JP3496934B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP3496934B2
JP3496934B2 JP2001084322A JP2001084322A JP3496934B2 JP 3496934 B2 JP3496934 B2 JP 3496934B2 JP 2001084322 A JP2001084322 A JP 2001084322A JP 2001084322 A JP2001084322 A JP 2001084322A JP 3496934 B2 JP3496934 B2 JP 3496934B2
Authority
JP
Japan
Prior art keywords
fuel
electrode
oxidant
fuel cell
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084322A
Other languages
Japanese (ja)
Other versions
JP2002289224A (en
Inventor
芳浩 赤坂
秀行 大図
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001084322A priority Critical patent/JP3496934B2/en
Publication of JP2002289224A publication Critical patent/JP2002289224A/en
Application granted granted Critical
Publication of JP3496934B2 publication Critical patent/JP3496934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池、特に小
型化に適した燃料電池に関する。
TECHNICAL FIELD The present invention relates to a fuel cell, and more particularly to a fuel cell suitable for miniaturization.

【0002】[0002]

【従来の技術】社会的な動向として、OA機器、オーディ
オ機器、無線機器等に燃料電池を使用する事が要望され
ている。燃料電池は、燃料と酸化剤を供給するだけで発
電することができるという利点を有するだけでなく、燃
料を交換すれば連続して発電できるという利点を有して
いるため、小型化が出来れば消費電力が小さいOA機器等
の小型機器の作動に極めて有利なシステムといえる。
2. Description of the Related Art As a social trend, it is desired to use fuel cells for OA equipment, audio equipment, wireless equipment and the like. Fuel cells not only have the advantage that they can generate electricity simply by supplying fuel and oxidant, but they also have the advantage that they can generate electricity continuously by exchanging the fuel, so if miniaturization is possible. It can be said that this system is extremely advantageous for operating small equipment such as OA equipment that consumes little power.

【0003】液体燃料としてメタノールと水の混合溶液
を用いたメタノール燃料電池を例として説明する。メタ
ノール燃料電池は電池本体への燃料供給方法によって、
液体燃料をそのまま電池本体に供給する液体供給型と、
液体燃料を気化させてから電池本体に供給する気化供給
型とに大別され、これらの長所を併せ持った燃料極、酸
化剤極およびこれら両電極に挟持された電解質板を有す
る起電部を有し、燃料として液体燃料を用い前記液体燃
料を毛管力で電池内に導入するための燃料浸透層と、前
記燃料浸透層と燃料極との間に配置され、電池内に導入
された液体燃料を気化させて気体燃料の形で燃料極に供
給するための燃料気化層とを具備する燃料電池もある。
A methanol fuel cell using a mixed solution of methanol and water as a liquid fuel will be described as an example. Methanol fuel cells are
A liquid supply type that directly supplies liquid fuel to the battery main body,
It is roughly divided into a vaporization supply type in which liquid fuel is vaporized and then supplied to the cell body. Then, using a liquid fuel as the fuel, the liquid fuel introduced into the cell is disposed between the fuel permeation layer for introducing the liquid fuel into the cell by capillary force and the fuel permeation layer and the fuel electrode. There is also a fuel cell including a fuel vaporization layer for vaporizing and supplying the fuel electrode in the form of a gaseous fuel.

【0004】しかしながら、このような構成の燃料電池
でも以下の様な問題がある。つまり、これらの燃料電池
においては電池反応により炭酸ガスが発生するわけだ
が、この炭酸ガスが残存することにより燃料の供給およ
び反応の妨げが起こり、長時間にわたり出力レベルの低
下および安定した出力が得られない等の問題が発生して
いた。特に、本発明者らは鋭意研究を重ねた結果、この
端子取り付け部は電流が集中し易く局部的に反応が進む
ことに伴い、局部的にこの端子近傍でガスが発生し、こ
の現象に起因して発電効率が著しく低下するという新た
な問題を見出した。
However, even the fuel cell having such a structure has the following problems. In other words, in these fuel cells, carbon dioxide gas is generated due to the cell reaction, but the remaining carbon dioxide gas interferes with the fuel supply and reaction, resulting in a decrease in output level and stable output over a long period of time. There was a problem such as not being able to. In particular, as a result of intensive studies by the present inventors, current is easily concentrated in this terminal attachment portion and a reaction locally progresses, so that gas is locally generated in the vicinity of this terminal, which is caused by this phenomenon. Then, a new problem was found that the power generation efficiency was significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】従来の燃料電池は、外
部電力の出力端子近傍に電流が集中し易く局部的に起電
力発生のための反応が進むことに伴い、局部的にこの端
子近傍でガスが発生し、この現象によって発電効率が低
下すると言う問題があった。
In the conventional fuel cell, current tends to concentrate near the output terminal of the external power, and the reaction for generating the electromotive force locally progresses. There is a problem that gas is generated and this phenomenon reduces the power generation efficiency.

【0006】本発明は上記問題を解決するためになされ
たもので、出力端子近傍のガス発生に起因する発電効率
低下の問題を解決し、より高い出力を得る事ができる燃
料電池を提供することを課題とする。
The present invention has been made in order to solve the above problems, and provides a fuel cell capable of solving the problem of power generation efficiency deterioration due to gas generation near the output terminal and obtaining a higher output. Is an issue.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に請求項1の燃料電池は、燃料極と、この燃料極に対向
して配置され酸化剤ガス取入れ口を有する酸化剤極と、
前記燃料極および前記酸化剤極に挟持された電解質層
と、前記酸化剤ガス取り入れ口を露出させると共に前記
燃料極及び前記酸化剤極を覆う外装材と、この外装材か
ら露出し前記酸化剤極と電気的に接続された第1の外部
リード端子と、前記外装材から露出し前記燃料極と電気
的に接続され且つ発生ガス排出孔が形成された第2の外
部リード端子とを有することを特徴とする。
In order to solve the above-mentioned problems, a fuel cell according to a first aspect of the present invention comprises a fuel electrode, an oxidant electrode arranged facing the fuel electrode and having an oxidant gas intake port,
An electrolyte layer sandwiched between the fuel electrode and the oxidant electrode, an exterior material that exposes the oxidant gas intake port and covers the fuel electrode and the oxidant electrode, and the oxidant electrode exposed from the exterior material. A first external lead terminal electrically connected to the fuel cell, and a second external lead terminal exposed from the outer package and electrically connected to the fuel electrode and having a generated gas discharge hole formed therein. Characterize.

【0008】請求項2の燃料電池は、請求項1におい
て、前記発生ガス排出孔に液体・ガス分離膜が形成され
たことを特徴とする。
According to a second aspect of the present invention, there is provided the fuel cell according to the first aspect, wherein a liquid / gas separation membrane is formed in the generated gas discharge hole.

【0009】請求項3の燃料電池は、請求項1におい
て、外装材は樹脂を含むラミネートフィルムであること
を特徴とする。
According to a third aspect of the present invention, in the fuel cell according to the first aspect, the exterior material is a laminated film containing a resin.

【0010】放出口には液体・ガス分離膜を設けること
により液体の漏洩を防止することを特徴とする燃料電池
を提供する。
A fuel cell is provided which is provided with a liquid / gas separation membrane at the discharge port to prevent leakage of liquid.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0012】図1は、本発明の燃料電池の一例の要部構
成を示す構成図である。同図において、5は燃料タン
ク、11が燃料保持層、7は酸化剤ガス拡散層、10は
燃料極、9は固体電解質膜、8は酸化剤極、6は酸化剤
ガス取り入れ口、4は発生ガス放出口、1は起電部等を
保護する目的で燃料電池を収容する外装材、2は燃料極
リード、3は液体・気体分離膜、12は酸化剤極リード
である。
FIG. 1 is a configuration diagram showing a configuration of a main part of an example of a fuel cell of the present invention. In the figure, 5 is a fuel tank, 11 is a fuel holding layer, 7 is an oxidant gas diffusion layer, 10 is a fuel electrode, 9 is a solid electrolyte membrane, 8 is an oxidant electrode, 6 is an oxidant gas intake port, and 4 is A generated gas discharge port, 1 is an exterior material for accommodating a fuel cell for the purpose of protecting an electromotive portion, 2 is a fuel electrode lead, 3 is a liquid / gas separation membrane, and 12 is an oxidant electrode lead.

【0013】発電のメカニズムを図1を例に用いて説明
する。まず、液体燃料が燃料タンク5から燃料保持層1
1へと供給される。液体燃料の供給方法は、図1に示す
ように燃料タンク5から燃料保持層11へ毛管力を用い
て引き込む方法および直接燃料極へ燃料を供給する方法
など何れも可能である。燃料保持層11はポリエステ
ル、ポリオレフィンなどの多孔質有機物、カーボンやア
ルミナなどの多孔質無機物、網状の金属多孔体などいず
れの材料も許容される。燃料保持層11へと供給された
燃料は、燃料極10で拡散し供給される。なお、燃料の
拡散は、物理的にある種の材料(上記燃料浸透材と同様
の多孔質材料)が存在することも、あるいは燃料浸透材
の単に穴のあいただけの空間であっても利用可能であ
る。燃料極10へと供給された燃料は、カーボン粒子で
形成された燃料極内部のカーボン粒子に担持された白金
あるいはその合金などに代表される燃料電池用触媒によ
って酸化され、プロトンが取り出される。この燃料酸化
の際に電子が取り出される。取り出されたプロトンは隣
接して設けられた電解質9を通じて酸化剤極8側へと伝
達される。一方、酸化剤極8側では電解質9を通じて運
ばれてきたプロトンが外部回路を通じて流れてきた電
子、および酸化剤ガス(酸素や空気など)と反応して水
になる反応が酸化剤極内部の白金などに代表される触媒
上で進行する。以上のような反応が起こる過程で取り出
される電子が外部回路を流れることで発電が起こり、外
部負荷が駆動できる。
The mechanism of power generation will be described using FIG. 1 as an example. First, liquid fuel flows from the fuel tank 5 to the fuel holding layer 1
1 is supplied. As a method of supplying the liquid fuel, as shown in FIG. 1, any of a method of drawing from the fuel tank 5 to the fuel holding layer 11 by using a capillary force and a method of directly supplying the fuel to the fuel electrode are possible. For the fuel retaining layer 11, any material such as a porous organic material such as polyester or polyolefin, a porous inorganic material such as carbon or alumina, or a mesh-like metal porous body is acceptable. The fuel supplied to the fuel holding layer 11 is diffused and supplied at the fuel electrode 10. The fuel can be diffused even if a certain kind of material is physically present (a porous material similar to the above-mentioned fuel permeation material), or even if the fuel permeation material is simply a perforated space. Is. The fuel supplied to the fuel electrode 10 is oxidized by a fuel cell catalyst represented by platinum or its alloy supported on carbon particles formed of carbon particles inside the fuel electrode, and protons are taken out. Electrons are extracted during this fuel oxidation. The extracted protons are transmitted to the oxidant electrode 8 side through the electrolyte 9 provided adjacently. On the other hand, on the oxidant electrode 8 side, the reaction of the protons carried through the electrolyte 9 with the electrons flowing through the external circuit and the oxidant gas (oxygen, air, etc.) to become water is the platinum inside the oxidant electrode. It progresses on a catalyst represented by. The electrons taken out in the course of the reaction as described above flow through the external circuit to generate power and drive the external load.

【0014】次に、本発明の燃料電池の具体例を実施例
を用いてより詳細に説明する。なお、本発明は下記実施
例に限定されるものではなくその主旨を逸脱しない範囲
で種々変形して実施することができる。
Next, specific examples of the fuel cell of the present invention will be described in more detail with reference to examples. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the invention.

【0015】[0015]

【実施例】(実施例1)図1に示した構成を有する小型
燃料電池を、以下に示す要領で作製した。まず、カーボ
ン粉末に液相法でPt-Ru系の触媒を担持させた。このPt-
Ru系の触媒を担持したカーボン粉末を回収後、アルゴン
−水素気流中で焼成して触媒の安定化を行った。次にこ
の触媒粉末に溶剤と固体高分子溶液をバインダーとして
添加することによりペースト状にし、カーボンペーパー
上に塗布して乾燥させて燃料極10側の触媒層を形成し
た。また、別にPt系触媒を担持したカーボン粉末を燃料
極10側と同様のプロセスで作製し、やはり溶媒と固体
高分子溶液をバインダーとして添加してペースト状にし
てカーボンペーパーに塗布し、乾燥させた。以上のよう
にして作製した燃料極10と酸化剤極8を30mm×75mmに
それぞれ切断し、膜厚が200μmの電解質膜(パーフル
オロスルホン酸膜)を挟持した。これらを、135℃で15
分間、100kg/cm2の圧力で一体化した。次にこの起電部
(燃料極10、電解質膜9、酸化剤極8の接合体)の燃
料極10側に接する燃料保持層11(貴校率85%のポ
リオレフィン板、厚さ2mm)に予め燃料極端子(第2
の外部リード端子)2の形状(縦15mm、幅20m
m)に穴をあけ配置した。酸化剤極側にも予め酸化剤極
端子(第1の外部リード端子)12の形状(縦15m
m、幅20mm)に穴をあけ、さらに直径0.5μmの
孔が多数設けられた酸化剤ガス拡散層7である多孔質テ
フロン(登録商標)シートを設置し、このようにして得
た単位電池を予め燃料極端子2と酸化剤極端子12の形
状(縦15mm、幅20mm)に穴をあけた薄膜外装フ
イルムを用い燃料極端子2と酸化剤極端子12に設けた
穴がずれないように位置決めをした後、200℃で熱圧着
封入し、封入体とした。
EXAMPLES Example 1 A small fuel cell having the structure shown in FIG. 1 was produced in the following manner. First, carbon powder was loaded with a Pt-Ru-based catalyst by a liquid phase method. This Pt-
After recovering the carbon powder supporting the Ru-based catalyst, it was calcined in an argon-hydrogen stream to stabilize the catalyst. Next, a solvent and a solid polymer solution were added to this catalyst powder as a binder to form a paste, which was applied onto carbon paper and dried to form a catalyst layer on the fuel electrode 10 side. Separately, a carbon powder carrying a Pt-based catalyst was prepared by the same process as the fuel electrode 10 side, and a solvent and a solid polymer solution were also added as a binder to form a paste, which was applied to carbon paper and dried. . The fuel electrode 10 and the oxidant electrode 8 produced as described above were each cut into 30 mm × 75 mm, and an electrolyte membrane (perfluorosulfonic acid membrane) having a film thickness of 200 μm was sandwiched. These at 135 ° C for 15
It was integrated at a pressure of 100 kg / cm 2 for a minute. Next, the fuel holding layer 11 (a polyolefin plate having a rate of 85% of your own, a thickness of 2 mm) in contact with the fuel electrode 10 side of this electromotive portion (the joined body of the fuel electrode 10, the electrolyte membrane 9, and the oxidizer electrode 8) is preliminarily filled with fuel. Pole terminal (second
External lead terminal) 2 shape (length 15 mm, width 20 m
A hole was formed in m). The shape of the oxidizer electrode terminal (first external lead terminal) 12 (15 m long) is also provided on the oxidizer electrode side in advance.
m, width 20 mm), and a porous Teflon (registered trademark) sheet, which is the oxidant gas diffusion layer 7 provided with a large number of holes having a diameter of 0.5 μm, is installed, and the unit battery thus obtained In order to prevent the holes provided in the fuel electrode terminal 2 and the oxidant electrode terminal 12 from being displaced by using a thin film exterior film in which the holes (15 mm in length and 20 mm in width) of the fuel electrode terminal 2 and the oxidant electrode terminal 12 are previously formed. After positioning, it was thermocompression-bonded and sealed at 200 ° C to obtain a sealed body.

【0016】次に本実施例に用いた液体・ガス分離膜3
の構成について図1を参照しながら図2に沿って説明す
る。
Next, the liquid / gas separation membrane 3 used in this embodiment.
2 will be described with reference to FIG. 1 along with FIG.

【0017】この液体・ガス分離膜20は各端子板2、
12へ固定する役目を果たす接着層23と液体とガスを
分離する多孔質体層21とこれらを保護する役目を果た
すポリオレフィンネット22の多層構造により構成され
ている。
The liquid / gas separation membrane 20 is formed on each terminal plate 2,
It is composed of a multi-layer structure of an adhesive layer 23 that serves to fix it to 12, a porous body layer 21 that separates liquid and gas, and a polyolefin net 22 that serves to protect them.

【0018】本実施例に用いた液体・ガス分離膜20の
具体的仕様を以下に示す。
The specific specifications of the liquid / gas separation membrane 20 used in this embodiment are shown below.

【0019】液体・ガス分離膜全体の厚みは170μm
であり外径は10mmφ、内径部に位置する液体・ガス
分離膜20は厚さ90μm、孔径約0.6μm、気孔率
約85%のPTFE多孔質体で外径は6mmφである。
尚、接着層23については導電性を有し、耐有機溶剤性
に優れるフィラーとして銀を用いた導電性エポキシ接着
剤を用いた。
The total thickness of the liquid / gas separation membrane is 170 μm.
The outer diameter is 10 mmφ, the liquid / gas separation membrane 20 located in the inner diameter portion is a PTFE porous body having a thickness of 90 μm, a pore diameter of about 0.6 μm, and a porosity of about 85%, and the outer diameter is 6 mmφ.
For the adhesive layer 23, a conductive epoxy adhesive containing silver as a filler having conductivity and excellent organic solvent resistance was used.

【0020】ポリオレフィンネット22はポリオレフィ
ン系不織布で厚さ80μm、20g/m2目付けのもの
を用いた。
The polyolefin net 22 is a polyolefin-based nonwoven fabric having a thickness of 80 μm and a basis weight of 20 g / m 2.

【0021】次に液体・ガス分離膜20と燃料極リード
端子2の組み立て図である図3に沿って図1を参照しな
がら説明する。
Next, the liquid / gas separation membrane 20 and the fuel electrode lead terminal 2 will be described with reference to FIG. 1 along with FIG.

【0022】燃料極リード端子2を取り付ける穴(10
mmφ)をあけた燃料極端子板2を構成する2つの端子
片である燃料極端子片(縦15mm、幅20mm)2
a、2b、及びこれらの燃料極端子片2a、2bの間に介在
するようにセットされる液体・ガス分離膜20を準備し
た(図3(a))。その後、この燃料極端子片(縦15
mm、幅20mm)2a、2bの間にこの液体・ガス分離
膜20を取り付けた(図3(b)) 尚、各端子片2a、2bの材料は無酸素銅に金メッキをし
たものを用いた。次に図1に示した構成で予め作成して
おいた単位電池封止体に無酸素銅に金メッキ処理をした
酸化剤極端子板(縦15mm、幅20mm)12と液体
・ガス分離膜20を取り付けた燃料極端子板2を取り付
けた。
A hole (10 for attaching the fuel electrode lead terminal 2)
mm fuel electrode terminal plate 2 (15 mm in length, 20 mm in width), which is two terminal pieces constituting the fuel electrode terminal plate 2.
A liquid / gas separation membrane 20 set so as to be interposed between a and 2b and the fuel electrode terminal pieces 2a and 2b was prepared (FIG. 3 (a)). Then, this fuel electrode terminal piece (vertical 15
mm, width 20 mm) The liquid / gas separation membrane 20 was attached between 2a and 2b (Fig. 3 (b)). The material of each terminal piece 2a and 2b was oxygen-free copper plated with gold. . Next, an oxidizer electrode terminal plate (15 mm in length, 20 mm in width) 12 and a liquid / gas separation membrane 20 in which oxygen-free copper was gold-plated were formed on a unit battery encapsulation body prepared in advance with the configuration shown in FIG. The attached fuel electrode terminal plate 2 was attached.

【0023】最後に、薄膜外装フィルム1の端部と各端
子板2、12間を気密性に優れるエポキシ樹脂で封止し
た。同様に厚さ3mmの酸化剤極リード12を封入体に
取り付け、薄膜外装フィルム1端部と端子板2、12間
を気密性に優れる耐有機溶剤性に優れるフィラーとして
銀を用いた導電性エポキシ接着剤で封止した。
Finally, the end portion of the thin film exterior film 1 and each of the terminal plates 2 and 12 were sealed with an epoxy resin having excellent airtightness. Similarly, an oxidizer electrode lead 12 having a thickness of 3 mm is attached to the encapsulant, and a conductive epoxy using silver as a filler having excellent airtightness and excellent organic solvent resistance is provided between the end portion of the thin film exterior film 1 and the terminal plates 2 and 12. Sealed with adhesive.

【0024】小型燃料電池の外側に設けた燃料タンク5
から燃料保持層11の毛管力を利用してメタノールと水
の1:1(モル比)混合液を供給した。酸化剤ガスは酸
化剤ガス側に設けた複数の酸化剤ガス取り入れ口6から
自然拡散で供給した。この様に形成した単位セルを4個
直列に接続端子60で接続した図6に示す組み電池を完
成させその出力特性を調べた。この燃料電池の電流密度
と出力密度の関係を示したのが図4の実線である。この
図4に示すように電流密度約95mA/cm2まで負荷
を取ることが可能で、最高出力は51mw/cm2を示
した。また、図示しないがおよそ12時間経過した後も
安定した電圧を維持しており、小型燃料電池として信頼
性の高いものが作製できていることが確認できた。 (比較例1)この比較例1は実施例1で説明した発生ガ
ス放出口4を形成しないことを除いては実施例1と同じ
手法で作製した部品を用いた。実施例1と同様の方法で
出力を取り出した際の出力変化を測定した。その結果を
図4の一点破線で示した。実施例1と比較して高電流側
で負荷を取ることができなかった.また図示しないが約
2時間後から燃料の染み出しと電圧の低下が認められ、
実施例1と比較して安定性に劣っていることが判明し
た。
Fuel tank 5 provided outside the small fuel cell
From the above, a 1: 1 (molar ratio) mixture of methanol and water was supplied by utilizing the capillary force of the fuel retaining layer 11. The oxidant gas was supplied by natural diffusion from a plurality of oxidant gas intake ports 6 provided on the oxidant gas side. The assembled battery shown in FIG. 6 in which four unit cells thus formed were connected in series with the connection terminal 60 was completed and the output characteristics thereof were examined. The solid line in FIG. 4 shows the relationship between the current density and the output density of this fuel cell. As shown in FIG. 4, a load can be applied up to a current density of about 95 mA / cm 2, and the maximum output was 51 mw / cm 2. Further, although not shown, it was confirmed that a stable voltage was maintained even after a lapse of about 12 hours, and a highly reliable small fuel cell could be manufactured. (Comparative Example 1) In Comparative Example 1, a part manufactured by the same method as in Example 1 was used except that the generated gas discharge port 4 described in Example 1 was not formed. The output change when the output was taken out was measured by the same method as in Example 1. The results are shown by the dashed line in FIG. As compared with Example 1, the load could not be taken on the high current side. Also, although not shown, fuel oozing and voltage drop were observed after about 2 hours,
It was found that the stability was inferior to that of Example 1.

【0025】上記実施例・比較例の結果からも明らかな
ように、本発明によれば、燃料の漏洩の問題と,炭酸ガ
スの排出の問題を効果的に解消して、電池出力を長時間
にわたり安定的かつ効率的に取り出すことができる信頼
性の向上が図られた燃料電池を提供することができる。 (実施例2)図5は、実施例1の発生ガス放出口の形成
位置を変形させた以外は実施例1と同一である。燃料極
リード端子52の端部の一辺に重なる位置に発生ガス放
出口54が形成されている。
As is clear from the results of the above-mentioned Examples and Comparative Examples, according to the present invention, the problem of fuel leakage and the problem of carbon dioxide emission can be effectively solved, and the battery output can be maintained for a long time. Thus, it is possible to provide a fuel cell which is stably and efficiently taken out and whose reliability is improved. (Embodiment 2) FIG. 5 is the same as Embodiment 1 except that the formation position of the generated gas discharge port of Embodiment 1 is modified. The generated gas discharge port 54 is formed at a position overlapping with one side of the end of the fuel electrode lead terminal 52.

【0026】この様な位置に発生ガス放出口54を形成
することで燃料極リード端子52の端子取り付け部であ
る端部で局部的に発生しやすいガスを短時間で燃料電池
の外へ放出することができ実施例1と同様に発電効率を
向上することの他、燃料電池動作中における起動初期或
いは大きな負荷変動に対しても安定な過渡特性を持った
燃料電池を提供することができる。
By forming the generated gas discharge port 54 at such a position, the gas which is likely to be locally generated at the end portion which is the terminal mounting portion of the fuel electrode lead terminal 52 is discharged to the outside of the fuel cell in a short time. In addition to improving power generation efficiency as in the first embodiment, it is possible to provide a fuel cell having stable transient characteristics even at the initial stage of start-up during fuel cell operation or a large load change.

【0027】[0027]

【発明の効果】上記構成によって、出力端子近傍のガス
発生に起因する発電効率低下の問題を解決しより高い出
力を持った燃料電池を提供できる。
With the above structure, it is possible to provide a fuel cell having a higher output by solving the problem of power generation efficiency deterioration due to gas generation near the output terminal.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1に係わる燃料電池の平面図FIG. 1 is a plan view of a fuel cell according to a first embodiment of the present invention.

【図2】 本発明の実施例1に係わる重要部分の平面図
及び断面図
FIG. 2 is a plan view and a sectional view of an important part according to the first embodiment of the present invention.

【図3】 本発明の実施例1に係わる重要部分の組み立
て図
FIG. 3 is an assembly diagram of important parts according to the first embodiment of the present invention.

【図4】 本発明の実施例1と比較例1に係わる発電特
性図
FIG. 4 is a power generation characteristic diagram according to Example 1 of the present invention and Comparative Example 1.

【図5】 本発明の実施例2に係わる係わる重要部分の
平面図
FIG. 5 is a plan view of an important part related to Example 2 of the invention.

【図6】 本発明の実施例1に係わる燃料電池の全体図FIG. 6 is an overall view of a fuel cell according to Embodiment 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 外装材 2 燃料極リード(第2のリード端子) 3 液体・気体分離膜 4 発生ガス放出口 5 燃料タンク 6 酸化剤ガス取り入れ口 7 酸化剤ガス拡散層 8 酸化剤極 9 固体電解質膜 10 燃料極 11 燃料保持層 12 酸化剤極リード(第1のリード端子) 1 Exterior material 2 Fuel electrode lead (second lead terminal) 3 Liquid / gas separation membrane 4 Generated gas outlet 5 fuel tank 6 Oxidant gas intake 7 Oxidant gas diffusion layer 8 oxidizer poles 9 Solid electrolyte membrane 10 fuel pole 11 Fuel retaining layer 12 Oxidizer electrode lead (first lead terminal)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/02 H01M 8/06 H01M 8/10 ─────────────────────────────────────────────────── ─── Continued Front Page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 8/02 H01M 8/06 H01M 8/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料極と、この燃料極に対向して配置され
酸化剤ガス取入れ口を有する酸化剤極と、前記燃料極お
よび前記酸化剤極に挟持された電解質層と、前記酸化剤
ガス取り入れ口を露出させると共に前記燃料極及び前記
酸化剤極を覆う外装材と、この外装材から露出し前記酸
化剤極と電気的に接続された第1の外部リード端子と、
前記外装材から露出し前記極燃料極と電気的に接続され
且つ発生ガス排出孔が形成された第2の外部リード端子
とを有することを特徴とする燃料電池。
1. A fuel electrode, an oxidant electrode arranged facing the fuel electrode and having an oxidant gas intake port, an electrolyte layer sandwiched between the fuel electrode and the oxidant electrode, and the oxidant gas. An exterior material that exposes the intake port and covers the fuel electrode and the oxidant electrode, and a first external lead terminal exposed from the exterior material and electrically connected to the oxidant electrode,
A fuel cell, comprising: a second external lead terminal exposed from the exterior material, electrically connected to the pole fuel electrode, and having a generated gas discharge hole formed therein.
【請求項2】前記発生ガス排出孔に液体・ガス分離膜が
形成されたことを特徴とする請求項1に記載の燃料電
池。
2. The fuel cell according to claim 1, wherein a liquid / gas separation membrane is formed in the generated gas discharge hole.
【請求項3】前記外装材は樹脂を含むラミネートフィル
ムであることを特徴とする請求項1に記載の燃料電池。
3. The fuel cell according to claim 1, wherein the exterior material is a laminated film containing a resin.
JP2001084322A 2001-03-23 2001-03-23 Fuel cell Expired - Fee Related JP3496934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084322A JP3496934B2 (en) 2001-03-23 2001-03-23 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084322A JP3496934B2 (en) 2001-03-23 2001-03-23 Fuel cell

Publications (2)

Publication Number Publication Date
JP2002289224A JP2002289224A (en) 2002-10-04
JP3496934B2 true JP3496934B2 (en) 2004-02-16

Family

ID=18940010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084322A Expired - Fee Related JP3496934B2 (en) 2001-03-23 2001-03-23 Fuel cell

Country Status (1)

Country Link
JP (1) JP3496934B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810082B2 (en) * 2004-11-09 2011-11-09 富士通株式会社 Fuel cell
KR100933246B1 (en) 2005-03-24 2009-12-22 후지쯔 가부시끼가이샤 Fuel cell
US20090061271A1 (en) * 2005-05-11 2009-03-05 Nec Corporation Fuel cell and a fuel cell system
JP5131421B2 (en) * 2006-09-21 2013-01-30 日本電気株式会社 Solid polymer fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002289224A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
US6497975B2 (en) Direct methanol fuel cell including integrated flow field and method of fabrication
RU2258277C2 (en) Fuel-cell system using direct methanol supply
JP5675890B2 (en) Fuel cell stack and fuel cell system
US7655335B2 (en) Air breathing direct methanol fuel cell pack
JP5290402B2 (en) Fuel cell stack and electronic device including the same
KR100902991B1 (en) Fuel cell
JP3747888B2 (en) FUEL CELL, FUEL CELL ELECTRODE AND METHOD FOR PRODUCING THE SAME
US20060105223A1 (en) Bipolar plate and direct liquid feed fuel cell stack
KR20100006221A (en) Stack and fuel cell power generation system having the same
JP5062392B2 (en) Polymer electrolyte fuel cell
JP2003323902A (en) Fuel cell power generator and portable device using the same
JP2001283888A (en) Fuel cell
JP3496934B2 (en) Fuel cell
JP2010170887A (en) Fuel cell system and electronic equipment
JPWO2008072363A1 (en) Polymer electrolyte fuel cell
WO2004032270A1 (en) Fuel cell and method for driving fuel cell
TW201008015A (en) Fuel cell
JP2009123441A (en) Fuel cell
JP2003331900A (en) Fuel cell
JP4643394B2 (en) Fuel cell
Cao et al. A silicon‐based micro direct methanol fuel cell stack with a serial flow path design
JP3575477B2 (en) Fuel cell
Bostaph et al. Microfluidic fuel delivery system for 100 mW DMFC
JP2007242380A (en) Manufacturing method of fuel cell
KR20110019586A (en) Fuel cells sharing anode flowfield and fuel cell power generation apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3496934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees