幅
中継器4が交互に配置され、さらに適当な間隔で分散補
償器5が挿入される。ここで、光増幅中継器4が挿入さ
れる間隔を中継器間隔Za とし、分散補償器5が挿入さ
れる間隔を分散補償間隔Zcmp とする。図では、分散補
償器5−1は、光ファイバ伝送路3−1,3−2および
光増幅中継器4−1,4−2における群速度分散を補償
し、以下同様に各分散補償器が各分散補償間隔内の群速
度分散を補償して伝送路全体の平均の分散値が零になる
ようにしている。
FIG. 6 shows a configuration example of a conventional optical amplification repeater transmission system for performing dispersion compensation. In the figure, the transmitter 1
The optical fiber transmission lines 3 and the optical amplification repeaters 4 are alternately arranged between the receiver and the receiver 2, and the dispersion compensators 5 are inserted at appropriate intervals. Here, the interval at which the optical amplification repeater 4 is inserted is the repeater interval Za, and the interval at which the dispersion compensator 5 is inserted is the dispersion compensation interval Zcmp. In the figure, a dispersion compensator 5-1 compensates for group velocity dispersion in the optical fiber transmission lines 3-1 and 3-2 and the optical amplification repeaters 4-1 and 4-2. The group velocity dispersion within each dispersion compensation interval is compensated so that the average dispersion value of the entire transmission line becomes zero.

【0006】[0006]

【発明が解決しようとする課題】四光波混合光のパワー
は、光信号の波長間隔が狭くなるほど強くなる。したが
って、伝送容量の増大に伴って波長間隔が狭くなると、
図6のような分散補償を行う構成をとっても四光波混合
光の抑圧が不十分となる。
The power of the four-wave mixing light becomes stronger as the wavelength interval of the optical signal becomes narrower. Therefore, if the wavelength spacing becomes narrower as the transmission capacity increases,
Even with the configuration of performing dispersion compensation as shown in FIG. 6, suppression of four-wave mixed light is insufficient.

【0007】また、四光波混合光のパワーは、図5に示
すように、伝送路に沿って周期的に増減すること知られ
ている。例えば、均一な分散値をもつ伝送系における非
零分散波長領域での四光波混合光のパワーが増減する周
期Zc1は、光信号波長をλi,λj ,λk (λi
λk ,λj ≠λk )、真空中での光速度をc、光ファイ
バ伝送路における波長λk での分散値をDとすると、
Further, it is known that the power of the four-wave mixed light periodically increases and decreases along the transmission line as shown in FIG. For example, the period Zc1 in which the power of the four-wave mixing light in the non-zero dispersion wavelength region in the transmission system having a uniform dispersion value increases or decreases, the optical signal wavelengths are λ i , λ j , λ ki
λ k , λ j ≠ λ k ), c is the light velocity in vacuum, and D is the dispersion value at the wavelength λ k in the optical fiber transmission line.

【0008】[0008]

【数3】 [Equation 3]

【0009】となることが知られている。また、零分散
波長付近での四光波混合光のパワーが増減する周期Zc2
は、さらに零分散波長をλ0 、波長λk における分散ス
ロープをdD/dλとすると、
It is known that In addition, the cycle Zc2 at which the power of the four-wave mixing light near the zero-dispersion wavelength increases or decreases
Is a zero-dispersion wavelength λ 0 and a dispersion slope at a wavelength λ k is dD / dλ,

【0010】[0010]

【数4】 [Equation 4]

【0011】となることが知られている。本発明は、分
散補償を行う波長多重中継伝送系において、光信号波長
と伝送路分散値と中継器間隔と分散補償間隔の関係に着
目し、四光波混合光の発生を最小限に抑えることができ
る光増幅中継伝送システムを提供することを目的とす
る。
It is known that The present invention focuses on the relationship between the optical signal wavelength, the transmission line dispersion value, the repeater interval, and the dispersion compensation interval in a wavelength-multiplexed repeater transmission system that performs dispersion compensation, and minimizes the generation of four-wave mixing light. It is an object of the present invention to provide an optical amplification repeater transmission system that can be performed.

【0012】[0012]

【課題を解決するための手段】本発明の光増幅中継伝送
システムは、分散補償を行う波長多重中継伝送系におい
て、最適な中継器間隔または分散補償間隔を設定するこ
とにより、四光波混合光の発生を最小限に抑えることを
特徴とする。
The optical amplification repeater transmission system of the present invention is a wavelength division multiplex repeater transmission system for performing dispersion compensation, by setting an optimum repeater interval or dispersion compensation interval, thereby It is characterized by minimizing the occurrence.

【0013】本願発明者は、図2に示すように、中継器
間隔Za と上記の周期Zc1の比が整数となるときに、四
光波混合光パワーが急激に増大することを確認した。こ
こで、四光波混合光は波長λi (=λj )の光信号と波
長λk の光信号により発生するものとした。図2におけ
る○および□は分散補償を行う場合であり、●および■
は分散補償を行わない場合である。また、図2における
○および●は光信号波長差Δλが 0.4nmであり、□お
よび■はΔλが 0.6nmである。×は実験値である。
As shown in FIG. 2, the inventor of the present application has confirmed that the four-wave mixing optical power rapidly increases when the ratio of the repeater interval Za and the period Zc1 is an integer. Here, it is assumed that the four-wave mixed light is generated by an optical signal of wavelength λ i (= λ j ) and an optical signal of wavelength λ k . The circles and squares in Fig. 2 are for compensation of dispersion, and the circles and squares are
Indicates the case where dispersion compensation is not performed. In FIG. 2, ◯ and ● have an optical signal wavelength difference Δλ of 0.4 nm, and □ and ■ have a Δλ of 0.6 nm. × is an experimental value.

【0014】すなわち、分散補償を行う波長多重伝送系
では、伝送路の大部分が非零分散の光ファイバであるの
で、その光ファイバ伝送路における波長λk での分散値
をDとしたときに、中継器間隔Za が周期Zc1の倍数に
なると、四光波混合光のパワーが増大する。したがっ
て、mを整数とすると、 Za /Zc1≠m となるように、すなわち、
That is, in the wavelength division multiplexing transmission system for dispersion compensation, most of the transmission line is an optical fiber of non-zero dispersion, and therefore, when the dispersion value at the wavelength λ k in the optical fiber transmission line is D. When the repeater spacing Za becomes a multiple of the cycle Zc1, the power of the four-wave mixing light increases. Therefore, if m is an integer, Za / Zc1 ≠ m, that is,

【0015】[0015]

【数5】 [Equation 5]

【0016】となるように、光信号波長λi ,λj ,λ
k 、分散値D、または中継器間隔Zaを設定する。例え
ば、四光波混合光を発生する光信号波長λi ,λj ,λ
k および分散値Dが決まっている場合には、周期Zc1を
求め、中継器間隔Za が周期Zc1の不等倍になるように
設定することにより、四光波混合光の発生を抑圧するこ
とができる。また、光信号波長数が多数になる場合に
は、各3波の組み合わせ、またはλi=λj として各2
波の組み合わせによるそれぞれの周期Zc1を求め、それ
らの不等倍になるように中継器間隔Za を設定すればよ
い。
So that the optical signal wavelengths λ i , λ j , λ
Set k , variance value D, or repeater spacing Za. For example, optical signal wavelengths λ i , λ j , λ that generate four-wave mixing light
When k and the dispersion value D are determined, the period Zc1 is obtained and the repeater interval Za is set to be unequal to the period Zc1, so that the generation of the four-wave mixed light can be suppressed. . When the number of optical signal wavelengths is large, a combination of three waves or λ i = λ j is used for each of 2 waves.
It suffices to find the respective cycles Zc1 by the combination of waves and set the repeater interval Za so as to make them unequal times.

【0017】また、図3に示すように、分散補償間隔Z
cmp と上記の周期Zc2の比が整数となるときに、四光波
混合光パワーが急激に増大することを確認した。ここ
で、四光波混合光は波長λi (=λj)の光信号と波長λ
k の光信号により発生するものとした。図3における○
は光信号波長差Δλが 0.4nmであり、□はΔλが 0.6
nmであり、●はΔλが 0.388nmである。また、伝送
路の平均の零分散周波数をf0 、光信号周波数をf1
2 としたときに、○および□はf0=(f1+f2)/2の場
合であり、●はf0=f2−6(f2−f1) の場合である。×は
実験値である。
Further, as shown in FIG. 3, the dispersion compensation interval Z
It was confirmed that when the ratio of cmp to the above-mentioned period Zc2 is an integer, the four-wave mixing light power sharply increases. Here, the four-wave mixed light is an optical signal of wavelength λ i (= λ j ) and a wavelength λ i (= λ j ).
It is assumed to be generated by an optical signal of k . ○ in Figure 3
Indicates that the optical signal wavelength difference Δλ is 0.4 nm, and □ indicates that Δλ is 0.6 nm.
and Δ indicates a Δλ of 0.388 nm. Further, the average zero-dispersion frequency of the transmission line is f 0 , the optical signal frequency is f 1 ,
When f 2 is set, ◯ and □ are the case of f 0 = (f 1 + f 2 ) / 2, and ● is the case of f 0 = f 2 −6 (f 2 −f 1 ). × is an experimental value.

【0018】すなわち、分散補償を行う波長多重伝送系
では伝送路全体の分散値が零となるので、伝送路全体で
の平均の零分散波長をλ0 、伝送路全体におけるλk
の分散スロープをdD/dλとしたときに、分散補償間
隔Zcmp が周期Zc2の倍数になると、四光波混合光のパ
ワーが増大する。したがって、nを整数とすると、 Zcmp /Zc2≠n となるように、すなわち、
That is, since the dispersion value of the entire transmission line is zero in the wavelength division multiplexing transmission system for performing dispersion compensation, the average zero dispersion wavelength in the entire transmission line is λ 0 , and the dispersion slope at λ k in the entire transmission line is Is dD / dλ, and the dispersion compensation interval Zcmp becomes a multiple of the period Zc2, the power of the four-wave mixing light increases. Therefore, if n is an integer, Zcmp / Zc2 ≠ n, that is,

【0019】[0019]

【数6】 [Equation 6]

【0020】となるように、光信号波長λi ,λj ,λ
k 、伝送路全体での平均の零分散波長λ0 、または分散
補償間隔Zcmp を設定する。例えば、四光波混合光を発
生する光信号波長λi ,λj ,λk 、伝送路全体での平
均の零分散波長λ0 が決まっている場合には、周期Zc2
を求め、分散補償間隔Zcmp が周期Zc2の不等倍になる
ように設定することにより、四光波混合光の発生を抑圧
することができる。また、光信号波長数が多数になる場
合には、各3波の組み合わせ、またはλi =λj として
各2波の組み合わせにおけるそれぞれの周期Zc2を求
め、それらの不等倍になるように分散補償間隔Zcmp を
設定すればよい。
So that the optical signal wavelengths λ i , λ j , λ
k , the average zero-dispersion wavelength λ 0 in the entire transmission line, or the dispersion compensation interval Zcmp is set. For example, when the optical signal wavelengths λ i , λ j , and λ k that generate the four-wave mixed light and the average zero-dispersion wavelength λ 0 in the entire transmission line are determined, the cycle Zc2
And the dispersion compensation interval Zcmp is set to be unequal to the period Zc2, the generation of four-wave mixed light can be suppressed. Further, when the number of optical signal wavelengths is large, the respective periods Zc2 in the combination of each of the three waves or in the combination of each of the two waves with λ i = λ j are obtained and dispersed so as to be unequal times thereof. The compensation interval Zcmp may be set.

【0021】[0021]

【発明の実施の形態】図1は、本発明の光増幅中継伝送
システムの実施形態を示す。図において、送信装置1と
受信装置2との間には、光ファイバ伝送路3と光増幅中
継器4が交互に配置され、さらに適当な間隔で分散補償
器5が挿入され、伝送路全体の平均の分散値が零になる
ように設定される。ここで、光増幅中継器4が挿入され
る間隔を中継器間隔Za とし、分散補償器5が挿入され
る間隔を分散補償間隔Zcmp とする。以上の構成は従来
構成と同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of an optical amplification repeater transmission system of the present invention. In the figure, an optical fiber transmission line 3 and an optical amplification repeater 4 are alternately arranged between a transmission device 1 and a reception device 2, and a dispersion compensator 5 is inserted at an appropriate interval so that the entire transmission line is The average variance value is set to zero. Here, the interval at which the optical amplification repeater 4 is inserted is the repeater interval Za, and the interval at which the dispersion compensator 5 is inserted is the dispersion compensation interval Zcmp. The above configuration is the same as the conventional configuration.

【0022】本実施形態の特徴は、入力光信号波長およ
び光ファイバ伝送路3の分散値から周期Zc1を求め、中
継器間隔Za を周期Zc1の不等倍、すなわち Za /Zc1≠m (条件式1) となるように設定するところにある。
The feature of this embodiment is that the period Zc1 is obtained from the input optical signal wavelength and the dispersion value of the optical fiber transmission line 3, and the repeater interval Za is an unequal multiple of the period Zc1, that is, Za / Zc1 ≠ m (conditional expression It is in the place of setting so as to be 1).

【0023】また、入力光信号波長と伝送路全体の平均
の零分散波長と分散スロープから周期Zc2を求め、分散
補償間隔Zcmp を周期Zc2の不等倍、すなわち Zcmp /Zc2≠n (条件式2) となるように設定するところにある。なお、条件式1お
よび条件式2を同時に満たすことにより、四光波混合光
を最も効果的に抑圧することができる。
Further, the period Zc2 is obtained from the input optical signal wavelength, the average zero-dispersion wavelength of the entire transmission line and the dispersion slope, and the dispersion compensation interval Zcmp is an unequal multiple of the period Zc2, that is, Zcmp / Zc2 ≠ n (conditional expression 2 ) Is to be set. By satisfying conditional expressions 1 and 2 at the same time, the four-wave mixed light can be suppressed most effectively.

【0024】入力光信号波長λi ,λj ,λk と、伝送
路全体の平均の零分散波長λ0 の配置例を図4に示す。
例えば、λ0 =1553.0nm、λi =λj =1553.1nm、
λk=1552.7nm、光ファイバ伝送路3の分散値Dが−
1.5 ps/km/nmのとき、周期Zc1は33.5km、周期Zc2
は2400kmおよび7200kmとなる。このとき、中継器間
隔Za を50km、分散補償間隔Zcmp を3500kmとする
ことにより、それぞれ周期Zc1および周期Zc2の不等倍
とすることができ、過剰な四光波混合光の発生を抑圧す
ることができる。
FIG. 4 shows an arrangement example of the input optical signal wavelengths λ i , λ j and λ k and the average zero dispersion wavelength λ 0 of the entire transmission line.
For example, λ 0 = 1553.0 nm, λ i = λ j = 1553.1 nm,
λ k = 1552.7 nm, the dispersion value D of the optical fiber transmission line 3 is −
At 1.5 ps / km / nm, the cycle Zc1 is 33.5 km and the cycle Zc2 is
Will be 2400 km and 7200 km. At this time, by setting the repeater interval Za to 50 km and the dispersion compensation interval Zcmp to 3500 km, it is possible to make the periods Zc1 and Zc2 unequal times, and it is possible to suppress the generation of excessive four-wave mixing light. it can.

【0025】また、波長数が多くなる場合には、各3波
の組み合わせ、またはλi =λj として各2波の組み合
わせに応じて、周期Zc1および周期Zc2の数が増える。
この場合には、各組み合わせにおける周期Zc1および周
期Zc2を求め、それらの整数倍と中継器間隔および分散
補償間隔が一致しないように中継器間隔または分散補償
間隔を設定することにより、四光波混合光を効果的に抑
圧することができる。
When the number of wavelengths increases, the number of cycles Zc1 and Zc2 increases in accordance with the combination of three waves or the combination of two waves with λ i = λ j .
In this case, the cycle Zc1 and the cycle Zc2 in each combination are obtained, and the repeater interval or the dispersion compensation interval is set so that the integral multiples thereof and the repeater interval and the dispersion compensation interval do not match. Can be effectively suppressed.

【0026】なお、四光波混合光のパワーは、光信号の
波長間隔が狭いほど高いので、比較的波長差が近接して
いる光信号の組み合わせのみを対象として周期Zc1およ
び周期Zc2を求めてもよい。
Since the power of the four-wave mixing light is higher as the wavelength interval of the optical signals is narrower, even if the period Zc1 and the period Zc2 are obtained only for the combination of the optical signals whose wavelength differences are relatively close to each other. Good.

【0027】[0027]

【発明の効果】以上説明したように、本発明は、分散補
償を行う波長多重中継伝送系において、各光信号の波長
間隔が狭く、四光波混合光の影響が避けられない場合で
も、光信号波長、光ファイバ伝送路の分散値、中継器間
隔、分散補償間隔を適当に設定することにより、過剰な
四光波混合光の発生を抑圧することができる。
As described above, according to the present invention, in the wavelength division multiplex transmission system for dispersion compensation, even if the wavelength interval of each optical signal is narrow and the influence of the four-wave mixing light cannot be avoided, By appropriately setting the wavelength, the dispersion value of the optical fiber transmission line, the repeater interval, and the dispersion compensation interval, it is possible to suppress the generation of excessive four-wave mixing light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光増幅中継伝送システムの実施形態を
示す図。
FIG. 1 is a diagram showing an embodiment of an optical amplification repeater transmission system of the present invention.

【図2】中継器間隔Za および周期Zc1と四光波混合光
パワーの関係を示す図。
FIG. 2 is a diagram showing a relationship between a repeater interval Za, a cycle Zc1, and four-wave mixing light power.

【図3】分散補償間隔Zcmp および周期Zc2と四光波混
合光パワーの関係を示す図。
FIG. 3 is a diagram showing the relationship between the dispersion compensation interval Zcmp, the period Zc2, and the four-wave mixing light power.

【図4】入力光信号波長λi ,λj ,λk と伝送路の平
均の零分散波長λ0 の配置例を示す図。
FIG. 4 is a diagram showing an arrangement example of input optical signal wavelengths λ i , λ j , and λ k and an average zero-dispersion wavelength λ 0 of a transmission line.

【図5】四光波混合光のパワーが増減する周期を示す
図。
FIG. 5 is a diagram showing a cycle in which the power of four-wave mixing light increases and decreases.

【図6】分散補償を行う従来の光増幅中継伝送システム
の構成例を示す図。
FIG. 6 is a diagram showing a configuration example of a conventional optical amplification relay transmission system that performs dispersion compensation.

【符号の説明】[Explanation of symbols]

1 送信装置 2 受信装置 3 光ファイバ伝送路 4 光増幅中継器 5 分散補償器 1 transmitter 2 Receiver 3 Optical fiber transmission line 4 Optical amplification repeater 5 Dispersion compensator

フロントページの続き (56)参考文献 特開 平7−107069(JP,A) 特開 平7−74699(JP,A) 特開 平9−23187(JP,A) 松田俊哉 他,高密度波長多重におけ る四光波混合抑圧のための分散配置法, 1998年電子情報通信学会通信ソサイエテ ィ大会講演論文集2,日本,社団法人電 子情報通信学会,1998年 9月 7日, B−10−165,p.487 T.Matsuda, et a l., Dispersion Man agement Scheme for Suppressing FWM i n DWDM Transmisso n, Lasers and Elec tro−Optics Society Annual Meeting 1998 IEEE, IEEE, 1998年12月 1日,Vol.1, Referen ces cited 6,, pp. 372−373 (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-7-1007069 (JP, A) JP-A-7-74699 (JP, A) JP-A-9-23187 (JP, A) Toshiya Matsuda et al., High-density WDM Distributed Allocation Method for Suppressing Four-Wave Mixing in Japan, Proceedings of the 1998 IEICE Communications Society Conference 2, Japan, The Institute of Electronics, Information and Communication Engineers, September 7, 1998, B-10- 165, p. 487 T.I. Matsuda, et al. , Dispersion Management Scheme for Suppressing FWM in DWDM Transmisson, Lasers and Electro-Optics Society Anniversary, 1998 Enematic Meeting, 1998. 1, References cited 6, pp. 372-373 (58) Fields investigated (Int.Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 JISST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 波長λk での分散値がDである光ファイ
バ伝送路と、 前記光ファイバ伝送路に所定の間隔(中継器間隔)Za
で挿入される光増幅中継器と、 前記光ファイバ伝送路に所定の間隔(分散補償間隔)Z
cmp で挿入され、伝送路全体における波長λ0 での平均
の分散値が零となるように前記光ファイバ伝送路の群速
度分散を補償する分散補償器とを備え、 波長多重光信号を伝送する光増幅中継伝送システムにお
いて、 光信号波長をλi ,λj ,λk (λi≠λk,λj
λk)、真空中での光速度をcとし、mを整数としたと
きに、 【数1】 を満足するように、信号光波長λi ,λj ,λk 、分散
値D、中継器間隔Za を設定することを特徴とする光増
幅中継伝送システム。
1. An optical fiber transmission line having a dispersion value D at a wavelength λ k , and a predetermined interval (repeater interval) Za between the optical fiber transmission lines.
And an optical amplifier repeater inserted in the optical fiber transmission line, and a predetermined interval (dispersion compensation interval) Z in the optical fiber transmission line.
It is equipped with a dispersion compensator that is inserted at cmp and that compensates the group velocity dispersion of the optical fiber transmission line so that the average dispersion value at wavelength λ 0 in the entire transmission line becomes zero, and transmits wavelength multiplexed optical signals. In the optical amplification repeater transmission system, the optical signal wavelengths are λ i , λ j , λ ki ≠ λ k , λ j
λ k ), the speed of light in vacuum is c, and m is an integer, An optical amplification repeater transmission system characterized in that signal light wavelengths λ i , λ j , λ k , dispersion value D, and repeater interval Za are set so as to satisfy
【請求項2】 3波以上の波長多重光信号を伝送する際
に、各3波の組み合わせ、またはλi =λj として各2
波の組み合わせに応じて、条件式1を満たす中継器間隔
Za を設定することを特徴とする請求項1に記載の光増
幅中継伝送システム。
2. When transmitting a wavelength-multiplexed optical signal of three or more waves, a combination of three waves or two each with λ i = λ j.
2. The optical amplification repeater transmission system according to claim 1, wherein the repeater interval Za satisfying conditional expression 1 is set according to the combination of waves.
【請求項3】 波長λk での分散値がDである光ファイ
バ伝送路と、 前記光ファイバ伝送路に所定の間隔(中継器間隔)Za
で挿入される光増幅中継器と、 前記光ファイバ伝送路に所定の間隔(分散補償間隔)Z
cmp で挿入され、伝送路全体における波長λ0 での平均
の分散値が零となるように前記光ファイバ伝送路の群速
度分散を補償する分散補償器とを備え、 波長多重光信号を伝送する光増幅中継伝送システムにお
いて、 光信号波長をλi ,λj ,λk (λi≠λk,λj
λk)、真空中での光速度をc、伝送路全体における波
長λk での分散スロープをdD/dλとし、mを整数と
したときに、 【数2】 を満足するように、信号光波長λi ,λj ,λk 、平均
の零分散波長λ0 、分散補償間隔Zcmp を設定すること
を特徴とする光増幅中継伝送システム。
3. An optical fiber transmission line having a dispersion value D at a wavelength λ k , and a predetermined spacing (repeater spacing) Za between the optical fiber transmission lines.
And an optical amplifier repeater inserted in the optical fiber transmission line, and a predetermined interval (dispersion compensation interval) Z in the optical fiber transmission line.
It is equipped with a dispersion compensator that is inserted at cmp and that compensates the group velocity dispersion of the optical fiber transmission line so that the average dispersion value at wavelength λ 0 in the entire transmission line becomes zero, and transmits wavelength multiplexed optical signals. In the optical amplification repeater transmission system, the optical signal wavelengths are λ i , λ j , λ ki ≠ λ k , λ j
λ k ), the speed of light in vacuum is c, the dispersion slope at the wavelength λ k in the entire transmission line is dD / dλ, and m is an integer, An optical amplification repeater transmission system characterized in that the signal light wavelengths λ i , λ j , λ k , the average zero-dispersion wavelength λ 0 , and the dispersion compensation interval Zcmp are set so as to satisfy
【請求項4】 3波以上の波長多重光信号を伝送する際
に、各3波の組み合わせ、またはλi =λj として各2
波の組み合わせに応じて、条件式2を満たす分散補償間
隔Zcmp を設定することを特徴とする請求項3に記載の
光増幅中継伝送システム。
4. When transmitting a wavelength-division-multiplexed optical signal of three or more waves, a combination of three waves or two each with λ i = λ j.
The optical amplification repeater transmission system according to claim 3, wherein the dispersion compensation interval Zcmp that satisfies the conditional expression 2 is set according to the combination of waves.
JP22906498A 1998-08-13 1998-08-13 Optical amplification repeater transmission system Expired - Fee Related JP3502546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22906498A JP3502546B2 (en) 1998-08-13 1998-08-13 Optical amplification repeater transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22906498A JP3502546B2 (en) 1998-08-13 1998-08-13 Optical amplification repeater transmission system

Publications (2)

Publication Number Publication Date
JP2000059314A JP2000059314A (en) 2000-02-25
JP3502546B2 true JP3502546B2 (en) 2004-03-02

Family

ID=16886181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22906498A Expired - Fee Related JP3502546B2 (en) 1998-08-13 1998-08-13 Optical amplification repeater transmission system

Country Status (1)

Country Link
JP (1) JP3502546B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.Matsuda, et al., Dispersion Management Scheme for Suppressing FWM in DWDM Transmisson, Lasers and Electro−Optics Society Annual Meeting 1998 IEEE, IEEE, 1998年12月 1日,Vol.1, References cited 6,, pp.372−373
松田俊哉 他,高密度波長多重における四光波混合抑圧のための分散配置法,1998年電子情報通信学会通信ソサイエティ大会講演論文集2,日本,社団法人電子情報通信学会,1998年 9月 7日,B−10−165,p.487

Also Published As

Publication number Publication date
JP2000059314A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
US6487005B2 (en) Optical fiber transmission system with chromatic dispersion compensation
EP0936761B1 (en) Wavelength division multiplexing optical transmission system
US7831118B2 (en) Coarse wavelength division multiplexing optical transmission system, and coarse wavelength division multiplexing optical transmission method
US6043914A (en) Dense WDM in the 1310 nm band
US6366376B1 (en) Optical transmitting device using wavelength division multiplexing to transmit signal lights having frequencies arranged to eliminate effects of four-wave mixing (FWM)
US6567577B2 (en) Method and apparatus for providing chromatic dispersion compensation in a wavelength division multiplexed optical transmission system
JP3464424B2 (en) Chromatic dispersion compensation method and optical transmission system
JP3320996B2 (en) WDM optical transmission equipment
Taga Long distance transmission experiments using the WDM technology
CA2316857A1 (en) A long-haul terrestrial optical fiber link having low-power optical line amplifiers with integrated dispersion compensation modules
Murakami et al. Long-haul 16 x 10 Gb/s WDM transmission experiment using higher order fiber dispersion management technique
JP3352570B2 (en) Noise suppression method for WDM transmission system
US7003226B2 (en) Wavelength division multiplex optical transmission system
JPH11103286A (en) Wavelength multiplexed light transmitting device
JP4094973B2 (en) Chromatic dispersion compensation system
JP3502546B2 (en) Optical amplification repeater transmission system
JP3291370B2 (en) Optical WDM transmission system
Lee et al. Periodic allocation of a set of unequally spaced channels for WDM systems adopting dispersion-shifted fibers
EP1053614A1 (en) Dense wdm in the 1310nm band
Taga et al. Long-distance WDM transmission experiments using the dispersion slope compensator
JP3533307B2 (en) Optical WDM transmission equipment
JP3756354B2 (en) WDM transmission system
JP3515358B2 (en) Wavelength division multiplexing type optical transmission system and method
JP3547607B2 (en) Wavelength division multiplexing type optical transmission system
JP3727520B2 (en) WDM transmission system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees