JP3497023B2 - Filter circuit - Google Patents

Filter circuit

Info

Publication number
JP3497023B2
JP3497023B2 JP23979395A JP23979395A JP3497023B2 JP 3497023 B2 JP3497023 B2 JP 3497023B2 JP 23979395 A JP23979395 A JP 23979395A JP 23979395 A JP23979395 A JP 23979395A JP 3497023 B2 JP3497023 B2 JP 3497023B2
Authority
JP
Japan
Prior art keywords
operational amplifier
circuit
input terminal
inverting input
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23979395A
Other languages
Japanese (ja)
Other versions
JPH0983297A (en
Inventor
有二 山本
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP23979395A priority Critical patent/JP3497023B2/en
Publication of JPH0983297A publication Critical patent/JPH0983297A/en
Application granted granted Critical
Publication of JP3497023B2 publication Critical patent/JP3497023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は,様々な周波数成分
を持つ入力信号の中から,所望の周波数成分を持つ信号
を選択し出力とするフィルタ回路に関する。さらに詳し
くは該フィルタ回路のMOS集積回路化に関するもので
ある。 【0002】 【従来の技術】従来高い選択度Qを持つフィルタ回路を
簡単に構成する方法として,M.E.VAN VANK
ENBURG,”Analog Filter Des
ign”,Holt,Rinehart and Wi
nston,NEW YORK,1982,P217
等に見られるように,Qエンハンスメント回路(Q逓倍
回路)が知られている。該Q逓倍回路は,所謂2次の伝
達関数のフィルタ回路の出力を,係数kを乗じて入力と
加算する帰還をかけ,Qの向上を計るものである。 【0003】 【発明が解決しようとする課題】個別部品を使用してQ
逓倍回路を構成する場合には,係数kの部分は,演算増
幅器と抵抗を利用した所謂加算回路で実現する場合が多
い。ところが,抵抗と演算増幅器を使用した回路を,M
OS集積回路で実現しようとすると,回路が直流ゲイン
を持つために,演算増幅器の直流オフセット電圧を増幅
してしまい,直流動作点がずれるという問題がある。
又,特定の周波数でゲインが増加するバンドパスフィル
タと,特定の周波数の近傍でゲインが減少するバンドリ
ジェクトフィルタとを組み合わせて対にして,より急峻
なフィルタ特性を得ることも良く知られている。更によ
り急峻なフィルタ特性を得る為には,組み合わせたバン
ドパスフィルタとバンドリジェクトフィルタのQを,其
々Q逓倍回路を用いてQを更に向上させると良い。 【0004】しかし,Q逓倍回路を,組み合わせて対に
したバンドパスフィルタとバンドリジェクトフィルタ各
々について付加すると回路規模が増加するという問題点
あるいは課題があった。 【0005】 【課題を解決する為の手段】上述した従来の技術の課題
を解決する為,本発明では,MOS集積回路化に適した
加算回路により,対にしたバンドパスフィルタとバンド
リジェクトフィルタの各々のQを一度に向上させる回路
を提供することを目的とする。 【0006】かかる目的を達成するために,本発明で
は,加算回路は容量結合の加算回路として構成し,直流
ゲインを0として演算増幅器の直流オフセット電圧を増
幅しないようにした。更に回路構成を,初段に第1の加
算回路,2段目にバンドリジェクトフィルタ,3段目に
第2の加算回路,4段目にバンドパスフィルタを設け,
前記バンドパスフィルタの出力を,初段の第1の加算回
路の入力と,3段目の加算回路の入力とに其々別々の係
数を乗じて帰還し,2段目の加算回路の出力を,第1の
加算回路の入力に係数を乗じて帰還する構成とした。 【0007】本発明によれば,容量結合の加算回路は,
直流を通過させないので,演算増幅器の直流オフセット
電圧は増幅しない。バンドパスフィルタの出力から,初
段の第1の加算回路の入力と,3段目の第2の加算回路
の入力への2つの帰還ループと,3段目の第2の加算回
路の出力から,初段の第1の加算回路の入力へのもう一
つの帰還ループ,即ち合計3つの帰還ループの帰還係数
は,容量結合の加算回路の容量比の設定で調整が出来
る。該帰還係数の調整により,バンドリジェクトフィル
タのQ,バンドパスフィルタのQを其々向上させること
が出来る。 【0008】 【発明の実施の形態】以下図面を参照して本発明の好適
な実施例を詳細に説明する。図1は本発明にかかるフィ
ルタ回路の一実施例を示す回路図である。図2は図1の
回路の交流小信号信等価回路を示している。 【0009】信号入力端子24と,演算増幅器21の反
転入力端子の間には,容量7が接続されている。演算増
幅器21の非反転入力端子はグランド電位に接続してい
る。演算増幅器21の反転入力端子と出力端子の間に
は,容量6と抵抗13が並列に接続されている。抵抗1
3は,直流動作点の設定用で,交流信号入力の無いとき
には,演算増幅器21の出力端子の電圧は,反転入力端
子の電圧と等しくなり,更に非反転入力端子の電圧とも
等しい。演算増幅器21の出力端子と,演算増幅器22
の非反転入力端子との間には,抵抗16,17,18,
容量8,9,10により構成された,所謂ツインTによ
るバンドリジェクトフィルタが接続されている。演算増
幅器22の非反転入力端子と,グランド電位の間には,
容量3が接続されている。 【0010】演算増幅器22の反転入力端子と出力端子
の間には,容量4と抵抗14が並列に接続されている。
抵抗14は前記抵抗13と同様に直流動作点の設定用
で,交流信号入力の無いときには,演算増幅器22の出
力端子の電圧は,反転入力端子の電圧と等しくなり,更
に非反転入力端子の電圧とも等しい。演算増幅器22の
出力端子と,演算増幅器21の非反転入力端子の間に
は,容量5が接続されている。演算増幅器22の出力端
子と,信号出力端子25の間には,抵抗15,19,2
0と容量11,12と演算増幅器23とで構成された所
謂多重帰還型のバンドパスフィルタが接続されている。
信号入力端子25と,演算増幅器22の反転入力端子と
の間には,容量1が接続されている。信号入力端子25
と,演算増幅器21の反転入力端子との間には,容量2
が接続されている。 【0011】バンドリジェクトフィルタの伝達関数をG
(s),バンドパスフィルタの伝達関数をF(s)とす
ると,図1の小信号等価回路は,図2のようになる。G
(s)は,バンドリジェクトフィルタのQをQt,共振
角周波数をωtとして 【0012】 【数1】 【0013】F(s)は,バンドパスフィルタのQをQ
b,共振角周波数をωbとして 【0014】 【数2】 【0015】k1,k2,k3,k4は図1の容量結合
増幅回路の容量比による係数で,図1の容量1,2,
3,4,5,6の容量値を各々C1,C2,C3,C
4,C5,C6とすると 【0016】 【数3】 【0017】となる。容量7は,容量6との比で回路全
体のゲインだけを変化させることが出来るが,周波数特
性には影響ないので,図2には反映させていない。数式
1〜数式3を使用して,図2の等価回路の伝達関数を求
めると, 【0018】 【数4】 【0019】となる。ここで,k1=kb,k2・k5
=ka・kb,k5・k6=kaとなるka,kbを定
めると,数式4は以下の数式5のように書き換える事が
できる。 【0020】 【数5】 【0021】更に数式5のG(s)とF(s)に数式1
と数式2を代入すると, 【0022】 【数6】 【0023】数式6の右辺と,数式1,数式2とを比較
すると,ゲイン(係数項)が変わっているほかに伝達関
数内部で,バンドリジェクトフィルタの関しては,Qt
が(1+ka)倍に,バンドパストフィルタに関して
は,Qbが1/(1−kb)倍になっている。即ち,図
1の回路および図2の等価回路を用いて,所望のka,
kbになるように容量の比を設定すれば,バンドリジェ
クトフィルタのQtと,バンドパスフィルタのQbを同
時に向上させることが出来る。 【0024】なお図2の等価回路は,図1の抵抗13,
14の影響は無視している。前述したように,抵抗1
3,14は,演算増幅器21,22の直流動作点を設定
するために用いている。フィルタを使用する周波数帯域
で,抵抗13,14のインピーダンスは,容量1〜7に
対して十分高くなるように設定し,影響を無視出来るよ
うにしている。但し,図1に示した実施例においては,
各々の演算増幅器21,22,23の出力は,グランド
電位(0V)を基準(中心)に上下に振幅するので,使
用する演算増幅器は,正負二電源で動作することが必要
である。 【0025】図3に示す回路は,図1の回路を単一の電
源電圧で動作するようにし,かつ,MOS集積回路に更
に適合するようにしたものである。図1と図3の対応す
る部分には,同一の参照番号を付して理解を容易にして
いる。図3と図1の相異の概要は,先ず演算増幅器2
1,22,23の非反転入力端子をグランド電位から0
vより大きい基準電位になるようにしていることと,抵
抗13,14をMOSトランジスタで実現していること
である。 【0026】電源端子にPチャンネルMOSトランジス
タ(以下PMOSTr)26,32,35,37のソー
ス電極を接続している。PMOSTr37のゲート電極
とドレイン電極は定電流源38の一端に共通に接続さ
れ,定電流源38の他端はグランド電位に接続されてい
る。PMOSTr26,32,35のゲート電極はPM
OSTr37のゲート電極と共通に接続しているので,
PMOSTr26,32,35,37のゲート・ソース
電極間電圧は等しく,PMOSTr26,32,35,
37に流れる電流は,各々のトランジスタサイズに比例
する。 【0027】PMOSTr26のドレイン電極には,N
チャンネルMOSTr(以下NMOSTr)27のゲー
ト電極とドレイン電極とNMOSTr13のゲート電極
が共通に接続されている。NMOSTr27のソース電
極は,NMOSTr28のゲート電極とドレイン電極と
演算増幅器21の非反転入力端子に共通に接続されてい
る。NMOSTr28のソース電極はグランド電位に接
続されている。 【0028】NMOSTr27,28には,一定の電流
が流れているので,各々のトランジスタはオンしてい
て,ゲート・ソース電極間には,ほぼNMOSTrの所
謂閾値電圧(以下Vth)の電圧が発生している。同様
にNMOSTr33,34にも,一定の電流が流れてい
るので,各々のトランジスタはオンしていて,ゲート・
ソース電極間には,ほぼVthの電圧が発生している。
更に,NMOSTr36にも一定の電流が流れているの
で,トランジスタはオンしていて,ゲート・ソース電極
間には,ほぼVthの電圧が発生している。 【0029】演算増幅器21の非反転入力端子は,NM
OSTr28のゲート電極につながっているので,ほぼ
Vthの電圧になっている。入力信号振幅が0ならば,
演算増幅器21の出力端子と反転入力端子はNMOST
r13で短絡されているので,演算増幅器21の反転入
力端子と非反転入力端子と出力端子は,同じ電圧即ちV
thより少し高い電圧になる。 【0030】NMOSTr13のソース電極とドレイン
電極は,各々演算増幅器21の非反転入力端子と反転入
力端子に接続されているので,それぞれほぼVthの電
圧になっている。一方,NMOSTr13のゲート電極
は,NMOSTr27のゲート電極とドレイン電極に接
続されているので,ほぼ2×Vthの電圧になってい
る。NMOSTr13のゲート・ソース電極間には,ほ
ぼVthの電圧がかかり,NMOSTr13は常にオン
している。 【0031】演算増幅器21の出力は,抵抗16,17
を通って演算増幅器22の非反転入力端子に接続されて
いるので,演算増幅器22の非反転入力端子の電圧は,
ほぼVthになる。演算増幅器22の出力端子と反転入
力端子は,NMOSTr14で短絡されているので,演
算増幅器22の非反転入力端子,反転入力端子,出力端
子は,共にほぼVthになる。一方,NMOSTr14
のゲート電極は,NMOSTr33のゲート電極とドレ
イン電極に接続されているので,ほぼ2×Vthの電圧
になっている。NMOSTr14のゲート・ソース電極
間には,ほぼVthの電圧がかかり,NMOSTr14
は常にオンしている。 バンドパスフィルタを構成する
演算増幅器23の反転入力端子も,NMOSTr36の
ゲート電極とドレイン電極から電圧を与えているので,
電圧はほぼVthになっている。演算増幅器23の非反
転入力端子と出力端子は,バンドパスフィルタを構成す
る抵抗15で短絡しているので,演算増幅器23の,非
反転入力端子,反転入力端子,出力端子は,等しくほぼ
Vthになっている。図3の回路は,交流的には図1と
全く同様に,図2の小信号等価回路で表現できる。各々
の演算増幅器21,22,23の出力は,Vthを基準
(中心)に上下に振幅するので,単一電源で使用するこ
とが出来る。 【0032】図4の回路は,図3の回路を更に変更した
実施例を示している。図1,図3,図4の対応する部分
には,同一の参照番号を付けて,理解を容易にしてい
る。図4の回路と,図3の回路の相異は,まず,演算増
幅器21の非反転入力端子の電圧を,新たに追加したP
MOSTr29とNMOSTr30,31の組み合わせ
により発生させていて,NMOSTr13のゲート電圧
の発生は,PMOSTr26とNMOSTr27,28
の組み合わせにより発生させていることである。 【0033】新たに追加したPMOSTr29のソース
電極は電源端子に接続されていて,ゲート電極はPMO
STr26,32,35,37のゲート電極と共通に接
続しているので,PMOSTr26,29,32,3
5,37のゲート・ソース電極間の電圧は等しく,PM
OSTr26,29,32,35,37に流れる電流は
各々のトランジスタサイズに比例する。 【0034】NMOSTr30,31には,一定電流が
流れてオンしている。NMOSTr30,31共にドレ
イン電極とソース電極が接続されているので,各々のゲ
ート・ソース電極間の電圧は,ほぼVthになる。MO
STr26,27,28の接続とMOSTr29,3
0,31の接続は同じなので,サイズを同じにすると,
同一の電圧を発生することができる。同一の電圧を発生
する回路を複数個使用する理由は,各々の回路間の干渉
を防止する為である。特にNMOSTr13とNMOS
Tr14は,入力信号が無い時には,ドレイン電極とソ
ース電極間の電位差がなく,MOSTrが所謂非飽和状
態で動作している。非飽和状態のMOSTrは,特にゲ
ート・ドレイン電極間の容量が,飽和動作時に比べて大
きい為,信号入力による,ソース・ドレイン電極間の電
圧変化が,ゲート・ドレイン電極間の容量を通してゲー
ト電極の電圧を変化させる。 【0035】該ゲート電極の電圧変化が,電圧発生部分
の電圧,即ち図4中ではNMOSTr27,28または
NMOSTr33,34のゲート・ソース電極間電圧を
変動させる。図4中で,演算増幅器21の非反転入力端
子は,別に設けたNMOSTr31のゲート電極から電
圧を得ているので,前述の電圧の変動影響を受けない。 【0036】図4に示した,実施例では,バンドパスフ
ィルタを構成している抵抗15を分割し,抵抗15,3
9,40の3個で表現している。又バンドパスフィルタ
用の演算増幅器23の非反転入力端子の電圧を,PMO
STr35に流れる電流と,抵抗41の抵抗値との積で
設定している。 【0037】交流的には,抵抗15,39,40の抵抗
値を各々R15,R39,R40とすれば,図3の抵抗
15は,等価的に 【0038】 【数7】 【0039】となり,抵抗の個数は増加するものの,抵
抗値を倍増させることができるので,抵抗値の総和は減
少させることができる。一般に集積回路内では,抵抗の
個数ではなく,抵抗値の総和が,チップサイズを決める
要因となる為,図4の回路は,特に集積化回路に適す
る。 又信号入力が無い時のバンドパスフィルタ用の演
算増幅器23の出力,即ち直流動作点は,演算増幅器2
3の非反転入力端子の電圧をVbとすると, 【0040】 【数8】 【0041】Vbは前述したように,NMOSTr35
を流れる電流と,抵抗41の抵抗値の積で容易に設定で
きる。図5は本発明によるフィルタ回路を,リモコン受
信用回路45の中のフィルタ回路48として適用した例
である。数10kHzの発光周期を持つ赤外光52は,
フォトダイオード等の光電変換素子42により電気信号
に変換され,入力端子43を通してリモコン受信用回路
45に入力される。リモコン受信用回路45では,発光
周期数10kHzの赤外光が入射しているか,全く入射
していないかを検出する。一般的に,入力端子43の信
号は最小で50μV以下と微弱である。リモコン受信用
回路45の内部では,入力信号を低雑音増幅器46で増
幅し,次にリミッタ47で振幅を一定値に制限し,前記
発光周期に同調したバンドパスフィルタ48で信号成分
のみを抽出し,検波回路49で検波を行ない,検波後の
直流レベルを一定の閾値と比較してHigh又はLow
レベルを出力する比較回路50を通して,出力端子51
に出力する。太陽光下のような直流的な入力がある場合
のは,直流レベル設定回路44が作動し,入力端子43
の直流レベルの変動を抑えている。 【0042】リモコン受信用回路45には,入力信号の
みを通すように,入力の発光周期に同調したQの高いバ
ンドパスフィルタ48が必要である。本発明によるバン
ドパスフィルタ48は,前述したように,バンドパスフ
ィルタのQを,容量比の設定で向上させることが出来
る。更に選択度の高いフィルタを実現する手法の一つと
して,バンドパスフィルタの共振周波数の近傍に,Qの
高いバンドリジェクトフィルタの共振周波数を設定する
方法が良く知られているが,本発明によるフィルタ回路
は,前述したごとく,容量比の設定によりQを向上させ
たバンドリジェクトフィルタも同時に含んでいる。又バ
ンドパスフィルタのQとバンドリジェクトフィルタのQ
を各々向上できるので,極めて選択度の高いフィルタ回
路48を構成できる。しかもCMOSプロセスで容易に
実現が可能である為,特にCMOS集積回路化したリモ
コン受信用回路45に適する。 【0043】 【発明の効果】以上説明したごとく,本発明によれば,
直流を増幅しない容量結合の加算回路を用いているの
で,内部に使用している演算増幅器の直流オフセット電
圧を増幅しない。従って,直流動作点を変動させずに,
容量比を変えてQを向上させることが出来る。 【0044】又バンドパスフィルタとバンドリジェクト
フィルタに各々個別に,Q逓倍回路を付加して縦列接続
した場合に比て,本発明では,加算回路を共用している
為に,より少ない回路規模で同等の性能を得る事ができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter circuit for selecting a signal having a desired frequency component from input signals having various frequency components and outputting the selected signal. More specifically, the present invention relates to a MOS integrated circuit of the filter circuit. 2. Description of the Related Art Conventionally, as a method of simply configuring a filter circuit having a high selectivity Q, M.I. E. FIG. VAN VANK
ENBURG, "Analog Filter Des
ign ", Holt, Rinehart and Wi
nston, NEW YORK, 1982, P217
For example, a Q enhancement circuit (Q multiplication circuit) is known. The Q-multiplier circuit improves the Q by applying a feedback of multiplying the output of a so-called second-order transfer function filter circuit by a coefficient k and adding the input to the input. [0003] The Q using the individual parts
When a multiplier circuit is configured, the coefficient k is often realized by a so-called adder circuit using an operational amplifier and a resistor. However, a circuit using a resistor and an operational amplifier is referred to as M
If an OS integrated circuit is used, the DC offset voltage of the operational amplifier is amplified because the circuit has a DC gain, and the DC operating point is shifted.
It is also well known that a steeper filter characteristic is obtained by combining a bandpass filter whose gain increases at a specific frequency and a band reject filter whose gain decreases near a specific frequency. . In order to obtain a steeper filter characteristic, it is preferable to further improve the Q of the combined bandpass filter and band reject filter by using a Q multiplier circuit. [0004] However, there has been a problem or problem that adding a Q multiplying circuit to each of a band-pass filter and a band-reject filter which are combined and paired increases the circuit scale. [0005] In order to solve the above-mentioned problems of the prior art, according to the present invention, a pair of a band-pass filter and a band-reject filter is provided by an adder circuit suitable for MOS integrated circuit. It is an object of the present invention to provide a circuit that improves each Q at a time. In order to achieve the above object, in the present invention, the adder circuit is configured as a capacitively coupled adder circuit, and the DC gain is set to 0 so as not to amplify the DC offset voltage of the operational amplifier. Further, the circuit configuration is such that a first addition circuit is provided in the first stage, a band reject filter is provided in the second stage, a second addition circuit is provided in the third stage, and a band-pass filter is provided in the fourth stage.
The output of the band-pass filter is fed back by multiplying the input of the first-stage first adder circuit and the input of the third-stage adder circuit by respective different coefficients, and the output of the second-stage adder circuit is obtained as follows. The input of the first adder circuit is multiplied by a coefficient and is fed back. According to the present invention, a capacitively coupled addition circuit comprises:
Since no DC is passed, the DC offset voltage of the operational amplifier is not amplified. From the output of the bandpass filter, two feedback loops to the input of the first stage first adder, the input of the third stage second adder, and the output of the third stage second adder, Another feedback loop to the input of the first adder circuit of the first stage, that is, the feedback coefficients of a total of three feedback loops can be adjusted by setting the capacitance ratio of the capacitively coupled adder circuit. By adjusting the feedback coefficient, the Q of the band reject filter and the Q of the bandpass filter can be respectively improved. Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a circuit diagram showing one embodiment of a filter circuit according to the present invention. FIG. 2 shows an AC small signal equivalent circuit of the circuit of FIG. The capacitor 7 is connected between the signal input terminal 24 and the inverting input terminal of the operational amplifier 21. The non-inverting input terminal of the operational amplifier 21 is connected to the ground potential. The capacitor 6 and the resistor 13 are connected in parallel between the inverting input terminal and the output terminal of the operational amplifier 21. Resistance 1
Numeral 3 is for setting a DC operating point, and when there is no AC signal input, the voltage at the output terminal of the operational amplifier 21 is equal to the voltage at the inverting input terminal, and is also equal to the voltage at the non-inverting input terminal. The output terminal of the operational amplifier 21 and the operational amplifier 22
Between the non-inverting input terminal of
A so-called twin T band reject filter composed of capacitors 8, 9, and 10 is connected. Between the non-inverting input terminal of the operational amplifier 22 and the ground potential,
The capacity 3 is connected. The capacitor 4 and the resistor 14 are connected in parallel between the inverting input terminal and the output terminal of the operational amplifier 22.
The resistor 14 is used to set a DC operating point similarly to the resistor 13 described above. When there is no AC signal input, the voltage at the output terminal of the operational amplifier 22 becomes equal to the voltage at the inverting input terminal, and the voltage at the non-inverting input terminal. Is equal to The capacitor 5 is connected between the output terminal of the operational amplifier 22 and the non-inverting input terminal of the operational amplifier 21. Resistors 15, 19, 2 are connected between the output terminal of the operational amplifier 22 and the signal output terminal 25.
A so-called multi-feedback type band pass filter composed of 0, capacitors 11, 12 and an operational amplifier 23 is connected.
The capacitor 1 is connected between the signal input terminal 25 and the inverting input terminal of the operational amplifier 22. Signal input terminal 25
And an inverting input terminal of the operational amplifier 21.
Is connected. The transfer function of the band reject filter is G
(S), assuming that the transfer function of the bandpass filter is F (s), the small signal equivalent circuit of FIG. 1 is as shown in FIG. G
(S) shows that the Q of the band reject filter is Qt and the resonance angular frequency is ωt. F (s) represents the Q of the bandpass filter as Q
b, where ωb is the resonance angular frequency K1, k2, k3, and k4 are coefficients according to the capacitance ratio of the capacitive coupling amplifier circuit shown in FIG.
C1, C2, C3, C
4, C5 and C6. ## EQU1 ## The capacitance 7 can change only the gain of the entire circuit in proportion to the capacitance 6, but does not affect the frequency characteristics and is not reflected in FIG. When the transfer function of the equivalent circuit of FIG. 2 is obtained by using Expressions 1 to 3, the following expression is obtained. ## EQU1 ## Here, k1 = kb, k2 · k5
When ka and kb satisfying = ka · kb and k5 · k6 = ka are determined, Expression 4 can be rewritten as Expression 5 below. (Equation 5) Further, G (s) and F (s) in Expression 5 are replaced by Expression 1
Substituting into Equation 2 yields: Comparing the right side of Equation 6 with Equations 1 and 2, the gain (coefficient term) has changed, and the transfer function inside the transfer function has Qt
Is (1 + ka) times, and for the band-pass filter, Qb is 1 / (1-kb) times. That is, using the circuit of FIG. 1 and the equivalent circuit of FIG.
If the capacitance ratio is set to be kb, the Qt of the band reject filter and the Qb of the bandpass filter can be improved simultaneously. It should be noted that the equivalent circuit of FIG.
The effect of 14 is ignored. As mentioned above,
Reference numerals 3 and 14 are used to set the DC operating points of the operational amplifiers 21 and 22. In the frequency band in which the filter is used, the impedance of the resistors 13 and 14 is set to be sufficiently higher than the capacitances 1 to 7 so that the influence can be ignored. However, in the embodiment shown in FIG.
The outputs of the operational amplifiers 21, 22, and 23 oscillate up and down with respect to the ground potential (0 V) as a reference (center). Therefore, the operational amplifiers used need to operate with two positive and negative power supplies. The circuit shown in FIG. 3 is obtained by operating the circuit shown in FIG. 1 with a single power supply voltage, and is further adapted to a MOS integrated circuit. 1 and 3 are assigned the same reference numerals to facilitate understanding. The outline of the difference between FIG. 3 and FIG.
The non-inverting input terminals of 1, 22, 23 are set to 0 from the ground potential.
That is, the reference potential is set to be larger than v, and the resistors 13 and 14 are realized by MOS transistors. The source electrodes of P-channel MOS transistors (hereinafter, PMOS Tr) 26, 32, 35 and 37 are connected to the power supply terminal. The gate electrode and the drain electrode of the PMOS Tr 37 are commonly connected to one end of a constant current source 38, and the other end of the constant current source 38 is connected to the ground potential. The gate electrodes of the PMOS Trs 26, 32 and 35 are PM
Since it is commonly connected to the gate electrode of OSTr37,
The voltages between the gate and source electrodes of the PMOS Trs 26, 32, 35 and 37 are equal, and the PMOS Trs 26, 32, 35 and
The current flowing through 37 is proportional to the size of each transistor. The drain electrode of the PMOS Tr 26 has N
A gate electrode and a drain electrode of a channel MOS Tr (hereinafter, NMOS Tr) 27 and a gate electrode of the NMOS Tr 13 are commonly connected. The source electrode of the NMOS Tr 27 is commonly connected to the gate and drain electrodes of the NMOS Tr 28 and the non-inverting input terminal of the operational amplifier 21. The source electrode of the NMOS Tr28 is connected to the ground potential. Since a constant current flows through the NMOS Trs 27 and 28, each transistor is turned on, and a voltage of a so-called threshold voltage (hereinafter referred to as Vth) of the NMOS Tr is generated between the gate and source electrodes. ing. Similarly, since a constant current also flows through the NMOS Trs 33 and 34, each transistor is on and the gate
A voltage of approximately Vth is generated between the source electrodes.
Further, since a constant current also flows through the NMOS Tr 36, the transistor is on and a voltage of approximately Vth is generated between the gate and source electrodes. The non-inverting input terminal of the operational amplifier 21 is NM
Since it is connected to the gate electrode of the OSTr 28, the voltage is almost Vth. If the input signal amplitude is 0,
The output terminal and the inverted input terminal of the operational amplifier 21 are NMOST
r13, the inverting input terminal, the non-inverting input terminal and the output terminal of the operational amplifier 21 have the same voltage, that is, V
The voltage is slightly higher than th. Since the source electrode and the drain electrode of the NMOS Tr 13 are connected to the non-inverting input terminal and the inverting input terminal of the operational amplifier 21, respectively, they have a voltage of approximately Vth. On the other hand, since the gate electrode of the NMOS Tr13 is connected to the gate electrode and the drain electrode of the NMOS Tr27, the voltage is approximately 2 × Vth. A voltage of approximately Vth is applied between the gate and source electrodes of the NMOS Tr13, and the NMOS Tr13 is always on. The output of the operational amplifier 21 is connected to resistors 16 and 17
, The voltage at the non-inverting input terminal of the operational amplifier 22 is
It becomes almost Vth. Since the output terminal and the inverting input terminal of the operational amplifier 22 are short-circuited by the NMOS Tr 14, the non-inverting input terminal, the inverting input terminal, and the output terminal of the operational amplifier 22 are almost at Vth. On the other hand, NMOS Tr14
Is connected to the gate electrode and the drain electrode of the NMOS Tr 33, and therefore has a voltage of approximately 2 × Vth. A voltage of approximately Vth is applied between the gate and source electrodes of the NMOS Tr14.
Is always on. Since the inverting input terminal of the operational amplifier 23 constituting the band-pass filter also applies a voltage from the gate electrode and the drain electrode of the NMOS Tr 36,
The voltage is almost Vth. Since the non-inverting input terminal and the output terminal of the operational amplifier 23 are short-circuited by the resistor 15 constituting the band-pass filter, the non-inverting input terminal, the inverting input terminal, and the output terminal of the operational amplifier 23 are substantially equal to Vth. Has become. The circuit of FIG. 3 can be expressed in terms of alternating current by the small signal equivalent circuit of FIG. 2, just like FIG. The output of each of the operational amplifiers 21, 22, and 23 swings up and down with Vth as a reference (center), so that they can be used with a single power supply. FIG. 4 shows an embodiment in which the circuit of FIG. 3 is further modified. Corresponding parts in FIGS. 1, 3, and 4 are given the same reference numerals to facilitate understanding. The difference between the circuit of FIG. 4 and the circuit of FIG. 3 is that the voltage of the non-inverting input terminal of the operational
The gate voltage of the NMOS Tr 13 is generated by the combination of the MOS Tr 29 and the NMOS Trs 30 and 31, and the gate voltage of the NMOS Tr 13 is generated by the PMOS Tr 26 and the NMOS Trs 27 and 28.
Is caused by the combination of The source electrode of the newly added PMOS Tr 29 is connected to the power supply terminal, and the gate electrode is
Since they are commonly connected to the gate electrodes of the STr 26, 32, 35, 37, the PMOS Trs 26, 29, 32, 3
The voltage between the gate and source electrodes is equal, and PM
The current flowing through the OSTrs 26, 29, 32, 35, 37 is proportional to the size of each transistor. A constant current flows through the NMOS Trs 30 and 31 to turn them on. Since the drain and source electrodes of both NMOS Trs 30 and 31 are connected, the voltage between each gate and source electrode becomes substantially Vth. MO
Connection of STr 26,27,28 and MOSTr 29,3
Since the connections of 0 and 31 are the same, if the size is the same,
The same voltage can be generated. The reason for using a plurality of circuits that generate the same voltage is to prevent interference between the circuits. Especially NMOS Tr13 and NMOS
Tr14 has no potential difference between the drain electrode and the source electrode when there is no input signal, and the MOSTr operates in a so-called unsaturated state. In a non-saturated MOSTr, particularly, the capacitance between the gate and drain electrodes is larger than that during the saturation operation, so that a voltage change between the source and drain electrodes due to a signal input causes the change in the voltage of the gate electrode through the capacitance between the gate and drain electrodes. Change the voltage. The change in the voltage of the gate electrode changes the voltage of the voltage generating portion, that is, the voltage between the gate and source electrodes of the NMOS Trs 27 and 28 or the NMOS Trs 33 and 34 in FIG. In FIG. 4, the non-inverting input terminal of the operational amplifier 21 receives the voltage from the gate electrode of the NMOS Tr 31 provided separately, and is not affected by the above-mentioned voltage fluctuation. In the embodiment shown in FIG. 4, the resistor 15 constituting the band-pass filter is divided and the resistors 15 and 3 are divided.
It is expressed by three of 9, 40. The voltage at the non-inverting input terminal of the operational amplifier 23 for the band-pass filter is
The current is set by the product of the current flowing through the STr 35 and the resistance value of the resistor 41. Assuming that the resistance values of the resistors 15, 39, and 40 are R15, R39, and R40, respectively, the resistor 15 in FIG. 3 is equivalent to the following equation. Thus, although the number of resistors increases, the resistance value can be doubled, so that the sum of the resistance values can be reduced. Generally, in an integrated circuit, not the number of resistors but the sum of the resistance values is a factor in determining the chip size. Therefore, the circuit in FIG. 4 is particularly suitable for an integrated circuit. The output of the operational amplifier 23 for the band-pass filter when there is no signal input, that is, the DC operating point is determined by the operational amplifier 2
Assuming that the voltage of the non-inverting input terminal of No. 3 is Vb, Vb is, as described above, the NMOS Tr35
And the resistance of the resistor 41 can be easily set. FIG. 5 shows an example in which the filter circuit according to the present invention is applied as a filter circuit 48 in a remote control receiving circuit 45. The infrared light 52 having an emission cycle of several tens kHz is
The signal is converted into an electric signal by a photoelectric conversion element 42 such as a photodiode, and is input to a remote control receiving circuit 45 through an input terminal 43. The remote control receiving circuit 45 detects whether infrared light having a light emission period of 10 kHz is incident or not incident at all. In general, the signal at the input terminal 43 is as weak as 50 μV or less at the minimum. In the remote control receiving circuit 45, the input signal is amplified by the low noise amplifier 46, the amplitude is limited to a constant value by the limiter 47, and only the signal component is extracted by the band pass filter 48 tuned to the light emission cycle. , A detection circuit 49 performs detection, and compares the DC level after detection with a certain threshold to determine whether the DC level is High or Low.
An output terminal 51 is output through a comparison circuit 50 that outputs a level.
Output to If there is a DC input such as under sunlight, the DC level setting circuit 44 operates and the input terminal 43
DC level fluctuation is suppressed. The remote control receiving circuit 45 requires a high-Q bandpass filter 48 tuned to the input light emission period so that only the input signal passes. As described above, the bandpass filter 48 according to the present invention can improve the Q of the bandpass filter by setting the capacitance ratio. As one of the techniques for realizing a filter with higher selectivity, a method of setting the resonance frequency of a band reject filter having a high Q near the resonance frequency of the bandpass filter is well known. As described above, the circuit also includes a band reject filter whose Q is improved by setting the capacitance ratio. The bandpass filter Q and the band reject filter Q
Can be improved, so that the filter circuit 48 having extremely high selectivity can be configured. In addition, since it can be easily realized by a CMOS process, it is particularly suitable for a remote control receiving circuit 45 formed as a CMOS integrated circuit. As described above, according to the present invention,
Since a capacitive coupling addition circuit that does not amplify DC is used, the DC offset voltage of the operational amplifier used internally is not amplified. Therefore, without changing the DC operating point,
Q can be improved by changing the capacitance ratio. In the present invention, since the adder circuit is shared, the present invention uses a smaller circuit scale than a case where a Q multiplying circuit is separately added to each of the band-pass filter and the band-reject filter. Equivalent performance can be obtained.

【図面の簡単な説明】 【図1】本発明の実施例を示す回路図。 【図2】本発明の実施例の等価回路。 【図3】本発明の実施例を示す回路図。 【図4】本発明の実施例を示す回路図。 【図5】本発明の実施例を示す回路図。 【符号の説明】 1,2,3,4,5,6,7,8,9,10,11,1
2 容量 13,14 抵抗要素 15,16,17,18,19,20,39,40,4
1 抵抗 21,22,23 演算増幅器 24 信号入力端子 25 信号出力端子 26,29,32,35,37 PチャンネルMOSト
ランジスタ 27,28,30,31 NチャンネルMOSトランジ
スタ 33,34,36 NチャンネルMOSトランジスタ 38 定電流源 42 光電変換素子 43 リモコン受信用回路の入力端子 44 直流レベル設定回路 45 リモコン受信用回路 46 低雑音増幅器 47 リミッタ 48 フィルタ 49 検波回路 50 比較回路 51 リモコン受信用回路の出力端子 52 赤外光
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing an embodiment of the present invention. FIG. 2 is an equivalent circuit of the embodiment of the present invention. FIG. 3 is a circuit diagram showing an embodiment of the present invention. FIG. 4 is a circuit diagram showing an embodiment of the present invention. FIG. 5 is a circuit diagram showing an embodiment of the present invention. [Description of Signs] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1
2 Capacitance 13,14 Resistance element 15,16,17,18,19,20,39,40,4
DESCRIPTION OF SYMBOLS 1 Resistance 21,22,23 Operational amplifier 24 Signal input terminal 25 Signal output terminal 26,29,32,35,37 P channel MOS transistor 27,28,30,31 N channel MOS transistor 33,34,36 N channel MOS transistor 38 Constant current source 42 Photoelectric conversion element 43 Input terminal of remote control receiving circuit 44 DC level setting circuit 45 Remote control receiving circuit 46 Low noise amplifier 47 Limiter 48 Filter 49 Detection circuit 50 Comparison circuit 51 Output terminal 52 of remote control receiving circuit 52 Red Outside light

Claims (1)

(57)【特許請求の範囲】 【請求項1】非反転入力端子を基準電位に接続した第1
の演算増幅器と,別に設けた第2の演算増幅器と,信号
入力端子と前記第1の演算増幅器の反転入力端子との間
に配した第1の容量と,前記第1の演算増幅器の反転入
力端子と前記第1の演算増幅器の出力端子との間に配し
た第2の容量と,前記第1の演算増幅器の反転入力端子
と前記第1の演算増幅器の出力端子との間に配した第1
の抵抗要素と,前記第1の演算増幅器の反転入力端子と
前記第2の演算増幅器の出力端子との間に配した第3の
容量と,前記第2の演算増幅器の反転入力端子と前記第
2の演算増幅器の出力端子との間に配した第4の容量
と,前記第2の演算増幅器の反転入力端子と前記第2の
演算増幅器の出力端子との間に配した第2の抵抗要素
と,前記第2の演算増幅器の反転入力端子と基準電位と
の間に配した第5の容量と,信号出力端子と前記第1の
演算増幅器の反転入力端子との間に配した第6の容量
と,信号出力端子と前記第2の演算増幅器の反転入力端
子との間に配した第7の容量と,前記第1の演算増幅器
の出力端子と前記第2の演算増幅器の非反転入力端子と
の間に配した,入出力伝達関数の分母が2次の項と1次
の項と定数項とで成り分子が2次の項と定数項とで成る
第1のフィルタ回路と,前記第2の演算増幅器の出力端
子と信号出力端子との間に配した,入出力伝達関数の分
母が2次の項と1次の項と定数項とで成り分子が1次の
項だけで成る第2のフィルタ回路とから構成されたフィ
ルタ回路。
(57) [Claim 1] A first circuit in which a non-inverting input terminal is connected to a reference potential.
An operational amplifier, a second operational amplifier separately provided, a first capacitor disposed between a signal input terminal and an inverting input terminal of the first operational amplifier, and an inverting input of the first operational amplifier. A second capacitor disposed between the terminal and an output terminal of the first operational amplifier; and a second capacitor disposed between an inverting input terminal of the first operational amplifier and an output terminal of the first operational amplifier. 1
, A third capacitor disposed between the inverting input terminal of the first operational amplifier and the output terminal of the second operational amplifier, and the inverting input terminal of the second operational amplifier and the third A second capacitor disposed between the output terminal of the second operational amplifier and a fourth resistor disposed between the inverted input terminal of the second operational amplifier and the output terminal of the second operational amplifier. A fifth capacitor disposed between the inverting input terminal of the second operational amplifier and the reference potential; and a sixth capacitor disposed between the signal output terminal and the inverting input terminal of the first operational amplifier. A capacitor, a seventh capacitor disposed between the signal output terminal and the inverting input terminal of the second operational amplifier, an output terminal of the first operational amplifier, and a non-inverting input terminal of the second operational amplifier. And the denominator of the input / output transfer function is composed of the second-order term, the first-order term, and the constant term. And a first-order filter circuit composed of a second-order term and a constant term, and a denominator of the input / output transfer function, which is disposed between an output terminal and a signal output terminal of the second operational amplifier, and a second-order term. A second filter circuit comprising a first-order term and a constant term and a numerator comprising only the first-order term.
JP23979395A 1995-09-19 1995-09-19 Filter circuit Expired - Fee Related JP3497023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23979395A JP3497023B2 (en) 1995-09-19 1995-09-19 Filter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23979395A JP3497023B2 (en) 1995-09-19 1995-09-19 Filter circuit

Publications (2)

Publication Number Publication Date
JPH0983297A JPH0983297A (en) 1997-03-28
JP3497023B2 true JP3497023B2 (en) 2004-02-16

Family

ID=17049965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23979395A Expired - Fee Related JP3497023B2 (en) 1995-09-19 1995-09-19 Filter circuit

Country Status (1)

Country Link
JP (1) JP3497023B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107124179B (en) * 2017-05-08 2024-02-27 安康学院 Phase-locked amplifier for detecting weak photocurrent signal
US11569555B2 (en) * 2019-12-06 2023-01-31 Qualcomm Incorporated Phase shifter with active signal phase generation

Also Published As

Publication number Publication date
JPH0983297A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
Veeravalli et al. A CMOS transconductance amplifier architecture with wide tuning range for very low frequency applications
EP0639889B1 (en) Low voltage fully differential operational amplifiers
JPH09501798A (en) Charge transfer device
JPH07114349B2 (en) Duty control circuit device
JP3505120B2 (en) Switched capacitor bias circuit that generates a reference signal proportional to absolute temperature, capacitance and clock frequency
JP2003110375A (en) Self-operating pwm (pulse width modulation) amplifier
US6417725B1 (en) High speed reference buffer
EP0286347B1 (en) Balanced output analog differential amplifier circuit
CN107294497B (en) Conversion circuit, heartbeat current signal conversion device and method and heartbeat detection system
US7863945B2 (en) Current converting method, transconductance amplifier and filter circuit using the same
JP3497023B2 (en) Filter circuit
US20040239426A1 (en) Operational amplifier generating desired feedback reference voltage allowing improved output characteristic
JP4456737B2 (en) Input circuit
NL9002154A (en) COMPANDING POWER MODE TRANSCONDUCTOR-C INTEGRATOR.
JP3497022B2 (en) Filter circuit
JPH10505699A (en) Current integrator
JP2007208924A (en) Switched capacitor amplifier and method of operating switched capacitor amplifier
JPH09191227A (en) Voltage smoothing circuit device
JP3179838B2 (en) Noise detection circuit
JPH08146059A (en) Capacitance-voltage conversion circuit
US11349435B1 (en) Current-mode square wave oscillator
US5030198A (en) Adaptive transmission line stage in an analog electronic cochlea
KR20230130359A (en) Positive feedback loop and negative capacitance type input impedance amplifier circuit
RUPPA IMPLEMENTATION OF ANALOG SIGNAL PROCESSING CIRCUITS USING EXCCII
JP2003198283A (en) Voltage-current converter and active filter circuit

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees