JP3500878B2 - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JP3500878B2
JP3500878B2 JP29178196A JP29178196A JP3500878B2 JP 3500878 B2 JP3500878 B2 JP 3500878B2 JP 29178196 A JP29178196 A JP 29178196A JP 29178196 A JP29178196 A JP 29178196A JP 3500878 B2 JP3500878 B2 JP 3500878B2
Authority
JP
Japan
Prior art keywords
optical fiber
optical
terminal
rare
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29178196A
Other languages
Japanese (ja)
Other versions
JPH10135544A (en
Inventor
雅彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP29178196A priority Critical patent/JP3500878B2/en
Publication of JPH10135544A publication Critical patent/JPH10135544A/en
Application granted granted Critical
Publication of JP3500878B2 publication Critical patent/JP3500878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、光ファイバを用い
た光増幅器に関する。 【0002】 【従来の技術】従来の光増幅器について図2を用いて説
明する。図2は従来の光増幅器のブロック図である。 【0003】同図に示すように、信号光Liが入力され
る光ファイバ1が光アイソレータ2を介して希土類添加
光ファイバ3の入力側に接続されると共にその間に、光
合分波器4が接続されている。光合分波器4には励起光
源5が接続され、希土類添加光ファイバ3の出力側には
光アイソレータ6を介して信号光Loが出力する光ファ
イバ7が接続されて光増幅器8が構成されている。 【0004】このような光増幅器8において、信号光L
i(パワーPi)は、光アイソレータ2及び光合分波器
4を経て希土類添加光ファイバ3に入力される。励起光
源5より出力される励起光は、光合分波器4を介して希
土類添加光ファイバ3に入力される。励起光は添加され
た希土類イオンの励起準位に相当する波長を有してい
る。励起光により形成された希土類イオンのエネルギー
準位の反転分布により生ずる誘導放出現象により信号光
Liが増幅される。増幅された信号光Loは光アイソレ
ータ6を経て光ファイバ7から出力される。 【0005】ここで、光増幅器8の入出力側に設けられ
た光アイソレータ2,6は、外部からの反射により信号
光Li,Loや自然放出光が再び光増幅器8内に戻り、
発振等の不安定状態に陥るのを防止するためのものであ
る。尚、図2に示した従来例では希土類添加光ファイバ
の前方(信号光入射側)から励起する光増幅器について
述べたが、後方(信号光出力側)から励起するものもあ
る。 【0006】 【発明が解決しようとする課題】ところで、希土類添加
光ファイバを用いた光増幅器の実用例としてエルビウム
(Er)を添加した光ファイバ増幅器(以下EDFAと
略す)がある。これは、増幅波長帯が石英系光ファイバ
の最低損失波長帯(1.55μm帯)に一致し、しかも
効率が良く、高利得、低雑音の増幅特性が容易に得られ
ることから、光伝送システムに急速に普及しつつある。 【0007】しかしながら、EDFAにおいてはEr添
加光ファイバの光の吸収、放出スペクトラム形状に依存
して利得の波長依存性が生じるので、異なる波長の複数
の信号光を多重化して伝送する波長多重光伝送方式にE
DFAを用いる場合に障害となる。すなわち、EDFA
は波長多重化された複数の信号光を一括して増幅できる
ことが大きな利点である。 【0008】しかし各波長の信号光の増幅率が異なる
と、受信端における各波長の信号レベル、信号対雑音比
に偏差を生じ、全体の伝送性能が低下してしまう。ED
FAを多段接続して長距離を伝送させるシステムでは、
上述した影響がさらに顕著に現れる。 【0009】そこで、EDFAの利得の波長依存性を低
減するために様々な改善が試みられている。これらの改
善例としては、高濃度のアルミニウム(Al)を共添加
することによる利得の波長依存性の低減や、光フィルタ
による等化などが検討されており、成果を上げている。
例えば、高濃度のAlを共添加することにより図3の実
線L1のような利得の波長依存性が得られており、波長
λ1(1.53μm付近)では利得のピークが残るもの
の、波長λ2(1.55μm付近)においては利得の平
坦性が得られている。尚、図3は図2に示した光増幅器
の波長と利得との関係を示す図であり、横軸が波長、縦
軸が利得を示している。 【0010】図4は光増幅器の他の従来例を示すブロッ
ク図である。 【0011】図2に示した光増幅器との相違点は選択的
に波長λ1近傍の光を減衰させる光フィルタ9を光増幅
器8の出力側に挿入した点である。光フィルタ9を挿入
した光増幅器8を用いることにより、図3の波線L2に
示すような平坦な利得特性を得ることができる。 【0012】しかしながら、利得の波長依存性を厳密に
補償する光フィルタ9を作成するのは困難である。また
利得の波長依存性は信号光Liのパワーなどの条件によ
っても変化するので、広い動作範囲において利得の波長
依存性を補償するのは不可能である。このため、広い波
長範囲にわたって利得の波長依存性が小さく、しかも製
作の容易な光増幅器が望まれる。 【0013】そこで、本発明の目的は、上記課題を解決
し、利得、雑音特性などを損なうことなく、利得の波長
依存性を低減した光増幅器を提供することにある。 【0014】 【課題を解決するための手段】上記目的を達成するため
に本発明は、信号光が入力される光ファイバが、端子A
から端子B、端子B端子Cへの順方向伝達特性を有する
光サーキュレータの端子Aに接続され、この光サーキュ
レータの端子Bは、第1の希土類添加光ファイバの一端
に接続されると共にその間に励起光源が接続された光合
分波器が接続され、前記第1の希土類添加光ファイバの
他端は第2の希土類添加光ファイバの一端に接続される
と共にその間に、信号光を通過させ励起光のみを選択的
に反射する波長選択性の光反射器が接続されると共に前
記第2の希土類添加光ファイバの他端には全反射器が接
続されてなるものである。 【0015】本発明によれば、希土類添加光ファイバの
光路中に励起されない他の希土類添加光ファイバを設け
たことにより、希土類添加光ファイバの吸収特性によっ
て増幅利得の波長依存性が緩和される。また、励起光が
通過する光合分波器の台数が減少することにより過剰な
励起光パワーの損失を防ぐことができる。さらに、利得
特性、雑音特性等従来の光増幅器の特性を損なうことな
く、利得の波長依存性の低減が可能である。さらにま
た、簡単な構成で小型化、低価格化が可能である。 【0016】 【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。 【0017】図1は本発明の光増幅器の一実施例を示す
ブロック図である。尚、図2に示した従来例と同様の部
材には共通の符号を用いた。 【0018】図1に示す光増幅器21において、信号光
Liが入力される光ファイバ1が光サーキュレータ22
の端子Aに接続され、光サーキュレータ22の端子Bは
希土類添加光ファイバ3aの一端に接続されると共にそ
の間に光合分波器4が接続されている。光合分波器4に
は励起光源5が接続されている。希土類添加光ファイバ
3aの他端は希土類添加光ファイバ3bの一端に接続さ
れると共にその間に、信号光を通過させ励起光のみを選
択的に反射する波長選択性の光反射器19が接続されて
いる。希土類添加光ファイバ3bの他端には全反射器2
3が接続されている。尚、光サーキュレータ22は端子
Aから端子B、端子Bから端子Cへの順方向伝達特性を
有するものとする。 【0019】このような光増幅器21において、光サー
キュレータ22の端子Aから入力した信号光Liは端子
Bから出力し、光合分波器4により励起光源5から出射
される励起光と合波されて希土類添加光ファイバ3aに
入力する。信号光は励起光により励起された希土類添加
光ファイバ3aを通過することにより増幅される。希土
類添加光ファイバ3aを通過した励起光は波長選択性の
光反射器19により反射され、増幅された信号光は光反
射器19を通過して希土類添加光ファイバ3bに至り、
希土類添加光ファイバ3bを通過した後、全反射器23
により反射され、ここまでの経路を再び戻り光サーキュ
レータ22の端子Bより端子Cに出力され光ファイバ7
から出力される。 【0020】このような構成により、増幅された信号光
が、励起されていない希土類添加光ファイバ3bを通過
することにより一部吸収され、利得の波長依存性が軽減
される。また、高効率、高利得といった反射型光増幅器
の特徴をそのまま活かすことができる。 【0021】以上において本実施の形態によれば、増幅
された信号光を励起されていない希土類添加光ファイバ
に通すことにより、希土類添加光ファイバの吸収特性に
応じた損失を付加させ、これにより利得の波長依存性を
低減することができる。また、希土類添加光ファイバの
吸収特性は過飽和特性を有し、入力した信号光のパワー
に依存するので、利得の波長依存性の小さい飽和領域
(入力した信号光のパワーの大きな領域)では吸収が小
さくなる。従って、入力した信号光のパワーに応じて吸
収特性が変化し、広い入力範囲で利得の波長依存性を低
減する効果がある。さらに、利得特性、雑音特性等従来
の光増幅器の特性を損なうことなく、利得の波長依存性
の低減が可能である。さらにまた、簡単な構成で小型
化、低価格化が可能である。 【0022】 【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。 【0023】信号光が入力される光ファイバが、端子A
から端子B、端子B端子Cへの順方向伝達特性を有する
光サーキュレータの端子Aに接続され、この光サーキュ
レータの端子Bは、第1の希土類添加光ファイバの一端
に接続されると共にその間に励起光源が接続された光合
分波器が接続され、前記第1の希土類添加光ファイバの
他端は第2の希土類添加光ファイバの一端に接続される
と共にその間に、信号光を通過させ励起光のみを選択的
に反射する波長選択性の光反射器が接続されると共に前
記第2の希土類添加光ファイバの他端には全反射器が接
続されたので、利得、雑音特性などを損なうことなく、
利得の波長依存性を低減した光増幅器の提供を実現する
ことができると共に、励起光が通過する光合分波器の台
数が減少することにより過剰な励起光パワーの損失を防
ぐことができ、しかも、簡単な構成で小型化、低価格化
が可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplifier using an optical fiber. 2. Description of the Related Art A conventional optical amplifier will be described with reference to FIG. FIG. 2 is a block diagram of a conventional optical amplifier. As shown in FIG. 1, an optical fiber 1 to which a signal light Li is input is connected to an input side of a rare earth doped optical fiber 3 via an optical isolator 2, and an optical multiplexer / demultiplexer 4 is connected therebetween. Have been. An excitation light source 5 is connected to the optical multiplexer / demultiplexer 4, and an optical fiber 7 for outputting signal light Lo via an optical isolator 6 is connected to an output side of the rare earth-doped optical fiber 3 to constitute an optical amplifier 8. I have. In such an optical amplifier 8, the signal light L
i (power Pi) is input to the rare earth-doped optical fiber 3 via the optical isolator 2 and the optical multiplexer / demultiplexer 4. The pumping light output from the pumping light source 5 is input to the rare earth-doped optical fiber 3 via the optical multiplexer / demultiplexer 4. The excitation light has a wavelength corresponding to the excitation level of the added rare earth ion. The signal light Li is amplified by a stimulated emission phenomenon caused by a population inversion of the energy level of the rare earth ion formed by the excitation light. The amplified signal light Lo is output from the optical fiber 7 via the optical isolator 6. Here, the optical isolators 2 and 6 provided on the input and output sides of the optical amplifier 8 return the signal lights Li and Lo and the spontaneous emission light to the optical amplifier 8 again by reflection from the outside.
This is for preventing an unstable state such as oscillation from being caused. In the conventional example shown in FIG. 2, an optical amplifier that pumps from the front (signal light incident side) of the rare earth doped optical fiber has been described, but there is also an optical amplifier that pumps from the rear (signal light output side). As a practical example of an optical amplifier using a rare-earth-doped optical fiber, there is an optical fiber amplifier (hereinafter abbreviated as EDFA) doped with erbium (Er). This is because the amplification wavelength band coincides with the lowest loss wavelength band (1.55 μm band) of the silica-based optical fiber, and high efficiency, high gain and low noise amplification characteristics can be easily obtained. Is spreading rapidly. However, in the EDFA, the wavelength dependence of the gain occurs depending on the shape of the light absorption and emission spectrum of the Er-doped optical fiber. Therefore, the wavelength multiplexing optical transmission for multiplexing and transmitting a plurality of signal lights of different wavelengths. Type E
An obstacle when using DFA. That is, EDFA
Is a great advantage that a plurality of wavelength-multiplexed signal lights can be amplified collectively. However, if the amplification factor of the signal light of each wavelength is different, a deviation occurs in the signal level and the signal-to-noise ratio of each wavelength at the receiving end, and the overall transmission performance is reduced. ED
In a system in which FAs are connected in multiple stages and transmitted over long distances,
The above-mentioned effects appear more remarkably. Various attempts have been made to reduce the wavelength dependence of the gain of the EDFA. As examples of these improvements, reduction of the wavelength dependence of gain by co-doping with high concentration of aluminum (Al), equalization by an optical filter, and the like have been studied, and the results have been achieved.
For example, by co-doping Al at a high concentration, the wavelength dependence of the gain as shown by the solid line L1 in FIG. 3 is obtained. Although the gain peak remains at the wavelength λ1 (around 1.53 μm), the wavelength λ2 ( (At around 1.55 μm), gain flatness is obtained. FIG. 3 is a diagram showing the relationship between the wavelength and the gain of the optical amplifier shown in FIG. 2, in which the horizontal axis represents the wavelength and the vertical axis represents the gain. FIG. 4 is a block diagram showing another conventional example of an optical amplifier. The difference from the optical amplifier shown in FIG. 2 is that an optical filter 9 for selectively attenuating light near the wavelength λ1 is inserted on the output side of the optical amplifier 8. By using the optical amplifier 8 in which the optical filter 9 is inserted, a flat gain characteristic as shown by a broken line L2 in FIG. 3 can be obtained. However, it is difficult to produce an optical filter 9 that strictly compensates for the wavelength dependence of the gain. Further, since the wavelength dependence of the gain changes depending on conditions such as the power of the signal light Li, it is impossible to compensate for the wavelength dependence of the gain in a wide operating range. Therefore, there is a demand for an optical amplifier which has a small wavelength dependence of gain over a wide wavelength range and is easy to manufacture. It is an object of the present invention to solve the above-mentioned problems and to provide an optical amplifier in which the wavelength dependence of the gain is reduced without impairing the gain and noise characteristics. In order to achieve the above object, the present invention provides an optical fiber for receiving signal light, comprising:
Is connected to a terminal A of an optical circulator having a forward transmission characteristic from a terminal B to a terminal B to a terminal C. The terminal B of the optical circulator is connected to one end of the first rare earth-doped optical fiber and excited during the connection. An optical multiplexer / demultiplexer to which a light source is connected is connected, and the other end of the first rare-earth-doped optical fiber is connected to one end of a second rare-earth-doped optical fiber. And a total reflector is connected to the other end of the second rare earth-doped optical fiber. According to the present invention, the wavelength dependence of the amplification gain is alleviated by the absorption characteristic of the rare-earth-doped optical fiber by providing another rare-earth-doped optical fiber that is not pumped in the optical path of the rare-earth-doped optical fiber. In addition, since the number of optical multiplexers / demultiplexers through which the pump light passes decreases, excessive loss of the pump light power can be prevented. Further, the wavelength dependence of the gain can be reduced without deteriorating the characteristics of the conventional optical amplifier such as the gain characteristic and the noise characteristic. Furthermore, downsizing and cost reduction are possible with a simple configuration. Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing one embodiment of the optical amplifier of the present invention. The same members as those of the conventional example shown in FIG. In the optical amplifier 21 shown in FIG. 1, the optical fiber 1 to which the signal light Li is input is connected to an optical circulator 22.
The terminal B of the optical circulator 22 is connected to one end of the rare-earth-doped optical fiber 3a, and the optical multiplexer / demultiplexer 4 is connected therebetween. An excitation light source 5 is connected to the optical multiplexer / demultiplexer 4. The other end of the rare-earth-doped optical fiber 3a is connected to one end of the rare-earth-doped optical fiber 3b, and a wavelength-selective optical reflector 19 that allows signal light to pass therethrough and selectively reflects only the excitation light is connected therebetween. I have. A total reflector 2 is provided at the other end of the rare earth-doped optical fiber 3b.
3 are connected. It is assumed that the optical circulator 22 has a forward transmission characteristic from the terminal A to the terminal B and from the terminal B to the terminal C. In such an optical amplifier 21, the signal light Li input from the terminal A of the optical circulator 22 is output from the terminal B, and multiplexed with the pump light emitted from the pump light source 5 by the optical multiplexer / demultiplexer 4. Input to the rare earth doped optical fiber 3a. The signal light is amplified by passing through the rare earth-doped optical fiber 3a excited by the pump light. The excitation light that has passed through the rare earth-doped optical fiber 3a is reflected by the wavelength-selective optical reflector 19, and the amplified signal light passes through the light reflector 19 and reaches the rare earth-doped optical fiber 3b.
After passing through the rare earth-doped optical fiber 3b, the total reflector 23
The optical fiber 7 is returned from the terminal B of the optical circulator 22 to the terminal C,
Output from According to such a configuration, the amplified signal light is partially absorbed by passing through the unexcited rare earth-doped optical fiber 3b, and the wavelength dependence of the gain is reduced. Further, the characteristics of the reflection type optical amplifier such as high efficiency and high gain can be utilized as it is. As described above, according to the present embodiment, by passing the amplified signal light through the unexcited rare earth-doped optical fiber, a loss corresponding to the absorption characteristics of the rare earth-doped optical fiber is added, thereby increasing the gain. Can be reduced in wavelength dependence. Further, the absorption characteristics of the rare-earth-doped optical fiber have supersaturation characteristics and depend on the power of the input signal light. Therefore, the absorption is small in the saturation region where the wavelength dependence of the gain is small (the region where the power of the input signal light is large). Become smaller. Therefore, the absorption characteristics change according to the power of the input signal light, and there is an effect of reducing the wavelength dependence of the gain in a wide input range. Further, the wavelength dependence of the gain can be reduced without deteriorating the characteristics of the conventional optical amplifier such as the gain characteristic and the noise characteristic. Furthermore, downsizing and cost reduction are possible with a simple configuration. In summary, according to the present invention, the following excellent effects are exhibited. The optical fiber into which the signal light is input is connected to the terminal A
Is connected to a terminal A of an optical circulator having a forward transmission characteristic from a terminal B to a terminal B to a terminal C. The terminal B of the optical circulator is connected to one end of the first rare earth-doped optical fiber and excited during the connection. An optical multiplexer / demultiplexer to which a light source is connected is connected, and the other end of the first rare-earth-doped optical fiber is connected to one end of a second rare-earth-doped optical fiber. Is connected to the other end of the second rare-earth-doped optical fiber, and the total reflector is connected to the other end of the second rare-earth-doped optical fiber.
It is possible to provide an optical amplifier in which the wavelength dependence of the gain is reduced, and it is possible to prevent an excessive loss of the power of the pumping light by reducing the number of optical multiplexers / demultiplexers through which the pumping light passes. It is possible to reduce the size and cost with a simple configuration.

【図面の簡単な説明】 【図1】本発明の光増幅器の一実施の形態を示すブロッ
ク図である。 【図2】従来の光増幅器のブロック図である。 【図3】図2に示した光増幅器の波長と利得との関係を
示す図である。 【図4】光増幅器の他の従来例を示すブロック図であ
る。 【符号の説明】 1,7 光ファイバ 3a,3b 希土類添加光ファイバ 4, 光合分波器 5 励起光源 19 波長選択性の光反射器 22 光サーキュレータ 23 全反射器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of an optical amplifier according to the present invention. FIG. 2 is a block diagram of a conventional optical amplifier. FIG. 3 is a diagram illustrating a relationship between a wavelength and a gain of the optical amplifier illustrated in FIG. 2; FIG. 4 is a block diagram showing another conventional example of an optical amplifier. [Description of Signs] 1,7 Optical fibers 3a, 3b Rare earth doped optical fiber 4, Optical multiplexer / demultiplexer 5 Excitation light source 19 Wavelength selective light reflector 22 Optical circulator 23 Total reflector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−22555(JP,A) 特開 平5−48178(JP,A) 特開 平5−226734(JP,A) 特開 平5−107573(JP,A) 特開 平6−77561(JP,A) 特開 平7−28105(JP,A) 特開 平10−107351(JP,A) 特開 平9−326519(JP,A) 特開 平9−265116(JP,A) 国際公開96/029627(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01S 3/00 - 3/30 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-22555 (JP, A) JP-A-5-48178 (JP, A) JP-A-5-227674 (JP, A) 107573 (JP, A) JP-A-6-77561 (JP, A) JP-A-7-28105 (JP, A) JP-A-10-107351 (JP, A) JP-A-9-326519 (JP, A) JP-A-9-265116 (JP, A) WO 96/029627 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) H01S 3/00-3/30

Claims (1)

(57)【特許請求の範囲】 【請求項1】 信号光が入力される光ファイバが、端子
Aから端子B、端子B端子Cへの順方向伝達特性を有す
る光サーキュレータの端子Aに接続され、この光サーキ
ュレータの端子Bは、第1の希土類添加光ファイバの一
端に接続されると共にその間に励起光源が接続された光
合分波器が接続され、前記第1の希土類添加光ファイバ
の他端は第2の希土類添加光ファイバの一端に接続され
ると共にその間に、信号光を通過させ励起光のみを選択
的に反射する波長選択性の光反射器が接続されると共に
前記第2の希土類添加光ファイバの他端には全反射器が
接続されてなる光増幅器。
(57) Claims 1. An optical fiber to which signal light is input is connected to a terminal A of an optical circulator having forward transmission characteristics from terminal A to terminal B and terminal B to terminal C. A terminal B of the optical circulator is connected to one end of a first rare-earth-doped optical fiber, and an optical multiplexer / demultiplexer having an excitation light source connected therebetween is connected to the other end of the first rare-earth-doped optical fiber. Is connected to one end of a second rare-earth-doped optical fiber, between which is connected a wavelength-selective optical reflector for transmitting signal light and selectively reflecting only excitation light, and connecting the second rare-earth-doped optical fiber. An optical amplifier in which a total reflector is connected to the other end of the optical fiber.
JP29178196A 1996-11-01 1996-11-01 Optical amplifier Expired - Fee Related JP3500878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29178196A JP3500878B2 (en) 1996-11-01 1996-11-01 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29178196A JP3500878B2 (en) 1996-11-01 1996-11-01 Optical amplifier

Publications (2)

Publication Number Publication Date
JPH10135544A JPH10135544A (en) 1998-05-22
JP3500878B2 true JP3500878B2 (en) 2004-02-23

Family

ID=17773349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29178196A Expired - Fee Related JP3500878B2 (en) 1996-11-01 1996-11-01 Optical amplifier

Country Status (1)

Country Link
JP (1) JP3500878B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE504988T1 (en) * 2007-04-13 2011-04-15 Ericsson Telefon Ab L M OPTICAL SIGNAL AMPLIFIER, METHOD FOR OPTICAL AMPLIFICATION AND OPTICAL NETWORK

Also Published As

Publication number Publication date
JPH10135544A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP3808632B2 (en) Optical amplifier and optical amplification method
JP3366337B2 (en) Multi-stage optical fiber amplifier
US6437907B1 (en) Wide-band optical fiber amplifier and amplifying method thereof
JP3936533B2 (en) Rare earth doped fiber amplifier and multistage fiber amplifier
EP0641051B1 (en) Optical amplifier
JPH11331094A (en) Wide band optical amplifier
JP4046506B2 (en) Broadband erbium-doped fiber amplifier
GB2340297A (en) Long-wavelength optical fibre amplifier
GB2326998A (en) Optical fibre amplifier using a circulator and a fibre-loop mirror
KR100415548B1 (en) Long-wavelength-band erbium-doped fiber amplifier
JP3092703B2 (en) Bidirectional optical amplifier module
JP3249089B2 (en) Optical fiber amplifier
US6900885B2 (en) White light source
JP2003273431A (en) Wide-band erbium-added optical fiber amplifier for minimizing band crosstalk
JP3019828B2 (en) Bidirectional optical amplifier
JP3500878B2 (en) Optical amplifier
JP2002319726A (en) Optical amplifier
JP3273911B2 (en) Optical fiber amplifier, semiconductor laser module for excitation and optical signal transmission system
JP2003174220A (en) White light source
JP3230458B2 (en) Optical amplifier
JP2002217477A (en) Optical amplifier
JP4703026B2 (en) Broadband ASE light source
JP3361409B2 (en) Optical fiber amplifier
KR100252180B1 (en) Optical fiber amplifier for gain flattening
JP2663873B2 (en) Light source for measuring transmission characteristics

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees