JP3499687B2 - Method for producing Nb3Sn superconducting wire - Google Patents

Method for producing Nb3Sn superconducting wire

Info

Publication number
JP3499687B2
JP3499687B2 JP22682696A JP22682696A JP3499687B2 JP 3499687 B2 JP3499687 B2 JP 3499687B2 JP 22682696 A JP22682696 A JP 22682696A JP 22682696 A JP22682696 A JP 22682696A JP 3499687 B2 JP3499687 B2 JP 3499687B2
Authority
JP
Japan
Prior art keywords
based alloy
superconducting
superconducting wire
composite
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22682696A
Other languages
Japanese (ja)
Other versions
JPH1069827A (en
Inventor
修 田口
勝嘉 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22682696A priority Critical patent/JP3499687B2/en
Publication of JPH1069827A publication Critical patent/JPH1069827A/en
Application granted granted Critical
Publication of JP3499687B2 publication Critical patent/JP3499687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高磁場を発生する
超電導マグネットに用いられるNb3Sn超電導線の作
製方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an Nb 3 Sn superconducting wire used in a superconducting magnet for generating a high magnetic field.

【0002】[0002]

【従来の技術】従来よりNb3Sn超電導線の作製にお
いては、Nb3Sn超電導化合物を作るために、Cuマ
トリックスの中にNb線およびSn線を、またはCuと
Snとからなるブロンズマトリックスの中にNb線を挿
入してえられる超電導複合材を断面減少加工したのち、
該複合材に熱処理を施してSnを熱拡散させる。また、
一般的にNb3Sn超電導線の周囲には、発生した熱量
をすみやかに発散させるため、また、常電導部発生時電
流のバイパスとするために低電気抵抗性のCuなどから
なる安定化材を設けることは公知である。
2. Description of the Related Art Conventionally, in the production of Nb 3 Sn superconducting wire, in order to produce an Nb 3 Sn superconducting compound, Nb line and Sn line are contained in a Cu matrix or a bronze matrix composed of Cu and Sn. After the superconducting composite material obtained by inserting the Nb wire into the
The composite material is heat treated to thermally diffuse Sn. Also,
In general, around the Nb 3 Sn superconducting wire, a stabilizing material made of Cu or the like having low electric resistance is provided in order to quickly dissipate the generated heat and to bypass the current when the normal conducting portion is generated. Providing is known.

【0003】ところが、前記のようにSnを熱拡散させ
たばあい、拡散したSnは安定化材を汚染してしまい、
したがって該安定化材の電気抵抗が高くなり、バイパス
としての働きを低下させ、熱量の発散をおくらせ、超電
導コイルの働きが不安定になるという不利な点がある。
However, when Sn is thermally diffused as described above, the diffused Sn contaminates the stabilizing material,
Therefore, there are disadvantages that the electric resistance of the stabilizing material is increased, the function as a bypass is reduced, the amount of heat is dissipated, and the function of the superconducting coil becomes unstable.

【0004】そこで、図3に示す断面減少加工後の従来
の超電導線の断面図からわかるように、汚染を防止する
ために前記超電導複合材と安定化材とのあいだにTaも
しくはTa基合金またはNbもしくはNb基合金からな
る拡散防止材を設けることが行なわれている。
Therefore, as can be seen from the cross-sectional view of the conventional superconducting wire after the cross-section reduction processing shown in FIG. 3, in order to prevent contamination, a Ta or Ta-based alloy or a Ta-based alloy is used between the superconducting composite material and the stabilizing material. A diffusion preventing material made of Nb or an Nb-based alloy is provided.

【0005】しかし、通常、超電導線はその直径が約
1.5mm以下、内部に組み込まれた拡散防止材である
Taの層の厚さが該直径の1/100以下となるよう
に、前記のように断面減少加工を施す。このとき前記拡
散防止材を設けたことから、超電導複合材とTaなどか
らなる拡散防止材とのあいだにおいて、たとえばビッカ
ース硬度についてCuが80〜120、Taが150〜
200と、機械的強度に大きな差があるため、図4に示
すように、えられる超電導線の径方向にTa層などの形
状の変化がおこって波打ちや肌荒れをおこしたり、ばあ
いによっては拡散防止材および/または超電導線自体が
破断してしまうという問題があった。前記のように拡散
防止材が破断してCuなどの安定化材が汚染されると、
該安定化材が高い電気抵抗値を示すようになり、したが
ってえられる超電導線を用いて作製した超電導マグネッ
トは熱的擾乱に対し耐えきれず不安定なものとなる。
However, in general, the diameter of the superconducting wire is not more than about 1.5 mm, and the thickness of the Ta layer which is the diffusion preventing material incorporated therein is not more than 1/100 of the diameter. The cross-section reduction processing is performed. At this time, since the diffusion preventing material is provided, between the superconducting composite material and the diffusion preventing material made of Ta or the like, for example, with respect to Vickers hardness, Cu is 80 to 120 and Ta is 150 to 150.
There is a big difference in the mechanical strength between No. 200 and No. 200, so as shown in Fig. 4, the shape of the Ta layer etc. changes in the radial direction of the obtained superconducting wire, causing waviness and rough skin, and in some cases diffusion. There is a problem that the preventive material and / or the superconducting wire itself is broken. As described above, when the diffusion preventing material is broken and the stabilizing material such as Cu is contaminated,
The stabilizing material exhibits a high electric resistance value, so that the superconducting magnet produced by using the obtained superconducting wire cannot withstand the thermal disturbance and becomes unstable.

【0006】[0006]

【発明が解決しようとする課題】そこで、前記問題点に
鑑み、本発明の目的は、少なくともNbまたはNb基合
金、CuまたはCu基合金およびこれらの内部に存する
SnまたはSn基合金の3種類の材料を含む超電導複合
材、拡散防止材ならびに安定化材からなるNb3Sn超
電導線の作製工程において、断面減少加工時に破断する
ことなく、かつえられる超電導線内部の拡散防止材の厚
さがほとんど一定であるNb3Sn超電導線をうること
にある。
In view of the above problems, the object of the present invention is to provide at least three types of Nb or Nb-based alloys, Cu or Cu-based alloys, and Sn or Sn-based alloys existing in these. In the manufacturing process of Nb 3 Sn superconducting wire consisting of superconducting composite material containing material, diffusion preventing material and stabilizing material, the diffusion preventing material inside the superconducting wire has almost constant thickness without breaking during cross section reduction processing. To obtain a Nb 3 Sn superconducting wire.

【0007】[0007]

【課題を解決するための手段】本発明は、少なくともN
bまたはNb基合金、CuまたはCu基合金、およびこ
れらの内部に存するSnまたはSn基合金の3種類の材
料を含む超電導複合材、これを囲む拡散防止材、さらに
周囲にCuなどの安定化材を配置して複合組立したのち
に断面減少加工するNb3Sn超電導線の作製方法にお
いて、図1に示すように、超電導複合材と拡散防止材と
のあいだにCuまたはCu基合金からなる層を配置する
ことを特徴とするNb3Sn超電導線の作製方法に関す
る。
The present invention is based on at least N
b or Nb-based alloy, Cu or Cu-based alloy, and superconducting composite material containing three kinds of Sn or Sn-based alloy existing therein, diffusion preventive material surrounding it, and stabilizing material such as Cu around the same. In a method for producing an Nb 3 Sn superconducting wire which is subjected to a composite reduction after arranging the superconducting layers, as shown in FIG. 1, a layer made of Cu or a Cu-based alloy is provided between the superconducting composite material and the diffusion preventive material. The present invention relates to a method for producing an Nb 3 Sn superconducting wire, which is characterized in that it is arranged.

【0008】拡散防止材としてTaまたはTa基合金か
らなる板を用い、該板とCuまたはCu基合金からなる
板とを接合してなるクラッド板を、CuまたはCu基合
金の層が内側になるように管状に成形し、前記複合組立
に用いるのが好ましい。
A plate made of Ta or a Ta-based alloy is used as a diffusion preventing material, and a clad plate formed by joining the plate and a plate made of Cu or a Cu-based alloy is a Cu or Cu-based alloy layer inside. Thus, it is preferable to form it into a tubular shape and use it in the composite assembly.

【0009】拡散防止材としてNbまたはNb基合金か
らなる板を用い、該板とCuまたはCu基合金からなる
板とを接合してなるクラッド板を、CuまたはCu基合
金の層が内側になるように管状に成形し、前記複合組立
に用いるのも好ましい。
A plate made of Nb or an Nb-based alloy is used as a diffusion preventing material, and a clad plate formed by joining the plate and a plate made of Cu or a Cu-based alloy has a Cu or Cu-based alloy layer inside. It is also preferable to use such a tubular shape so as to be used in the composite assembly.

【0010】また、拡散防止材としての管状のTaまた
はTa基合金の内側に管状のCuまたはCu基合金を配
置して複合組立するのが好ましい。
Further, it is preferable to arrange tubular Cu or a Cu-based alloy inside a tubular Ta or a Ta-based alloy as a diffusion preventing material for composite assembly.

【0011】拡散防止材としての管状のNbまたはNb
基合金の内側に管状のCuまたはCu基合金を配置して
複合組立するのも好ましい。
Tubular Nb or Nb as diffusion preventing material
It is also preferable to place tubular Cu or a Cu-based alloy inside the base alloy for composite assembly.

【0012】[0012]

【発明の実施の形態】本発明の方法によりえられるNb
3Sn超電導線は、図2に示すように、従来の超電導複
合材、拡散防止材および安定化材からなる断面減少加工
前の超電導線において、超電導複合材と拡散防止材との
あいだにCuまたはCu基合金の層を有するものを断面
減少加工し、かつ熱処理することによりえられる。
BEST MODE FOR CARRYING OUT THE INVENTION Nb obtained by the method of the present invention
As shown in FIG. 2, the 3 Sn superconducting wire is a conventional superconducting composite material, a diffusion preventive material, and a stabilizing material in a superconducting wire before cross-section reduction processing, in which Cu or the diffusion preventing material is used between the superconducting composite material and the diffusion preventing material. It can be obtained by subjecting one having a layer of a Cu-based alloy to cross-section reduction processing and heat treatment.

【0013】超電導複合材としては少なくともNbまた
はNb基合金、CuまたはCu基合金、およびこれらの
内部に存するSnまたはSn基合金の3種類の材料から
なるものであればよく、たとえば図5に示すようにCu
マトリックス中にSn線およびNb線が挿入されたもの
がある。複合組立時の超電導複合材の断面の形状につい
ては円形、矩形、六角形などであってよい。また、えら
れる超電導線の臨界電流値を向上させるために該超電導
複合材の表面に従来の方法でSnメッキを施すことがあ
る。
The superconducting composite material may be made of at least Nb or Nb-based alloy, Cu or Cu-based alloy, and Sn or Sn-based alloy existing in these materials, and is shown in FIG. 5, for example. Like Cu
There is a matrix in which Sn lines and Nb lines are inserted. The cross-sectional shape of the superconducting composite material at the time of composite assembly may be circular, rectangular, hexagonal, or the like. Further, in order to improve the critical current value of the obtained superconducting wire, the surface of the superconducting composite material may be Sn-plated by a conventional method.

【0014】図2における超電導複合材の、組立時の寸
法としては7本組立のばあいその直径が2〜30mm、
工業的観点で超電導線の加工を容易にするという点から
好ましくは2〜19mm、さらにTaの加工伸び余裕を
安定維持するという点からとくに好ましくは2〜11m
mであるのがよい。
As for the dimensions of the superconducting composite material in FIG. 2 when assembled, in the case of assembling seven pieces, the diameter is 2 to 30 mm,
From the industrial viewpoint, it is preferably 2 to 19 mm from the viewpoint of facilitating the processing of the superconducting wire, and particularly preferably 2 to 11 m from the viewpoint of stably maintaining the processing elongation margin of Ta.
It should be m.

【0015】拡散防止材としても従来のものであればよ
く、たとえばTa、Ta基合金、Nb、Nb基合金から
なるものがあげられるが用いる超電導複合材の種類によ
って適宜選択すればよい。
As the diffusion preventing material, any conventional material may be used, and examples thereof include those made of Ta, Ta-based alloys, Nb, and Nb-based alloys, which may be appropriately selected depending on the type of superconducting composite material used.

【0016】たとえば超電導線の交流ロスが限定される
ばあいには、超電導層を生成させないという点からTa
またはTa基合金からなる拡散防止材、交流ロスが限定
されないばあいには安価なNbまたはNb基合金からな
る拡散防止材を用いるのがよい。
For example, when the AC loss of the superconducting wire is limited, Ta is used because it does not generate a superconducting layer.
Alternatively, it is preferable to use a diffusion preventive material made of a Ta-based alloy and an inexpensive diffusion preventive material made of Nb or an Nb-based alloy when the AC loss is not limited.

【0017】また、安定化材は低電気抵抗性で、えられ
る超電導線に電気的安定性および機械的強度を付与する
役割を果たす従来のものであればよく、高電気、熱伝導
性という点からたとえばCuからなるものが用いられ
る。
Further, the stabilizing material may be a conventional one having a low electric resistance and a function of imparting electrical stability and mechanical strength to the obtained superconducting wire, and it has high electric conductivity and thermal conductivity. From Cu, for example, is used.

【0018】安定化材の寸法としてはその内径が6〜9
0mm、外径が9〜250mmのもの、工業的観点で超
電導線の加工を容易にするという点から内径が6〜60
mm、外径が9〜70mmのものが好ましく、さらにT
aの加工伸び余裕を安定維持するという点から内径が6
〜33mm、外径が9〜40mmのものがとくに好まし
い。
The stabilizing material has an inner diameter of 6-9.
0 mm, an outer diameter of 9 to 250 mm, and an inner diameter of 6 to 60 from the viewpoint of facilitating the processing of a superconducting wire from an industrial viewpoint.
mm, the outer diameter is preferably 9 to 70 mm, and further T
The inner diameter is 6 from the viewpoint of stably maintaining the processing elongation margin of a.
It is particularly preferable that the outer diameter is 33 mm and the outer diameter is 9-40 mm.

【0019】本発明における複合組立とは、たとえば図
2に示すように安定化材であるCu管の中に拡散防止材
としてのTaチューブを挿入し、さらにその内側にCu
またはCu基合金からなる管を挿入したのち、最後に超
電導複合材を挿入することをいう。このばあい、超電導
複合材の充填数については、要求される性能仕様により
異なり、たとえば7本、19本または121本である。
The composite assembly in the present invention means, for example, as shown in FIG. 2, a Ta tube as a diffusion preventing material is inserted into a Cu tube which is a stabilizing material, and a Cu tube is further provided inside thereof.
Alternatively, it means that after inserting a tube made of a Cu-based alloy, finally inserting a superconducting composite material. In this case, the filling number of the superconducting composite material varies depending on the required performance specifications, and is 7, 19, or 121, for example.

【0020】複合組立後の超電導線の断面減少加工の方
法については、従来から用いられている引抜加工、スェ
ージングまたはロール加工などの方法を用いればよい
が、均質加工、加工速度という点から好ましくは引抜加
工という方法を用いるのが好ましい。
As for the method of reducing the cross section of the superconducting wire after the composite assembling, conventionally used methods such as drawing, swaging or rolling may be used, but it is preferable from the viewpoints of homogeneous processing and processing speed. It is preferable to use a method called drawing.

【0021】本発明においては、断面減少加工を施し、
かつまだ熱処理を施していない超電導線を母材と呼ぶ。
In the present invention, cross-section reduction processing is performed,
The superconducting wire that has not yet been heat treated is called the base material.

【0022】断面減少加工後の超電導線、すなわち母材
は一般的にコイル巻回の難易という点から直径0.3〜
3.0mmの寸法を有し、母材中における安定化材は通
常0.1〜1.0mmの厚さを有する。また母材中にお
いて拡散防止材は、通常薄く存在させるために0.2m
m以下の厚さを有する。
The superconducting wire after the cross-section reduction processing, that is, the base material, generally has a diameter of 0.3 to 10 from the viewpoint of difficulty in coil winding.
The stabilizer in the matrix has a dimension of 3.0 mm and usually has a thickness of 0.1 to 1.0 mm. In addition, the diffusion preventive material in the base material is usually 0.2 m in order to make it thin.
It has a thickness of m or less.

【0023】本発明において前記超電導複合材と拡散防
止材とのあいだに配置されるCuまたはCu基合金はビ
ッカース硬度などの機械的性質の大きく異なる該超電導
複合材と拡散防止材とのあいだの加工応力伝達を仲介す
る役割を果たし、本発明の超電導線においてはその断面
減少加工の際に、とくに硬質のTaもしくはTa基合金
またはNbもしくはNb基合金からなる拡散防止材の径
方向の形状の不均一化を防止する。
In the present invention, the Cu or Cu-based alloy disposed between the superconducting composite material and the diffusion preventive material is processed between the superconducting composite material and the diffusion preventive material having greatly different mechanical properties such as Vickers hardness. In the superconducting wire of the present invention, which plays a role of mediating stress transmission, when the cross-section is reduced, the diffusion preventive material made of particularly hard Ta or Ta-based alloy or Nb or Nb-based alloy has no irregular shape in the radial direction. Prevent homogenization.

【0024】該CuまたはCu基合金を超電導複合材と
拡散防止材とのあいだに配置する方法としては、前記複
合組立の際に拡散防止材であるTaチューブの内側に接
するようにCuまたはCu基合金からなるチューブを挿
入してもよく、またはあらかじめTaもしくはTa基合
金からなる板とCuもしくはCu基合金からなる板をロ
ウ付、同時変形加工または静水加圧で接合してTa/C
uクラッド板をえ(図6参照)、ついでCuまたはCu
基合金からなる板が内側になるように管状に成形してえ
られるTa/Cuクラッド管(図7参照)を前記複合組
立に用いるという方法もあるが、超電導線の加工上か
ら、接合したクラッド板という方法を用いるのが好まし
い。
As a method for disposing the Cu or Cu-based alloy between the superconducting composite material and the diffusion preventive material, the Cu or Cu-based alloy may be contacted with the inside of the Ta tube which is the diffusion preventive material during the composite assembly. A tube made of an alloy may be inserted, or a plate made of Ta or a Ta-based alloy and a plate made of Cu or a Cu-based alloy may be brazed in advance and joined by simultaneous deformation processing or hydrostatic pressing to produce Ta / C.
u clad plate (see Figure 6), then Cu or Cu
There is also a method of using a Ta / Cu clad tube (see FIG. 7) obtained by forming a tube made of a base alloy into a tubular shape in the composite assembly, but from the viewpoint of processing the superconducting wire, the clad that is joined is used. It is preferable to use the method called a plate.

【0025】超電導線は母材を熱処理することによりえ
られるが、熱処理とは、母材の超電導複合材中のSnを
熱拡散させて該超電導複合材を超電導化させることであ
り、具体的には、通常、熱処理装置を使用して600℃
〜750℃の温度で50時間以上保持する方法で行な
う。
The superconducting wire can be obtained by heat-treating the base material. The heat treatment is to thermally diffuse Sn in the superconducting composite material of the base material to make the superconducting composite material superconducting. Is normally 600 ° C using heat treatment equipment
It is carried out by a method of holding at a temperature of ˜750 ° C. for 50 hours or more.

【0026】[0026]

【実施例】以下に実施例を用いて本発明を説明するが、
これらのみに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples.
It is not limited to these.

【0027】比較例1 表面に厚さ5μmのSnメッキを施した直径4.2mm
の、図5に示す構造を有する超電導複合材7本、安定化
材である外径25mm、内径15mmのCu管(以下、
「Cu管A」という)、拡散防止材である外径14.5
mm、内径14.1mmのTaチューブ、および本発明
のCuまたはCu基合金層となる外径13.5mm、内
径13.1mmのCu管(以下、「Cu管B」という)
を複合組立したのち、ドローベンチ、ドラム型伸線機で
引抜加工し外径が0.7mmの超電導線の母材1をえ
た。えられた母材中の安定化材の厚さは0.14mmで
あり、拡散防止材の厚さは0.005mmであった。
The diameter 4.2mm subjected to Sn plating thickness 5μm in Comparative Example 1 the surface
Of the superconducting composite material having the structure shown in FIG. 5, a Cu pipe having an outer diameter of 25 mm and an inner diameter of 15 mm which is a stabilizing material (hereinafter,
"Cu tube A"), outer diameter of 14.5 which is diffusion prevention material
mm, a Ta tube having an inner diameter of 14.1 mm, and a Cu tube having an outer diameter of 13.5 mm and an inner diameter of 13.1 mm (hereinafter referred to as "Cu tube B"), which is the Cu or Cu-based alloy layer of the present invention.
After composite assembling, the base material 1 of the superconducting wire having an outer diameter of 0.7 mm was obtained by drawing with a draw bench and a drum type wire drawing machine. The thickness of the stabilizing material in the obtained base material was 0.14 mm, and the thickness of the diffusion preventing material was 0.005 mm.

【0028】えられた母材1の横断面をバフにて研磨
し、拡散防止材であるTa層の肌荒れ状況を観察した。
観察結果を、Ta層が破断したばあいを1、Ta層の破
断はないが波打ちが大きいばあいを2、Ta層の波打ち
が軽いばあいを3、Ta層の波打ちがないばあいを4と
して評価した。結果を表1に示す。
The cross section of the obtained base material 1 was polished with a buff, and the roughened condition of the Ta layer as a diffusion preventing material was observed.
The observation results are 1 when the Ta layer is broken, 2 when the Ta layer is not broken but has large waviness, 3 when the Ta layer is lightly wavy, and 4 when the Ta layer is not wavy. Evaluated as. The results are shown in Table 1.

【0029】比較例2 拡散防止材としてTaチューブのかわりに厚さ0.2m
mのTa板をプレスにて曲げ加工してえた管状Taを用
いた以外は、比較例1と同様にして母材2をえ、比較
1と同様に評価を行なった。結果を表1に示す。
Comparative Example 2 As a diffusion preventing material, a thickness of 0.2 m was used instead of the Ta tube.
A base material 2 was obtained in the same manner as in Comparative Example 1 except that a tubular Ta obtained by bending a Ta plate of m by a press was used, and the same evaluation as in Comparative Example 1 was performed. The results are shown in Table 1.

【0030】実施例 厚さ2mmのTa板と厚さ2mmのCu板を重ねて、同
時に強圧延加工を施し接合して厚さ0.4mmのTa/
Cuクラッド板をえ、ついでプレスにて曲げ加工してC
u板が内側になるように外径14.5mm、内径13.
7mmのTa/Cuクラッド管をえた。該Ta/Cuク
ラッド管を拡散防止材およびCu管Bのかわりに用いた
以外は比較例1と同様にして母材3をえ、比較例1と同
様に評価を行なった。結果を表1に示す。
Example 1 A Ta plate having a thickness of 2 mm and a Cu plate having a thickness of 2 mm were overlapped with each other, and at the same time, subjected to strong rolling to bond them to form Ta / 0.4 mm in thickness.
Obtain a Cu clad plate, then bend it with a press to C
Outer diameter 14.5 mm, inner diameter 13.
A 7 mm Ta / Cu clad tube was obtained. A base material 3 was obtained in the same manner as in Comparative Example 1 except that the Ta / Cu clad tube was used instead of the diffusion preventive material and the Cu tube B, and the same evaluation as in Comparative Example 1 was performed. The results are shown in Table 1.

【0031】比較 超電導複合材の表面にSnメッキを施さなかったこと以
外は比較例1と同様にして母材4をえ、比較例1と同様
に評価を行なった。結果を表1に示す。
Comparative Example 3 A base material 4 was obtained in the same manner as in Comparative Example 1 except that the surface of the superconducting composite material was not plated with Sn, and the same evaluation as in Comparative Example 1 was performed. The results are shown in Table 1.

【0032】比較例 Cu管Bを用いないこと以外は比較例1と同様にして比
較母材5をえ、比較例1と同様の評価を行なった。結果
を表1に示す。
Comparative Example 4 A comparative base material 5 was obtained in the same manner as in Comparative Example 1 except that the Cu tube B was not used, and the same evaluation as in Comparative Example 1 was performed. The results are shown in Table 1.

【0033】比較例 Cu管Bを用いないこと以外は比較例2と同様にして比
較母材6をえ、比較例1と同様の評価を行なった。結果
を表1に示す。
Comparative Example 5 A comparative base material 6 was obtained in the same manner as in Comparative Example 2 except that the Cu tube B was not used, and the same evaluation as in Comparative Example 1 was performed. The results are shown in Table 1.

【0034】比較例 Cu管Bを用いないこと以外は比較と同様にして比
較母材7をえ、比較例1と同様の評価を行なった。結果
を表1に示す。
Comparative Example 6 A comparative base material 7 was obtained in the same manner as in Comparative Example 3 except that the Cu tube B was not used, and the same evaluation as in Comparative Example 1 was performed. The results are shown in Table 1.

【0035】表1に母材に用いた材料と評価の結果をま
とめる。
Table 1 shows the materials used as the base material and the evaluation results.

【0036】[0036]

【表1】 [Table 1]

【0037】 表1に示すように、比較例1および比較
または比較例2および比較例から、超電導複合材
にSnメッキを施したばあいはCu管Bを拡散防止材の
内側に配置するほうが、えられる母材のTaの肌荒れ減
少が少ない。実施例から、Ta/Cuクラッド管を用
いたばあいのTa層の肌荒れ減少が最も少ない。また、
比較および比較例から、超電導複合材にSnメッ
キを施さないばあいであっても、Cu管Bを配置すると
Ta層の肌荒れが少なくなる。
As shown in Table 1, from Comparative Example 1 and Comparative Example 4 or Comparative Example 2 and Comparative Example 4 , when the superconducting composite material was Sn-plated, the Cu tube B was placed inside the diffusion preventing material. Doing so causes less reduction in rough skin of the obtained base material Ta. From Example 1 , the reduction in the roughness of the Ta layer when using the Ta / Cu clad tube is the smallest. Also,
From Comparative Example 3 and Comparative Example 6 , even if the superconducting composite material is not plated with Sn, placing the Cu tube B reduces the roughness of the Ta layer.

【0038】拡散防止材がTa基合金、NbまたはNb
基合金のばあいでも、これらはTaと同様のまたはそれ
以上の硬度を有しているので、CuまたはCu基合金か
らなる層を配置すると同様の効果があることはいうまで
もない。
The diffusion preventing material is Ta-based alloy, Nb or Nb.
Even in the case of the base alloy, since these have the same hardness as Ta or higher, it is needless to say that the same effect can be obtained by disposing the layer made of Cu or the Cu base alloy.

【0039】[0039]

【発明の効果】本発明によれば、少なくともNbまたは
Nb基合金、CuまたはCu基合金およびこれらの内部
に存するSnまたはSn基合金の3種類の材料を含む超
電導複合材、拡散防止材ならびに安定化材からなるNb
3Sn超電導線の作製工程において、断面減少加工時に
破断することなく、かつえられる超電導線内部の拡散防
止材の厚さがほとんど一定であるNb3Sn超電導線を
うることができる。
According to the present invention, a superconducting composite material containing at least three kinds of materials of Nb or Nb-based alloy, Cu or Cu-based alloy and Sn or Sn-based alloy existing in these, a diffusion preventive material and a stabilizing material. Nb made of chemical material
In the process of producing a 3 Sn superconducting wire, it is possible to obtain an Nb 3 Sn superconducting wire which does not break during the cross-section reduction process and has a substantially constant thickness of the diffusion preventing material inside the obtained superconducting wire.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明によりえられる超電導線の断面減少加
工後の横断面図である。
FIG. 1 is a cross-sectional view of a superconducting wire obtained by the present invention after cross-section reduction processing.

【図2】 本発明によりえられる超電導線の組立時の横
断面図である。
FIG. 2 is a cross-sectional view of the superconducting wire obtained according to the present invention during assembly.

【図3】 従来の超電導線の横断面図である。FIG. 3 is a cross-sectional view of a conventional superconducting wire.

【図4】 拡散防止材が肌荒れした従来の超電導線の横
断面図である。
FIG. 4 is a cross-sectional view of a conventional superconducting wire with a roughened diffusion preventing material.

【図5】 超電導複合材の一例である。FIG. 5 is an example of a superconducting composite material.

【図6】 Ta/Cuクラッド板の斜視図である。FIG. 6 is a perspective view of a Ta / Cu clad plate.

【図7】 Ta/Cuクラッド管の斜視図である。FIG. 7 is a perspective view of a Ta / Cu clad tube.

【符号の説明】[Explanation of symbols]

1 断面減少加工後の超電導複合材、2 断面減少加工
後の拡散防止材、3 断面減少加工後のCuまたはCu
基合金からなる層、4 断面減少加工後の安定化材、5
超電導複合材、6 拡散防止材、7 CuまたはCu
基合金からなる層、8 安定化材、9 肌荒れを起こし
た拡散防止材、10 NbまたはNb基合金、11 C
uまたはCu基合金、12 SnまたはSn基合金、1
3 Ta層、14 Cu層。
1 Superconducting composite material after cross-section reduction processing, 2 Diffusion prevention material after cross-section reduction processing, 3 Cu or Cu after cross-section reduction processing
Base alloy layer, 4 Stabilizer after cross-section reduction, 5
Superconducting composite material, 6 Diffusion prevention material, 7 Cu or Cu
Base alloy layer, 8 stabilizer, 9 roughened diffusion preventive material, 10 Nb or Nb base alloy, 11 C
u or Cu based alloy, 12 Sn or Sn based alloy, 1
3 Ta layer, 14 Cu layer.

フロントページの続き (56)参考文献 特開 昭62−271306(JP,A) 特開 平3−238717(JP,A) 特開 平5−123875(JP,A) 特開 平8−339728(JP,A) 特開 平2−66814(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 Continuation of front page (56) Reference JP 62-271306 (JP, A) JP 3-238717 (JP, A) JP 5-123875 (JP, A) JP 8-339728 (JP , A) JP-A-2-66814 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01B 12/00-13/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともNbまたはNb基合金、Cu
またはCu基合金、およびこれらの内部に存するSnま
たはSn基合金の3種類の材料を含む超電導複合材、こ
れを囲む拡散防止材、さらに周囲にCuなどの安定化材
を配置して複合組立したのちに断面減少加工するNb3
Sn超電導線の作製方法において、拡散防止材としてT
aまたはTa基合金からなる板を用い、該板とCuまた
はCu基合金からなる板とを接合してなるクラッド板
を、CuまたはCu基合金の層が内側になるように管状
に成型し、前記複合組立に用いるNb3Sn超電導線の
作製方法。
1. At least Nb or an Nb-based alloy, Cu
Alternatively, a Cu-based alloy and a superconducting composite material containing three kinds of materials, Sn or Sn-based alloy, existing inside these, a diffusion preventive material surrounding the superconducting composite material, and a stabilizing material such as Cu disposed around the composite material are assembled. Nb 3 which is later processed to reduce the cross section
In a method of manufacturing a Sn superconducting wire, T is used as a diffusion preventing material.
A plate made of a or Ta-based alloy is used.
Is a clad plate formed by joining a plate made of a Cu-based alloy
Tubular with the Cu or Cu-based alloy layer on the inside
A method for producing an Nb 3 Sn superconducting wire which is molded into a composite and used in the composite assembly .
【請求項2】 少なくともNbまたはNb基合金、Cu
またはCu基合金、およびこれらの内部に存するSnま
たはSn基合金の3種類の材料を含む超電導複合材、こ
れを囲む拡散防止材、さらに周囲にCuなどの安定化材
を配置して複合組立したのちに断面減少加工するNb 3
Sn超電導線の作製方法において、拡散防止材としてN
bまたはNb基合金からなる板を用い、該板とCuまた
はCu基合金からなる板とを接合してなるクラッド板
を、CuまたはCu基合金の層が内側になるように管状
に成型し、前記複合組立に用いるNb3Sn超電導線の
作製方法。
2. At least Nb or Nb-based alloy, Cu
Alternatively, Cu-based alloys and Sn existing in these
Or a superconducting composite material containing three types of Sn-based alloys,
Diffusion prevention material surrounding it, and stabilizing material such as Cu around it
Nb 3 for reducing cross-section after arranging
In the manufacturing method of Sn superconducting wire, N is used as a diffusion preventing material.
A plate made of b or Nb-based alloy is used.
Is a clad plate formed by joining a plate made of a Cu-based alloy
Tubular with the Cu or Cu-based alloy layer on the inside
A method for producing an Nb 3 Sn superconducting wire which is molded into a composite and used in the composite assembly .
JP22682696A 1996-08-28 1996-08-28 Method for producing Nb3Sn superconducting wire Expired - Fee Related JP3499687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22682696A JP3499687B2 (en) 1996-08-28 1996-08-28 Method for producing Nb3Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22682696A JP3499687B2 (en) 1996-08-28 1996-08-28 Method for producing Nb3Sn superconducting wire

Publications (2)

Publication Number Publication Date
JPH1069827A JPH1069827A (en) 1998-03-10
JP3499687B2 true JP3499687B2 (en) 2004-02-23

Family

ID=16851196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22682696A Expired - Fee Related JP3499687B2 (en) 1996-08-28 1996-08-28 Method for producing Nb3Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP3499687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339041A (en) * 2005-06-02 2006-12-14 Mitsubishi Electric Corp Manufacturing method of nb3sn superconductive wire
JP6743233B1 (en) * 2019-03-28 2020-08-19 株式会社フジクラ Oxide superconducting wire

Also Published As

Publication number Publication date
JPH1069827A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US4973365A (en) Process for producing monocore precursor Nb3 Sn superconductor wire
JPH0444365B2 (en)
JPH0377608B2 (en)
US4043028A (en) Method of fabricating composite superconductors
JPH06338228A (en) Compound superconducting wire and manufacture thereof
JP3499687B2 (en) Method for producing Nb3Sn superconducting wire
US4153986A (en) Method for producing composite superconductors
JPH06251645A (en) Wire for nb3x system superconducting wire
JP2007311126A (en) Compound superconductor, and its manufacturing method
JP2007242355A (en) PRECURSOR OF POWDER METHOD Nb3Sn SUPERCONDUCTING WIRE MATERIAL AND ITS MANUFACTURING METHOD
KR20200106221A (en) Diffusion barrier for metallic superconducting wires
US4285740A (en) Wrapped tantalum diffusion barrier
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP3050576B2 (en) Method for producing compound linear body
JP3602151B2 (en) Method for producing Nb (3) Sn compound superconducting wire
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPH0982149A (en) Nb3sn superconducting wire excellent in strength and workability
JPH06325643A (en) Nb3sn superconducting wire and manufacture thereof
JP3353217B2 (en) Method for producing Nb-3 Sn-based superconducting wire
US5139893A (en) Superconducting alloy core circumscribed by multiple layers of NbTi and refractory metal barrier layer having a normal metal sheath
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPS62229720A (en) Manufacture of nb3 sn superconductor wire
JP2007165152A (en) CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
EP0718898A1 (en) Compound superconducting wire

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees