JP3496242B2 - Epoxy resin molding compound for sealing electronic components - Google Patents

Epoxy resin molding compound for sealing electronic components

Info

Publication number
JP3496242B2
JP3496242B2 JP20214393A JP20214393A JP3496242B2 JP 3496242 B2 JP3496242 B2 JP 3496242B2 JP 20214393 A JP20214393 A JP 20214393A JP 20214393 A JP20214393 A JP 20214393A JP 3496242 B2 JP3496242 B2 JP 3496242B2
Authority
JP
Japan
Prior art keywords
epoxy resin
molding material
resin molding
phenol compound
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20214393A
Other languages
Japanese (ja)
Other versions
JPH0753675A (en
Inventor
茂雄 佐瀬
信之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP20214393A priority Critical patent/JP3496242B2/en
Publication of JPH0753675A publication Critical patent/JPH0753675A/en
Application granted granted Critical
Publication of JP3496242B2 publication Critical patent/JP3496242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品特に表面実装
用プラスチックパッケージICの封止用成形材料として
有用な耐リフロークラック性に優れたエポキシ樹脂成形
材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin molding material having excellent reflow crack resistance, which is useful as a molding material for sealing electronic parts, particularly plastic packaging ICs for surface mounting.

【0002】[0002]

【従来の技術】従来よりトランジスタ、ICなどの電子
部品封止用成形材料には、電気特性、耐湿性、耐熱性、
機械特性、及びインサート品との接着性などに優れるエ
ポキシ樹脂成形材料が用いられている。特にIC封止用
成形材料では高耐熱性が求められるため、多官能エポキ
シ樹脂であるo−クレゾールノボラック型エポキシ樹脂
を多価フェノール類化合物であるフェノールノボラック
樹脂により硬化させるエポキシ樹脂成形材料が広く用い
られている。
2. Description of the Related Art Conventionally, molding materials for encapsulating electronic parts such as transistors and ICs have been characterized by electrical characteristics, moisture resistance, heat resistance,
Epoxy resin molding materials with excellent mechanical properties and adhesiveness with inserts are used. In particular, since a high heat resistance is required for a molding material for IC encapsulation, an epoxy resin molding material in which an o-cresol novolac type epoxy resin which is a polyfunctional epoxy resin is cured by a phenol novolac resin which is a polyhydric phenol compound is widely used. Has been.

【0003】近年プリント配線板の高密度実装化に伴
い、電子部品のパッケージは従来のビン挿入型から表面
実装型が主流になってきている。さらに表面実装型IC
では、高密度化及び実装高さを低くするためパッケージ
が年々小型及び薄型になってきており、パッケージ中の
素子の占有体積は相対的に大きくなり、パッケージの肉
厚は非常に薄くなってきている。
With the recent trend toward high-density mounting of printed wiring boards, surface mounting types have become the mainstream of electronic component packages rather than the conventional bin insertion type. Surface mount IC
In order to increase the density and lower the mounting height, the package is becoming smaller and thinner year by year, the volume occupied by the elements in the package is relatively large, and the thickness of the package is very thin. There is.

【0004】また従来のピン挿入型パッケージでは配線
板に挿入後配線板裏面からはんだ付けを行うため、パッ
ケージが直接高温に曝されることはなかったが、表面実
装型ICでは配線板表面に仮止めされた後に、はんだバ
スやはんだリフロー装置などで処理されるため、パッケ
ージが高温のはんだ付け温度に直接曝されることにな
る。この結果、表面実装型では、ICパッケージが吸湿
していると、吸湿水分がはんだ付けのときに、急激に膨
張してパッケージにクラックを生じさせるという不良が
起こり、表面実装型ICの大きな問題点になっている。
Further, in the conventional pin insertion type package, since the soldering is performed from the back surface of the wiring board after it is inserted into the wiring board, the package is not directly exposed to high temperature. After being stopped, it is processed in a solder bath, a solder reflow device or the like, so that the package is directly exposed to a high soldering temperature. As a result, in the surface mount type, if the IC package absorbs moisture, a defect that the absorbed moisture abruptly expands during soldering to cause a crack in the package occurs, which is a major problem of the surface mount type IC. It has become.

【0005】これまでにはんだリフロー時のパッケージ
クラックを防ぐ目的で、ICを防湿梱包で保護したり、
配線板に実装する前にICを予め十分に乾燥するなど方
法が提案されているが、これらはいずれもコストアップ
になるという問題点が有り、低吸湿性で耐クラック性が
良好な表面実装型IC封止用エポキシ樹脂成形材料の開
発が要望されていた。
Up to now, in order to prevent package cracks during solder reflow, ICs are protected by moisture-proof packaging,
Although a method has been proposed in which the IC is sufficiently dried before being mounted on a wiring board, all of them have a problem that the cost is increased, and the surface mounting type has low moisture absorption and good crack resistance. Development of an epoxy resin molding material for IC encapsulation has been demanded.

【0006】この要望にこたえるため、電子部品封止用
エポキシ樹脂成形材料の吸湿性と耐クラック性を改善す
るため多くの提案がなされている。すなわち、高吸水性
樹脂を配合したエポキシ樹脂成形材料(特開昭62−1
00522号公報参照)、含フッ素フェノール類を用い
るもの(特開平1−118524号公報参照)、高アル
キル化されたエポキシ樹脂及びノボラック樹脂を用いる
もの(特開平3−128918号公報参照)、特定の3
官能フェノール樹脂を用いるもの(特開平3−2436
16号公報参照)、シクロペンタジエニル変性ノボラッ
ク樹脂などの疎水性の高い硬化剤を用いるもの(特開平
4−139210公報参照)などである。また、ナフタ
レン変性のエポキシ樹脂及びノボラック樹脂を用いるも
の(特開平3−43412号公報参照)、ナフトール類
ポリマを原料とするエポキシ樹脂を用いるもの(特開平
4−337314号公報参照)、ビスナフチルメタン型
多価エポキシ樹脂のようにるもの(特開平4−3373
16号公報参照)のように、樹脂骨格にナフタレン構造
を導入した樹脂組成物を用いるものも提案されている。
In order to meet this demand, many proposals have been made to improve the hygroscopicity and crack resistance of the epoxy resin molding material for encapsulating electronic parts. That is, an epoxy resin molding material containing a highly water-absorbent resin (JP-A-62-1)
No. 00522), those using fluorine-containing phenols (see JP-A-1-118524), those using highly-alkylated epoxy resin and novolac resin (see JP-A-3-128918), specific Three
Using functional phenolic resin (Japanese Patent Application Laid-Open No. 3-2436)
No. 16), and those using a highly hydrophobic curing agent such as cyclopentadienyl-modified novolac resin (see JP-A-4-139210). Further, those using a naphthalene-modified epoxy resin and novolac resin (see JP-A-3-43412), those using an epoxy resin made from a naphthol-type polymer as a raw material (see JP-A-4-337314), and bisnaphthylmethane. Type polyfunctional epoxy resin (Japanese Patent Laid-Open No. 4-3373)
No. 16), a resin composition having a naphthalene structure introduced into the resin skeleton is also proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開昭
62−100522号公報に示されているようなエポキ
シ樹脂成形材料に高吸水性樹脂を配合すると、エポキシ
樹脂成形材料の耐熱性を低下させるという問題点があ
る。また特開平3−128918号公報に示されている
高アルキル化されたエポキシ樹脂やノボラック樹脂を用
いるもの、特開平1−118524号公報に示されてい
る含フッ素フェノール類を用いるもの、特開平3−24
3616号公報に示されている特定の3官能フェノール
樹脂を用いるもの、及び、特開平4−139210報に
示されているシクロペンタジエニル変性ノボラック樹脂
などを硬化剤に用いるものは、エポキシ樹脂に疎水性を
持たせることによりパッケージの吸湿性は若干改善され
るものの、はんだリフロー時のクラックを防止するには
不十分であった。
However, when a highly water-absorbent resin is blended with an epoxy resin molding material as disclosed in JP-A-62-100522, the heat resistance of the epoxy resin molding material is lowered. There is a problem. Further, those using a highly alkylated epoxy resin or novolac resin described in JP-A-3-128918, those using fluorine-containing phenols disclosed in JP-A-1-118524, -24
Those using a specific trifunctional phenol resin disclosed in Japanese Patent No. 3616 and those using a cyclopentadienyl-modified novolac resin disclosed in JP-A-4-139210 as a curing agent are epoxy resins. Although the hygroscopicity of the package is slightly improved by making it hydrophobic, it was insufficient to prevent cracks during solder reflow.

【0008】さらに特開平3−43412号公報、特開
平4−337316号公報及び特開平4−337316
号公報に示されているように組成物の樹脂骨格にナフタ
レン構造を導入するものにおいても、はんだリフロー時
のクラックを防止するには不十分であった。本発明は、
従来のエポキシ樹脂成形材料の耐熱性を損なうこと無く
ICパッケージの吸湿性を改善しはんだリフロー時にク
ラックが発生しない電子部品封止用エポキシ樹脂成形材
料を提供するものである。
Further, JP-A-3-43412, JP-A-4-337316 and JP-A-4-337316.
Even in the case where a naphthalene structure is introduced into the resin skeleton of the composition as disclosed in Japanese Patent Laid-Open Publication No. 2003-242242, it was insufficient to prevent cracks during solder reflow. The present invention is
Provided is an epoxy resin molding material for encapsulating an electronic component, which improves the hygroscopicity of an IC package without impairing the heat resistance of a conventional epoxy resin molding material and causes no cracks during solder reflow.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記課題を
解決するため鋭意検討した結果、エポキシ樹脂の硬化剤
としてフェノール性水酸基をアリールエステル化したフ
ェノール類化合物を用いた場合に得られた樹脂硬化物の
吸水率が著しく低いことを見出し、本発明に至った。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventors have obtained it when a phenolic compound in which a phenolic hydroxyl group is aryl esterified is used as a curing agent for an epoxy resin. The inventors have found that the resin cured product has a remarkably low water absorption, and have reached the present invention.

【0010】本発明は、分子中に二個以上のエポキシ基
を有するエポキシ樹脂、フェノール性水酸基をアリール
エステル化した多価フェノール類化合物(以下単にアリ
ールエステル化フェノール類化合物という)及び無機充
填剤を必須成分とする電子部品封止用エポキシ樹脂成形
材料である。
The present invention provides an epoxy resin having two or more epoxy groups in the molecule, a polyhydric phenol compound in which a phenolic hydroxyl group is aryl esterified (hereinafter simply referred to as an aryl esterified phenol compound) and an inorganic filler. It is an epoxy resin molding material for electronic component encapsulation, which is an essential component.

【0011】本発明の特徴とするところは、アリールエ
ステル化フェノール類化合物をエポキシ樹脂の硬化剤と
して用いることである。アリールエステル化フェノール
類化合物は、多価フェノール類化合物と、塩化ベンゾイ
ル又はアルキル置換塩化ベンゾイルとを反応させて得る
ことができる。
A feature of the present invention is that the aryl esterified phenol compound is used as a curing agent for the epoxy resin. The aryl esterified phenol compound can be obtained by reacting a polyhydric phenol compound with benzoyl chloride or alkyl-substituted benzoyl chloride.

【0012】アリールエステル化フェノール類化合物の
具体的例としては、ビスベンゾイル化ビスフェノール
A、ビスアルキルベンゾイル化ビスフェノールA、ビス
ベンゾイル化テトラブロモビスフェノールA、ビスアル
キルベンゾイル化テトラブロモビスフェノールA、ベン
ゾイル化フェノールノボラック樹脂、アルキルベンゾイ
ル化フェノールノボラック樹脂、ベンゾイル化クレゾー
ルノボラック樹脂、アルキルベンゾイル化クレゾールノ
ボラック樹脂などが挙げられ、これらは単独で、又は混
合して用いられる。
Specific examples of the aryl esterified phenol compound include bisbenzoylated bisphenol A, bisalkylbenzoylated bisphenol A, bisbenzoylated tetrabromobisphenol A, bisalkylbenzoylated tetrabromobisphenol A, and benzoylated phenol novolak. Examples thereof include resins, alkylbenzoylated phenol novolac resins, benzoylated cresol novolac resins, and alkylbenzoylated cresol novolac resins, which may be used alone or as a mixture.

【0013】アリールエステル化フェノール類化合物と
ともに、必要に応じて従来からエポキシ樹脂用硬化剤と
して用いられているフェノールノボラックなどのフェノ
ール系硬化剤、ジエチレントリアミンやジアミノジフェ
ニルメタンなどのアミン系硬化剤、テトラヒドロ無水フ
タル酸などの酸無水物系硬化剤、ジシアンジアミドなど
のグアニジン系硬化剤、ベンゾグアナミンなどのグアナ
ミン系硬化剤を用いることができる。この意味から、多
価フェノール類をエステル化するとき、化1に示すよう
に、フェノール性水酸基の全部をエステル化せずに残存
させてもよく、エステル化しない多価フェノール類化合
物が残存していてもよい。フェノール性水酸基をすべて
エステル化した多価フェノール類化合物のみを硬化剤と
して用いると、接着力が落ちるので、フェノール性水酸
基を一部残存させるか、他の硬化剤を併用するのが好ま
しい。しかしながら、樹脂の吸水性を低く抑えるために
はアリールエステル化フェノール類化合物以外の硬化剤
はエポキシ樹脂100重量部に対して50重量部以下に
することが望ましい。
Along with aryl esterified phenolic compounds, phenolic hardeners such as phenol novolac, which have been conventionally used as a hardener for epoxy resins, amine hardeners such as diethylenetriamine and diaminodiphenylmethane, and tetrahydroanhydrophthalic anhydride, if necessary. An acid anhydride-based curing agent such as an acid, a guanidine-based curing agent such as dicyandiamide, or a guanamine-based curing agent such as benzoguanamine can be used. From this meaning, when polyhydric phenols are esterified, as shown in Chemical formula 1, all of the phenolic hydroxyl groups may be left without being esterified, and polyhydric phenol compounds that are not esterified remain. May be. If only a polyhydric phenol compound in which all phenolic hydroxyl groups are esterified is used as a curing agent, the adhesive force will decrease, so it is preferable to leave some of the phenolic hydroxyl groups or use another curing agent in combination. However, in order to suppress the water absorption of the resin to a low level, it is desirable that the amount of the curing agent other than the aryl esterified phenol compound is 50 parts by weight or less based on 100 parts by weight of the epoxy resin.

【0014】[0014]

【化1】 [Chemical 1]

【0015】アリールエステル化フェノール類化合物の
配合量は、アリレート基の含有量とエステル化せずに残
存しているフェノール性水酸基の含有量によって異な
る。すなわち、アリールエステル化フェノール類化合物
は、アリレート基と残存するフェノール性水酸基の両者
においてエポキシ樹脂のエポキシ基と反応すると考えら
れ、両者の含有量から導かれる当量が硬化剤としての当
量に相当する。したがって、アリールエステル化フェノ
ール類化合物の配合量は、エステル化しない多価フェノ
ール類化合物と同様に、エポキシ樹脂のエポキシ当量に
対して、0.8から1.2当量比が望ましく、通常は、
エポキシ樹脂100重量部に対してアリールエステル化
フェノール類化合物を50〜200重量の範囲で配合す
るのが望ましい。アリールエステル化フェノール類化合
物の配合量が50重量部以下でも、また、200重量部
以上でも、充分な強度や耐熱性をもった硬化物を得るこ
とが困難である。
The amount of the aryl esterified phenol compound to be compounded depends on the content of the arylate group and the content of the phenolic hydroxyl group remaining without being esterified. That is, it is considered that the aryl esterified phenol compound reacts with the epoxy group of the epoxy resin in both the arylate group and the residual phenolic hydroxyl group, and the equivalent derived from the contents of both corresponds to the equivalent as the curing agent. Therefore, the compounding amount of the aryl esterified phenol compound is preferably 0.8 to 1.2 equivalent ratio to the epoxy equivalent of the epoxy resin, as in the case of the non-esterified polyhydric phenol compound.
It is desirable to mix the aryl esterified phenol compound in the range of 50 to 200 parts by weight with respect to 100 parts by weight of the epoxy resin. Even when the amount of the aryl esterified phenol compound is 50 parts by weight or less, or 200 parts by weight or more, it is difficult to obtain a cured product having sufficient strength and heat resistance.

【0016】本発明のエポキシ樹脂成形材料に用いられ
るエポキシ樹脂は分子中に2個以上のエポキシ基を有す
る化合物であって、電子部品封止用として一般に用いら
れるエポキシ樹脂をそのまま用いることができる。本発
明のエポキシ樹脂成形材料に用いられるエポキシ樹脂の
具体的例としては、フェノールノボラック型エポキシ樹
脂、クレゾールノボラック型エポキシ樹脂、ビフェニル
型エポキシ樹脂、ナフトール変性ノボラック型エポキシ
樹脂、ビスフェノールA型エポキシ樹脂、臭素化ビスフ
ェノールA型エポキシ樹脂、臭素化フェノールノボラッ
ク型エポキシ樹脂、ジアミノジフェニルメタンやイソシ
アヌル酸などのポリアミンを原料にしたグリシジルアミ
ン型エポキシ樹脂及びそれらの混合物が挙げられるが、
電子部品封止用樹脂として良好な耐熱性を得るため、エ
ポキシ当量が230以下のフェノールノボラック型ある
いはクレゾールノボラック型エポキシ樹脂が好ましい。
The epoxy resin used in the epoxy resin molding material of the present invention is a compound having two or more epoxy groups in the molecule, and the epoxy resin generally used for sealing electronic parts can be used as it is. Specific examples of the epoxy resin used in the epoxy resin molding material of the present invention include phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, naphthol modified novolac type epoxy resin, bisphenol A type epoxy resin, bromine. Bisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, glycidyl amine type epoxy resin using polyamine such as diaminodiphenylmethane and isocyanuric acid as raw materials, and a mixture thereof.
To obtain good heat resistance as a resin for encapsulating electronic parts, a phenol novolac type epoxy resin having an epoxy equivalent of 230 or less or a cresol novolac type epoxy resin is preferable.

【0017】本発明のエポキシ樹脂成形材料に用いられ
るエポキシ樹脂の純度に関しては、ICなど素子上のア
ルミ配線腐食の原因となる加水分解性塩素量は少ない方
が良く、耐湿性の良好な電子部品封止用エポキシ樹脂成
形材料を得るためには500ppm以下であることが好
ましいが、特に限定するものではない。
Regarding the purity of the epoxy resin used in the epoxy resin molding material of the present invention, it is better that the amount of hydrolyzable chlorine which causes corrosion of aluminum wiring on an element such as an IC is smaller, and an electronic component having good moisture resistance. In order to obtain the epoxy resin molding material for sealing, it is preferably 500 ppm or less, but it is not particularly limited.

【0018】本発明の電子部品封止用エポキシ樹脂成形
材料では、吸湿性の低減と強度向上のため無機充填剤が
用いられる。無機充填剤としては、結晶シリカ、溶融シ
リカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カル
シウム、炭化珪素、窒化珪素、窒化ホウ素、マグネシ
ア、ジルコニア、ジルコンなどを粉体で、又は、球形化
ビーズとしたものなどが挙げられ、1種類又は複数種類
混合して用いられる。充填剤の配合量は、吸湿性の低減
と強度向上のため55体積%以上が必要であり、好まし
くは60体積%以上が望ましい。
In the epoxy resin molding material for encapsulating electronic parts of the present invention, an inorganic filler is used to reduce hygroscopicity and improve strength. As the inorganic filler, crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, magnesia, zirconia, zircon, etc. are powdered or spherical beads are used. And the like, and one kind or a mixture of plural kinds is used. The blending amount of the filler is required to be 55% by volume or more in order to reduce hygroscopicity and improve strength, and preferably 60% by volume or more.

【0019】本発明のエポキシ樹脂成形材料では、アリ
ールエステル化フェノール類化合物とエポキシ樹脂との
硬化反応を促進し樹脂の吸水性を低下させるため硬化促
進剤が用いられる。従来からエポキシ樹脂と各種硬化剤
との硬化反応に用いられている硬化促進剤は、そのほと
んどの化合物が本発明のエポキシ樹脂成形材料のアリー
ルエステル化フェノール類化合物とエポキシ樹脂との硬
化反応も促進することが確認されている。このような硬
化促進剤の具体例としては、1,8−ジアザ−ビシクロ
(5,4,0)ウンデセン−7などの塩基性触媒、トリ
エチレンジアミン、ジメチルベンジルアミンやトリス
(ジメチルアミノメチル)フェノールなどの三級アミ
ン、2−メチルイミダゾール、2−フェニルイミダゾー
ル、2−フェニル−4−メチルイミダゾールなどのイミ
ダゾール及びその誘導体、トリブチルホスフィン、メチ
ルジフェニルホスフィン、トリフェニルホスフィンなど
の有機ホスフィン類、テトラフェニルホスホニウムテト
ラフェニルボレート、2−エチル−4−メチルイミダゾ
ールテトラフェニルボレート、N−メチルモルホリンテ
トラフェニルボレート、テトラフェニルホスホニウムエ
チルトリフェニルボレート、テトラブチルホスホニウム
テトラブチルボレートなどのテトラフェニルボロン塩や
ホスホニウムボロン塩が挙げられる。
In the epoxy resin molding material of the present invention, a curing accelerator is used in order to accelerate the curing reaction between the aryl esterified phenol compound and the epoxy resin and reduce the water absorption of the resin. Most of the curing accelerators conventionally used in the curing reaction between the epoxy resin and various curing agents also accelerate the curing reaction between the aryl esterified phenol compound of the epoxy resin molding material of the present invention and the epoxy resin. It is confirmed to do. Specific examples of such a curing accelerator include basic catalysts such as 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, dimethylbenzylamine and tris (dimethylaminomethyl) phenol. Tert-amines, 2-methylimidazole, 2-phenylimidazole, imidazole such as 2-phenyl-4-methylimidazole and derivatives thereof, organic phosphines such as tributylphosphine, methyldiphenylphosphine and triphenylphosphine, tetraphenylphosphonium tetra Phenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetraphenylborate, tetraphenylphosphonium ethyltriphenylborate, tetrabutylphosphonium tetrab Tetraphenyl boron salts and phosphonium boron salts such as Ruboreto the like.

【0020】硬化促進剤の配合量はアリールエステル化
フェノール化合物とエポキシ樹脂及びその他の硬化剤の
総重量の100重量部に対して0.1から1.0重量部
用いられる。
The compounding amount of the curing accelerator is 0.1 to 1.0 part by weight based on 100 parts by weight of the total weight of the aryl esterified phenol compound, the epoxy resin and the other curing agent.

【0021】その他の添加剤として、液状又は固形のシ
リコーン化合物、テレケリックゴム及び熱可塑剤性エラ
ストマなどの可撓化剤、高級脂肪酸、高級脂肪酸金属塩
及びエステル系ワツクスなどの離型剤、カーボンブラッ
クなどの着色剤、エポキシシラン、アミノシラン、ウレ
イドシラン、ビニルシラン、アルキルシラン、有機チタ
ネートなどのカップリング剤並びに難燃剤などを用いる
ことができる。
As other additives, liquid or solid silicone compounds, flexibilizers such as telechelic rubber and thermoplastic elastomers, release agents such as higher fatty acids, higher fatty acid metal salts and ester waxes, carbon Colorants such as black, coupling agents such as epoxysilane, aminosilane, ureidosilane, vinylsilane, alkylsilane, organic titanate, and flame retardants can be used.

【0022】以上のような原材料を用いて本発明の電子
部品封止用エポキシ樹脂成形材料を作製する際の一般的
な方法としては、所定配合量の原材料をミキサなどで十
分に混合した後、ミキシングロールや押出し機などを用
いて混練し、冷却、粉砕することによって成形材料とす
る方法が挙げられる。
As a general method for producing the epoxy resin molding material for encapsulating electronic parts of the present invention using the above raw materials, after thoroughly mixing a predetermined amount of the raw materials with a mixer or the like, Examples thereof include a method in which a molding material is obtained by kneading with a mixing roll or an extruder, cooling and pulverizing.

【0023】本発明のエポキシ樹脂成形材料を用いて電
子部品を封止する方法としては、低圧トランスファー成
形法が最も一般的であるが、インジェクション成形法や
圧縮成形法によっても可能である。
As a method for sealing electronic parts using the epoxy resin molding material of the present invention, the low pressure transfer molding method is the most general method, but the injection molding method or the compression molding method is also possible.

【0024】[0024]

【作用】通常の多価フェノール類化合物とエポキシ樹脂
との反応の場合、エポキシ基の開環に伴って親水性の水
酸基が副生するが、アリールエステル化フェノール類化
合物がエポキシ樹脂と反応する場合には、エポキシ基の
開環とともにアリールエステル化フェノール類化合物の
アシル基が水酸基と反応して親水性の低いエステルが生
成すると考えられる。すなわち、アリールエステル化フ
ェノール類化合物を硬化剤に用いることでエポキシ樹脂
硬化物の吸水特性が良好となる理由は、通常のエポキシ
樹脂と多価フェノールとの硬化反応と異なり、水酸基を
生成しないので、樹脂硬化物の親水性を低く抑えるため
と推定される。
[Function] In the case of a usual reaction between a polyhydric phenol compound and an epoxy resin, a hydrophilic hydroxyl group is produced as a by-product of the ring opening of the epoxy group, but when the aryl esterified phenol compound reacts with the epoxy resin. In addition, it is considered that the acyl group of the aryl esterified phenol compound reacts with the hydroxyl group together with the ring opening of the epoxy group to form an ester having low hydrophilicity. That is, the reason why the water absorption property of the epoxy resin cured product is improved by using an aryl esterified phenol compound as a curing agent is that unlike a usual curing reaction between an epoxy resin and a polyhydric phenol, it does not generate a hydroxyl group. It is presumed that this is to suppress the hydrophilicity of the cured resin.

【0025】[0025]

【実施例】以下、具体例を挙げて本発明を具体的に説明
するが、本発明はこれらに限られるものではない。
EXAMPLES The present invention will be specifically described below with reference to specific examples, but the present invention is not limited thereto.

【0026】実施例1 温度計、冷却管、窒素導入管、撹拌棒を備えた5Lの4
つ口フラスコにビスフェノールA228gと投入し、テ
トラヒドロフラン1Lを加え、窒素気流下で撹拌して溶
解させた後、トリエチルアミン240gを加えて、氷浴
により内温10℃まで冷却した。次に、内温が10℃を
超えないように注意しながら、塩化ベンゾイル310g
を2時間かけて滴下し、滴下終了後、更に、常温で2時
間撹拌した。そして、析出物をろ別し、多量の蒸留水で
トリエチルアミン塩酸塩を水洗除去し、100℃で6時
間減圧で乾燥した。
Example 1 5 L of 4 equipped with a thermometer, a cooling pipe, a nitrogen introducing pipe, and a stirring rod
228 g of bisphenol A was added to a one-necked flask, 1 L of tetrahydrofuran was added, and the mixture was stirred and dissolved under a nitrogen stream, 240 g of triethylamine was added, and the internal temperature was cooled to 10 ° C. with an ice bath. Next, 310 g of benzoyl chloride, being careful not to let the internal temperature exceed 10 ° C.
Was added dropwise over 2 hours, and after completion of the addition, the mixture was further stirred at room temperature for 2 hours. Then, the precipitate was separated by filtration, triethylamine hydrochloride was washed off with a large amount of distilled water, and dried at 100 ° C. for 6 hours under reduced pressure.

【0027】得られた生成物について、13C−NMRス
ペクトル(機種:ブルカー製AC300P、溶媒:CD
Cl3 、濃度:10%)を調べた。その結果、原料のビ
スフェノールAに存在した水酸基に結合していた炭素の
シグナルが、高磁場(152ppmから149ppm)
にシフトし、新たなエステルのカルボニル炭素を示すに
シグナル(165ppm)が現われ、生成物が、目的と
するビスベンゾイル化ビスフェノールAであることが確
認できた。なお、得られたビスベンゾイル化ビスフェノ
ールA(以下BBPという)は、375gであった。
13 C-NMR spectrum (model: AC300P manufactured by Bruker, solvent: CD) of the obtained product
Cl 3 , concentration: 10%) was investigated. As a result, the signal of carbon bonded to the hydroxyl group existing in the raw material bisphenol A was detected in a high magnetic field (152 ppm to 149 ppm).
, A signal (165 ppm) appeared at the carbonyl carbon of a new ester, and it was confirmed that the product was the target bisbenzoylated bisphenol A. The obtained bisbenzoylated bisphenol A (hereinafter referred to as BBP) was 375 g.

【0028】エポキシ当量200gのクレゾールノボラ
ック型エポキシ樹脂(住友化学工業株式会社のESCN
195を使用)80部(重量部、以下同じ)、エポキシ
当量285gの臭素化フェノールノボラック型エポキシ
樹脂(日本化薬株式会社のBREN−Sを使用)20
部、BBP 110部、1,8−ジアザビシクロ(5,
4,0)ウンデセン−7 1.5部、カルナバワックス
2部、カーボンブラック 1部、γ−グリシドキシプ
ロピルトリメトシキラン 2部及び石英ガラス粉55体
積%を配合し、直径254mm(10インチ)の加熱ロ
ールを用いて温度80〜90℃、時間7〜10分の条件
で混練し、エポキシ樹脂成形材料を作製した。
Epoxy equivalent 200 g of cresol novolac type epoxy resin (ESCN manufactured by Sumitomo Chemical Co., Ltd.
195) 80 parts (parts by weight, the same applies hereinafter), epoxy equivalent 285 g of brominated phenol novolac type epoxy resin (using BREN-S manufactured by Nippon Kayaku Co., Ltd.) 20
Part, BBP 110 parts, 1,8-diazabicyclo (5,
4,0) Undecene-7 (1.5 parts), carnauba wax (2 parts), carbon black (1 part), γ-glycidoxypropyltrimethoxysilane (2 parts) and quartz glass powder (55% by volume) were mixed, and the diameter was 254 mm (10 inches). Kneading was performed under the conditions of a temperature of 80 to 90 ° C. and a time of 7 to 10 minutes using the heating roll of No. 1 to prepare an epoxy resin molding material.

【0029】実施例2 温度計、冷却管、窒素導入管、撹拌棒を備えた5Lの4
つ口フラスコにフェノールノボラック樹脂(日立化成工
業株式会社のHP−850Nを使用)212gを投入
し、メチルエチルケトン1Lを加え窒素気流下で撹拌し
て溶解させた後、トリエチルアミン240gを加え、氷
浴により内温10℃まで冷却した。内温が10℃を超え
ないように注意しながら、塩化ベンゾイル310gを2
時間かけて滴下し、滴下終了後、更に、常温で2時間撹
拌した。ついで、トリエチルアミン塩酸塩を吸引ろ過で
除去し、ろ液を減圧下で濃縮して粗生成物380gを得
た。得られた粗生成物をトルエン3Lに溶解し、蒸留水
で十分に水洗後、無水硫酸マグネシウムを投入して一昼
夜放置し、ろ過後溶液を減圧下で濃縮し、さらに100
℃で6時間減圧乾燥した。
Example 2 5 L of 4 equipped with a thermometer, a cooling tube, a nitrogen introducing tube and a stirring bar
212 g of phenol novolac resin (using HP-850N of Hitachi Chemical Co., Ltd.) was put into a one-necked flask, 1 L of methyl ethyl ketone was added and dissolved by stirring under a nitrogen stream, and 240 g of triethylamine was added, followed by addition with an ice bath. It was cooled to a temperature of 10 ° C. Be careful not to let the internal temperature exceed 10 ° C, and add 2 g of 310 g of benzoyl chloride.
The mixture was added dropwise over a period of time, and after completion of the addition, the mixture was further stirred at room temperature for 2 hours. Then, triethylamine hydrochloride was removed by suction filtration, and the filtrate was concentrated under reduced pressure to obtain 380 g of a crude product. The obtained crude product was dissolved in 3 L of toluene, washed thoroughly with distilled water, charged with anhydrous magnesium sulfate and allowed to stand overnight, filtered, and the solution was concentrated under reduced pressure.
It was dried under reduced pressure at 6 ° C for 6 hours.

【0030】得られた生成物について、13C−NMRス
ペクトル(機種:ブルカー製AC300P、溶媒:CD
Cl3 、濃度:10%)を調べた。その結果、原料のフ
ェノールノボラック樹脂に存在した、水酸基に結合して
いた炭素のシグナルが、高磁場(152ppmから14
9ppm)にシフトし、新たなエステルのカルボニル炭
素を示すにシグナル(165ppm)が現われ、生成物
が、目的とするベンゾイル化フェノールノボラック樹脂
であることが確認できた。なお、得られたベンゾイル化
フェノールノボラック樹脂(以下BPN−1という)
は、350gであった。
13 C-NMR spectrum (model: AC300P manufactured by Bruker, solvent: CD) of the obtained product
Cl 3 , concentration: 10%) was investigated. As a result, the signal of carbon which was bonded to the hydroxyl group, which was present in the raw material phenol novolac resin, was detected at a high magnetic field (from 152 ppm to 14 ppm).
9 ppm), and a signal (165 ppm) appeared on the carbonyl carbon of the new ester, confirming that the product was the desired benzoylated phenol novolac resin. The obtained benzoylated phenol novolac resin (hereinafter referred to as BPN-1)
Was 350 g.

【0031】次に、ESCN195 80部、エポキシ
当量395gの臭素化ビスフェノールA型エポキシ樹脂
(住友化学工業株式会社のESB−400を使用)20
部、BPN−1 95部としたほかは、実施例1と同様
にしてエポキシ樹脂成形材料を作製した。
Next, 80 parts of ESCN195 and brominated bisphenol A type epoxy resin having an epoxy equivalent of 395 g (using ESB-400 manufactured by Sumitomo Chemical Co., Ltd.) 20
Part and BPN-1 95 parts, an epoxy resin molding material was prepared in the same manner as in Example 1.

【0032】実施例3 トリエチルアミンの配合量を120gに、塩化ベンゾイ
ルの配合量を145gに変更したほかは、実施例2と同
様にして合成反応を行い、フェノール性水酸基を50%
アリールエステル化したフェノールノボラック樹脂(以
下BPN−2という)270gを得た。
Example 3 The synthesis reaction was performed in the same manner as in Example 2 except that the amount of triethylamine was changed to 120 g and the amount of benzoyl chloride was changed to 145 g, and the phenolic hydroxyl group was 50%.
270 g of an aryl esterified phenol novolac resin (hereinafter referred to as BPN-2) was obtained.

【0033】次に、BPN−1 95部に代えて、BP
N−2 75部としたほかは実施例2と同様にして、エ
ポキシ樹脂成形材料を作製した。
Next, in place of 95 parts of BPN-1, BP
An epoxy resin molding material was produced in the same manner as in Example 2 except that N-2 was 75 parts.

【0034】実施例4 実施例2において、HP−850Nに代えて、数平均分
子量1010のo−クレゾールノボラック樹脂240g
を用い、以下、実施例2と同様にして、合成反応を行
い、ベンゾイル化−o−クレゾールノボラック樹脂(B
CNという)380gを得た。
Example 4 240 g of o-cresol novolac resin having a number average molecular weight of 1010 was used in place of HP-850N in Example 2.
Then, a synthetic reaction is performed in the same manner as in Example 2 to obtain a benzoylated-o-cresol novolac resin (B
380 g was obtained.

【0035】次に、ビフェニル型エポキシ樹脂(油化シ
ェルエポキシ株式会社のYX−4000Hを使用)80
部、BREN−S 20部、BCN 115部、石英ガ
ラス粉を65体積%配合したほかは、実施例1と同様に
してエポキシ樹脂成形材料を作製した。
Next, biphenyl type epoxy resin (YX-4000H manufactured by Yuka Shell Epoxy Co., Ltd. is used) 80
Part, 20 parts of BREN-S, 115 parts of BCN, and 65% by volume of quartz glass powder were mixed to prepare an epoxy resin molding material in the same manner as in Example 1.

【0036】実施例5 塩化ベンゾイルに代えて、トリルカルボニルクロライド
を用いた以外、実施例2と同様に合成反応を行い、アル
キル置換アリールエステル化フェノールノボラック樹脂
(以下TPNという)360を得た。
Example 5 A synthetic reaction was performed in the same manner as in Example 2 except that tolylcarbonyl chloride was used instead of benzoyl chloride to obtain an alkyl-substituted aryl esterified phenol novolac resin (hereinafter referred to as TPN) 360.

【0037】次に、YX−4000H 80部、ESB
−400 20部、TPN 105部、石英ガラス粉を
65体積%配合したほかは、実施例1と同様にしてエポ
キシ樹脂成形材料を作製した。
Next, 80 parts of YX-4000H, ESB
An epoxy resin molding material was produced in the same manner as in Example 1 except that 20 parts of -400, 105 parts of TPN and 65 vol% of quartz glass powder were blended.

【0038】比較例 BPN−1に代えて、HP−850N110部としたほ
かは実施例2と同様にしてエポキシ樹脂成形材料を作製
した。
Comparative Example BPN-1 was replaced with HP-850N110 parts to prepare an epoxy resin molding material in the same manner as in Example 2.

【0039】得られたエポキシ樹脂成形材料の特性を、
以下に示す方法で評価した。 スパイラルフロー:EMMI 1−66に準拠した金型
を使用し、180℃、90秒、6.9MPaの条件で測
定した。 ガラス転移温度(Tg):理学電機株式会社製熱機械分
析装置(TMA)で線膨張曲線を得、その屈曲点から求
めた。 高温強度:JIS K6911に準拠した3点支持型曲
げ試験方法で215℃で測定した。 吸水率:JIS K6911に準拠して、直径50m
m、厚さ3mmの円板を作製し、85℃、85%RHの
条件で加湿し、重量変化を求めた。
The characteristics of the obtained epoxy resin molding material are
It evaluated by the method shown below. Spiral flow: measured using a mold conforming to EMMI 1-66 under the conditions of 180 ° C., 90 seconds and 6.9 MPa. Glass transition temperature (Tg): A linear expansion curve was obtained with a thermomechanical analyzer (TMA) manufactured by Rigaku Denki Co., Ltd., and the linear expansion curve was obtained from the bending point. High temperature strength: Measured at 215 ° C. by a three-point support type bending test method based on JIS K6911. Water absorption rate: Diameter of 50m according to JIS K6911
A disc having a thickness of 3 mm and a thickness of 3 mm was prepared, humidified under the conditions of 85 ° C. and 85% RH, and the weight change was obtained.

【0040】表1にこれらの測定結果を示す。表1か
ら、本発明になる成形材料(実施例)は、従来の成形材
料(比較例)と同様の流動性(スパイラルフロー)及び
耐熱性(ガラス転移温度、高温強度)を示し、吸水率は
比較例の成形材料よりも大幅に低いことが分かる。
Table 1 shows the results of these measurements. From Table 1, the molding material according to the present invention (Example) exhibits the same fluidity (spiral flow) and heat resistance (glass transition temperature, high temperature strength) as the conventional molding material (Comparative Example), and the water absorption rate is It can be seen that it is significantly lower than the molding material of the comparative example.

【0041】[0041]

【表1】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ A B C a b c ──────────────────────────────────── 実施例1 50 140 12 0.11 0.14 0.18 実施例2 43 150 12 0.11 0.13 0.17 実施例3 42 150 12 0.14 0.17 0.22 実施例4 41 145 12 0.10 0.12 0.16 実施例5 42 140 12 0.10 0.12 0.15 比較例 40 150 12 0.18 0.22 0.30 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 注)A:スパイラルフロー(in)、B:ガラス転移温度
(℃)、C:高温強度(MPa)a〜c:吸水率(%)(a:
48時間、b:72時間、c:168時間)
[Table 1] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ A B C a b c ──── ──────────────────────────────── Example 1 50 140 12 0.11 0.14 0.18 Example 2 43 150 12 0.11 0.13 0.17 Example 3 42 150 12 0.14 0.17 0.22 Example 4 41 145 12 0.10 0.12 0.16 Example 5 42 140 12 0. 10 0.12 0.15 Comparative example 40 150 12 0.18 0.22 0.30 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━ Note) A: Spiral flow (in), B: Glass transition temperature
(° C), C: High temperature strength (MPa) a to c: Water absorption rate (%) (a:
(48 hours, b: 72 hours, c: 168 hours)

【0042】また、180℃、90秒、7MPaの条件
でICパツケージを成形し、成形後180℃で5時間の
後硬化を行い、以下に示す方法ではんだリフロー時の耐
クラック性及びはんだリフロー後の耐熱性を調べた。 耐クラック性:8×10×0.4mmの素子を搭載した
80ピン、42アロイリードのフラットパッケージ(外
形寸法;19×14×2.0mm)を評価用ICとして
用い、このパッケージを85℃、85%RHで所定時間
加湿した後、215℃のベーパフェーズリフロー炉で9
0秒加熱し、パツケージクラツク発生の有無を顕微鏡観
察で判定した。 はんだリフロー後の耐湿性:10μm幅のアルミ配線を
施した5×10×0.4mmのテスト素子を搭載し、2
5μmの金線でワイヤボンディングした350mil、
28ピンのアウトラインパッケージを評価用ICとして
用い、このパッケージを85℃、85%RHで72時間
加湿し、215℃のベーパフェーズリフロー炉で90秒
加熱した後、更に0.2MPa、121℃、100%R
Hの条件で所定時間加湿し、アルミ配線腐食による断線
不良の発生状況を調べた。
Further, the IC package was molded under the conditions of 180 ° C., 90 seconds, and 7 MPa, post-curing was performed at 180 ° C. for 5 hours after molding, and crack resistance during solder reflow and after solder reflow were performed by the following method. Was examined for heat resistance. Crack resistance: A flat package (outer dimensions; 19 × 14 × 2.0 mm) of 80-pin, 42-lead having an element of 8 × 10 × 0.4 mm mounted was used as an IC for evaluation, and this package was 85 ° C. After humidifying at 85% RH for a predetermined time, it is heated in a vapor phase reflow furnace at 215 ° C for 9 hours.
After heating for 0 second, the presence or absence of package cracking was judged by microscopic observation. Moisture resistance after solder reflow: 5x10x0.4mm test element with aluminum wiring of 10μm width mounted, 2
350mil wire-bonded with 5μm gold wire,
A 28-pin outline package was used as an IC for evaluation, the package was humidified at 85 ° C. and 85% RH for 72 hours, heated in a vapor phase reflow furnace at 215 ° C. for 90 seconds, and then 0.2 MPa, 121 ° C., 100 ° C. % R
Humidification was performed for a predetermined time under the condition of H, and the occurrence of disconnection failure due to aluminum wiring corrosion was examined.

【0043】表2にこれらの試験結果を示す。表2か
ら、本発明になる成形材料(実施例)は、従来の成形材
料(比較例)に比し、はんだリフロー時の耐クラツク性
及びはんだリフロー後の耐湿性が大幅に改善されている
ことが分かる。
Table 2 shows the results of these tests. It can be seen from Table 2 that the molding materials according to the present invention (Examples) have significantly improved crack resistance during solder reflow and moisture resistance after solder reflow, as compared with conventional molding materials (Comparative Examples). I understand.

【0044】[0044]

【表2】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ リフロー時の耐クラック性 リフロー後の耐湿性 18h 24h 36h 48h 100h 200h 400h 600h 800h 1000h ──────────────────────────────────── 実施例1 0/5 0/5 0/5 1/5 0/14 0/14 0/14 0/14 0/14 0/14 実施例2 0/5 0/5 0/5 0/5 0/14 0/14 0/14 0/14 0/14 0/14 実施例3 0/5 0/5 0/5 1/5 0/14 0/14 0/14 0/14 0/14 0/14 実施例4 0/5 0/5 0/5 0/5 0/14 0/14 0/14 0/14 0/14 0/14 実施例5 0/5 0/5 0/5 0/5 0/14 0/14 0/14 0/14 0/14 0/14 比較例 0/5 1/5 3/5 5/5 0/14 0/14 0/14 3/14 6/14 7/14 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 注)リフロー時の耐クラック性:85℃、85%RHにて加湿、表に示した時間 保持後の(不良数/試験数)を表示 リフロー後の耐湿性:PCT(0.2MPa、121℃、100%RH) 表に示した時間保持後の(不良数/試験数)を表示[Table 2] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━           Crack resistance during reflow Moisture resistance after reflow           18h 24h 36h 48h 100h 200h 400h 600h 800h 1000h ──────────────────────────────────── Example 1 0/5 0/5 0/5 1/5 0/14 0/14 0/14 0/14 0/14 0/14 Example 2 0/5 0/5 0/5 0/5 0/14 0/14 0/14 0/14 0/14 0/14 Example 3 0/5 0/5 0/5 1/5 0/14 0/14 0/14 0/14 0/14 0/14 Example 4 0/5 0/5 0/5 0/5 0/14 0/14 0/14 0/14 0/14 0/14 Example 5 0/5 0/5 0/5 0/5 0/14 0/14 0/14 0/14 0/14 0/14 Comparative Example 0/5 1/5 3/5 5/5 0/14 0/14 0/14 3/14 6/14 7/14 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Note) Crack resistance during reflow: 85 ℃, humidified at 85% RH, the time shown in the table Displays (number of defects / number of tests) after holding     Moisture resistance after reflow: PCT (0.2 MPa, 121 ° C, 100% RH) Displays (number of defects / number of tests) after holding for the time shown in the table

【0045】[0045]

【発明の効果】本発明の電子部品封止用エポキシ樹脂成
形材料は、従来の成形材料に比べ吸水性が低く、はんだ
リフロー時の耐クラック性及びはんだリフロー後の耐湿
性が良好であり、表面実装用プラスチックパッケージI
Cの封止用成形材料として好適である。
EFFECT OF THE INVENTION The epoxy resin molding material for encapsulating electronic parts of the present invention has lower water absorption than conventional molding materials, good crack resistance during solder reflow and good moisture resistance after solder reflow. Mounting plastic package I
It is suitable as a C molding material.

フロントページの続き (56)参考文献 特開 昭61−212544(JP,A) 特開 平7−25962(JP,A) 特開 平7−82348(JP,A) 特開 平6−107724(JP,A) 特開 平4−226122(JP,A) 特開 平4−29986(JP,A) 特開 昭62−1722(JP,A) 特開 昭59−215314(JP,A) 特開 昭54−155298(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 59/00 - 59/72 C08L 63/00 - 63/10 H01L 23/29 H01L 23/31 Continuation of the front page (56) Reference JP 61-212544 (JP, A) JP 7-25962 (JP, A) JP 7-82348 (JP, A) JP 6-107724 (JP , A) JP 4-226122 (JP, A) JP 4-29986 (JP, A) JP 62-1722 (JP, A) JP 59-215314 (JP, A) JP 54-155298 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08G 59/00-59/72 C08L 63/00-63/10 H01L 23/29 H01L 23/31

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分子中に二個以上のエポキシ基を有する
エポキシ樹脂、フェノール性水酸基をアリールエステル
化した多価フェノール類化合物(但し、アミノ基又は酸
無水物基を有するものを除く。)及び無機充填剤を必須
成分とする電子部品封止用エポキシ樹脂成形材料。
1. An epoxy resin having two or more epoxy groups in a molecule, a polyhydric phenol compound obtained by arylesterifying a phenolic hydroxyl group (provided that an amino group or an acid is used).
Excluding those having an anhydride group. ) And an epoxy resin molding material for encapsulating electronic parts, which contains an inorganic filler as an essential component.
【請求項2】 フェノール性水酸基をアリールエステル
化した多価フェノール類化合物がフェノール性水酸基を
フェニル又はアルキル置換フェニルエステル化した多価
フェノール類化合物である請求項1記載の電子部品封止
用エポキシ樹脂成形材料。
2. An aryl ester having a phenolic hydroxyl group.
The polyhydric phenol compounds converted to phenolic hydroxyl groups
Phenyl or alkyl substituted phenyl ester polyvalent
The electronic component encapsulation according to claim 1, which is a phenol compound.
Epoxy resin molding material.
【請求項3】 多価フェノール類化合物が、ビスフェノ
ールAである請求項1又は2記載の電子部品封止用エポ
キシ樹脂成形材料。
Wherein the polyhydric phenol compound, electronic parts encapsulating epoxy resin molding material according to claim 1 or 2 wherein the bisphenol A.
【請求項4】 多価フェノール類化合物が、フェノール
類ノボラック樹脂である請求項1又は2記載の電子部品
封止用エポキシ樹脂成形材料。
Wherein the polyhydric phenol compound, electronic parts encapsulating epoxy resin molding material according to claim 1 or 2, wherein the phenolic novolak resin.
【請求項5】 フェノール類ノボラック樹脂が、クレゾ
ールノボラック樹脂である請求項記載の電子部品封止
用エポキシ樹脂成形材料。
5. The epoxy resin molding material for electronic component encapsulation according to claim 4 , wherein the phenolic novolac resin is a cresol novolac resin.
【請求項6】 分子中に二個以上のエポキシ基を有する
エポキシ樹脂が、フェノールノボラック型エポキシ樹
脂、クレゾールノボラック型エポキシ樹脂、ビフェニル
型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹
脂及び臭素化フェノールノボラック型エポキシ樹脂から
選ばれるエポキシ樹脂の単独又は二種以上の混合物であ
る請求項1、2、3、4又は5記載の電子部品封止用エ
ポキシ樹脂成形材料。
6. The epoxy resin having two or more epoxy groups in the molecule is a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a biphenyl type epoxy resin, a brominated bisphenol A type epoxy resin or a brominated phenol novolac type resin. The epoxy resin molding material for encapsulating electronic parts according to claim 1, 2 , 3 , 4, or 5, which is a single epoxy resin or a mixture of two or more epoxy resins selected from epoxy resins.
JP20214393A 1993-08-16 1993-08-16 Epoxy resin molding compound for sealing electronic components Expired - Fee Related JP3496242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20214393A JP3496242B2 (en) 1993-08-16 1993-08-16 Epoxy resin molding compound for sealing electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20214393A JP3496242B2 (en) 1993-08-16 1993-08-16 Epoxy resin molding compound for sealing electronic components

Publications (2)

Publication Number Publication Date
JPH0753675A JPH0753675A (en) 1995-02-28
JP3496242B2 true JP3496242B2 (en) 2004-02-09

Family

ID=16452677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20214393A Expired - Fee Related JP3496242B2 (en) 1993-08-16 1993-08-16 Epoxy resin molding compound for sealing electronic components

Country Status (1)

Country Link
JP (1) JP3496242B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288252A (en) * 2000-04-07 2001-10-16 Dainippon Ink & Chem Inc Curing agent for epoxy resin and epoxy resin composition
CN110669224B (en) * 2019-10-09 2021-08-03 上海昭和高分子有限公司 Vinyl ester resin and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0753675A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
JPH05331263A (en) Resin composition
JP3550923B2 (en) Epoxy resin molding compound for sealing electronic components
JP3404795B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3496242B2 (en) Epoxy resin molding compound for sealing electronic components
JP3267144B2 (en) Epoxy resin composition for sealing material and semiconductor device using the same
WO2001010955A1 (en) Epoxy resin composition and semiconductor device
JP2867471B2 (en) Resin composition
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JPH0812746A (en) Epoxy resin composition and curing agent
JPH0977958A (en) Epoxy resin composition and semiconductor device
JPH04173828A (en) Epoxy resin molding material for sealing electric part
JP3632936B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH04337316A (en) Epoxy resin composition
JPH06271648A (en) Epoxy resin molding material for sealing electronic component
JPH08337709A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3451710B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP4844726B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3413923B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP3204706B2 (en) Epoxy resin composition
JP3049898B2 (en) Epoxy resin molding material for sealing electronic parts and IC package using the same
JPH03119051A (en) Epoxy resin composition
JPH0977850A (en) Epoxy resin composition and resin-sealed semiconductor device
JPH03210325A (en) Semiconductor sealing epoxy resin molding material
JPH05291436A (en) Epoxy resin molding material for sealing semiconductor
JP3651013B2 (en) Epoxy resin molding material for sealing electronic parts and IC package using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees