JP3495995B2 - Burner combustion control method - Google Patents

Burner combustion control method

Info

Publication number
JP3495995B2
JP3495995B2 JP2001028672A JP2001028672A JP3495995B2 JP 3495995 B2 JP3495995 B2 JP 3495995B2 JP 2001028672 A JP2001028672 A JP 2001028672A JP 2001028672 A JP2001028672 A JP 2001028672A JP 3495995 B2 JP3495995 B2 JP 3495995B2
Authority
JP
Japan
Prior art keywords
flow rate
burner
flow
coefficient
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001028672A
Other languages
Japanese (ja)
Other versions
JP2002228149A (en
Inventor
幸治 泉
武史 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2001028672A priority Critical patent/JP3495995B2/en
Publication of JP2002228149A publication Critical patent/JP2002228149A/en
Application granted granted Critical
Publication of JP3495995B2 publication Critical patent/JP3495995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リジェネレーティ
ブバーナ等に適用されるバーナの燃焼制御方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a burner combustion control method applied to a regenerative burner or the like.

【0002】[0002]

【従来の技術】従来、加熱炉等の設備では、図4に示す
ように、前記加熱炉1の炉内温度を温度センサTxで測
定し、この測定値を温度調節装置2に入力し、この測定
値と前記温度調節装置2に予め入力されている設定炉温
とを比較して温度偏差を演算し、前記炉内温度の測定値
及び温度偏差をバーナ制御装置3に入力してバーナ制御
装置3に予め設定されている燃焼量パターンから前記炉
内温度と温度偏差とに対応するバーナ4の燃焼量が決ま
り、この燃焼量に見合うよう前記バーナ4に供給される
燃料の供給量(流量)と燃焼空気の供給量(流量)とを
複合絞り制御を用いて空気比を予め設定した値(例えば
μ=1.15)に保持したまま制御していた。
2. Description of the Related Art Conventionally, in equipment such as a heating furnace, as shown in FIG. 4, the temperature inside the heating furnace 1 is measured by a temperature sensor Tx, and this measured value is input to a temperature adjusting device 2, The temperature deviation is calculated by comparing the measured value with the preset furnace temperature previously input to the temperature control device 2, and the measured value and the temperature deviation of the in-furnace temperature are input to the burner control device 3 to burner control device. The combustion amount of the burner 4 corresponding to the in-furnace temperature and the temperature deviation is determined from the combustion amount pattern preset to 3, and the supply amount (flow rate) of the fuel supplied to the burner 4 to match the combustion amount. And the supply amount (flow rate) of the combustion air are controlled while the air ratio is kept at a preset value (for example, μ = 1.15) by using the composite throttle control.

【0003】なお、前記燃焼量パターンは処理する材料
の違い等によりいくつかのパターンを予め設定してあ
り、その中から最適なパターンを選択している。また、
炉内を酸化雰囲気に制御するのか、還元雰囲気に制御す
るのか等により空気比も予めいくつかのパターンを設定
しておき、その中から最適なパターンを選択している。
It should be noted that several patterns are preset for the combustion amount pattern depending on the material to be treated and the like, and the optimum pattern is selected from them. Also,
The air ratio is set in advance depending on whether the inside of the furnace is controlled to an oxidizing atmosphere or a reducing atmosphere, and the optimum pattern is selected from the patterns.

【0004】次に、バーナ制御装置3で実施されている
前記複合絞り制御の制御方法について説明する。複合絞
り制御は、バーナ4を固定絞りとした場合のバーナの
流量係数Nと流体の流量Qとバーナ前の供給圧力P
の関係(式(3))と、流量調整弁5を可変絞りとし
た場合の流量調整弁の流量係数Vと流体の流量Qと流量
調整弁5での差圧Pとの関係(式(2))と、流量
調整弁5の一次側の供給圧力Pと流量調整弁5での差
圧Pとバーナ前の供給圧力Pとの関係(式(1))
とから、流量Qと流量調整弁5の流量係数Vとバーナ4
の流量係数Nと流量調整弁5の一次側の供給圧力P
の関係(式(1a))が決まるものである。
Next, a control method of the composite throttle control executed by the burner control device 3 will be described. The combined throttle control is performed by using the relationship between the flow coefficient N of the burner when the burner 4 is a fixed throttle, the flow rate Q of the fluid, and the supply pressure P 2 before the burner (equation (3)), and setting the flow control valve 5 to the variable throttle. And the flow rate Q of the flow rate adjusting valve, the flow rate Q of the fluid, and the differential pressure P 1 at the flow rate adjusting valve 5 (equation (2)), and the supply pressure P 0 on the primary side of the flow rate adjusting valve 5. And the relationship between the differential pressure P 1 at the flow control valve 5 and the supply pressure P 2 before the burner (Equation (1))
From the flow rate Q, the flow rate coefficient V of the flow rate adjusting valve 5, and the burner 4
The relationship (equation (1a)) between the flow coefficient N of the flow rate N and the supply pressure P 0 on the primary side of the flow rate adjusting valve 5 is determined.

【0005】[0005]

【数3】 [Equation 3]

【0006】ここで、前記式(1a)を流量調整弁5の
流量係数Vについて展開すると、次式(4)に示すよう
に流量調整弁5の流量係数Vは流量Qとバーナ4の流量
係数Nと供給圧力Pとの関係で表される。
When the above equation (1a) is expanded with respect to the flow coefficient V of the flow rate adjusting valve 5, the flow rate coefficient V of the flow rate adjusting valve 5 is the flow rate Q and the flow coefficient of the burner 4 as shown in the following equation (4). It is represented by the relationship between N and the supply pressure P 0 .

【0007】[0007]

【数4】 [Equation 4]

【0008】ここで、流量調整弁5の弁開度S’と流量
係数V’との関係を予め実測しておくことにより、使用
する流量調整弁5の特性を把握しておく。また、ある流
量(例えば、バーナ4の最大燃焼時の流量)に対するバ
ーナ4の流量係数Nも予め実測してその特性を把握して
おく。
Here, the characteristics of the flow rate adjusting valve 5 to be used are grasped by measuring the relationship between the valve opening degree S'of the flow rate adjusting valve 5 and the flow rate coefficient V'in advance. Further, the flow rate coefficient N of the burner 4 for a certain flow rate (for example, the flow rate at the time of maximum combustion of the burner 4) is also actually measured to grasp its characteristics.

【0009】ところで、バーナ4前における流体の供給
状態が安定している(流体の温度や圧力に変動がない)
場合、前記バーナ4の流量係数Nを固定値として扱え
る。
By the way, the supply state of the fluid in front of the burner 4 is stable (the temperature and pressure of the fluid do not fluctuate).
In this case, the flow coefficient N of the burner 4 can be treated as a fixed value.

【0010】例えば、バーナのターンダウン比が10:
1のバーナ(最大燃焼量に対して1/10まで燃焼量を
絞れるバーナ)についてみてみると、前記式(3)に下
記する表1の数値を代入してバーナ4の流量係数Nを計
算すると、最大燃焼時には流量係数Nmax=5.774
であるのに対し、最小燃焼時には流量係数Nmin=4.
472となる。
For example, the burner has a turndown ratio of 10:
Looking at the burner No. 1 (the burner whose combustion amount can be reduced to 1/10 of the maximum combustion amount), when the numerical value of Table 1 shown below is substituted into the formula (3), the flow coefficient N of the burner 4 is calculated. , At maximum combustion, flow coefficient Nmax = 5.774
On the other hand, the flow coefficient Nmin = 4.
It becomes 472.

【0011】つぎに、前記式(4)に表1の数値および
前記計算で求めたバーナ4の流量係数Nを代入して流量
調整弁5の流量係数Vを求めると、最小燃焼時でVmin1
=0.5O3となる。これに対して最小燃焼時の流量係
数Vminを求める際、先に求めた最大燃焼時の流量係数
Nmax=5.774を使って計算すると最小燃焼時の流
量係数はVmin2=0.502となり、前記流量係数Nmi
nを適用して求めた流量係数Vmin1に対する誤差は0.
2%でしかなく、制御上問題ない範囲であることがわか
る。
[0011] Next, when the equation (4) by substituting the flow coefficient N of the burner 4 as determined by the numerical and the calculation in Table 1 determine the flow coefficient V of the flow control valve 5, Vmin 1 at the time of minimum firing
= 0.5O3. On the other hand, when the flow rate coefficient Vmin at the time of minimum combustion is calculated, the flow rate coefficient at the time of minimum combustion is calculated as Vmin 2 = 0.502 when the flow rate coefficient at the time of maximum combustion Nmax = 5.774 is calculated. The flow coefficient Nmi
The error with respect to the flow coefficient Vmin 1 obtained by applying n is 0.
It is only 2%, which shows that there is no problem in control.

【0012】[0012]

【表1】 [Table 1]

【0013】よって、バーナ4の流量係数Nとして前記
実測値を使っても問題はなく、流量調整弁5の一次側の
供給圧力Pを実測するだけで測定時点における流量調
整弁5の流量係数Vを演算できるので、この演算値から
弁開度Sを一元的に決定することができる。(流量Qは
前記のように炉内温度及び温度偏差から予め設定されて
いる燃焼量より決定される。)
Therefore, there is no problem even if the above-mentioned measured value is used as the flow coefficient N of the burner 4, and the flow coefficient of the flow control valve 5 at the time of measurement can be obtained only by measuring the supply pressure P 0 on the primary side of the flow control valve 5. Since V can be calculated, the valve opening S can be unitarily determined from this calculated value. (The flow rate Q is determined from the combustion amount preset from the furnace temperature and temperature deviation as described above.)

【0014】すなわち、燃焼量の変更に伴う流量の変更
が必要な場合、燃料の供給量(流量)は燃焼量の変更量
に対して予め決定されており、また、この燃料の流量に
対する必要空気量も空気比から算出できる。このとき、
バーナ4の流量係数Nが実測値として既知であることか
ら、流量調整弁5の一次側での供給圧力Pを実測する
だけで流量Qに必要な流量調整弁5の弁開度S、すなわ
ち流量調整弁5の流量係数Vが計算できる。一方、現状
の流量調整弁5の弁開度は実測できるので、この実測し
た弁開度S’から流量係数V’は一義的に決定され、前
記演算により求めた流量係数Vと実測した流量調整弁5
の弁開度S’から求まる流量係数V’とを比較し、その
偏差が零となるよう流量調整弁5の弁開度S’を調整す
る。
That is, when it is necessary to change the flow rate according to the change of the combustion amount, the fuel supply amount (flow rate) is determined in advance for the change amount of the combustion amount, and the required air amount for the fuel flow rate is changed. The amount can also be calculated from the air ratio. At this time,
Since the flow coefficient N of the burner 4 is known as an actual measurement value, the valve opening degree S of the flow rate adjusting valve 5 required for the flow rate Q, that is, only by actually measuring the supply pressure P 0 on the primary side of the flow rate adjusting valve 5, that is, The flow coefficient V of the flow control valve 5 can be calculated. On the other hand, since the valve opening of the current flow rate adjusting valve 5 can be actually measured, the flow rate coefficient V'is uniquely determined from the actually measured valve opening S ', and the flow rate coefficient V obtained by the above calculation and the actually measured flow rate adjustment. Valve 5
The valve opening degree S'of the flow rate adjusting valve 5 is adjusted so that the deviation becomes zero.

【0015】この場合、流量係数Vとその弁開度Sとの
関係は必ずしも関数(数式)である必要はなく、例え
ば、数表(テーブル)の形でバーナ制御装置3に記憶さ
せておいても良い。また、前記バーナ制御装置3に設定
される流量設定値は、標準状態での値なので、図4に示
すように流体の温度Tを測定し、温度補正を行うように
すればさらに制御精度が向上する。さらに、バーナ前に
圧力センサを設け、バーナ前の供給圧力Pを測定可能
とすることにより、ノズル閉塞等バーナ自体の故障を検
知できるようになる。
In this case, the relationship between the flow rate coefficient V and the valve opening degree S thereof does not necessarily have to be a function (mathematical expression), and is stored in the burner controller 3 in the form of, for example, a table. Is also good. Further, since the flow rate set value set in the burner control device 3 is a value in the standard state, if the temperature T of the fluid is measured and the temperature is corrected as shown in FIG. 4, the control accuracy is further improved. To do. Further, by providing a pressure sensor in front of the burner so that the supply pressure P 2 before the burner can be measured, it becomes possible to detect a failure of the burner itself such as nozzle blockage.

【0016】[0016]

【発明が解決しようとする課題】ところで、複合絞り制
御を用いれば、前述の説明で明らかなように、配管に設
けられた流量調整弁(可変絞り手段)5とバーナ(固定
絞り手段)4の流量係数を予め実測しておき、バーナ4
の流量係数Nを固定値とすることにより流量調整弁5の
一次側の供給圧力Pを測定するだけで流量調整弁5の
流量係数Vを一義的に決定できるものである。
By the way, if the composite throttle control is used, as will be apparent from the above description, the flow control valve (variable throttle means) 5 and the burner (fixed throttle means) 4 provided in the pipe are connected. Measure the flow coefficient beforehand and burner 4
The flow rate coefficient V of the flow rate adjusting valve 5 can be uniquely determined only by measuring the supply pressure P 0 on the primary side of the flow rate adjusting valve 5 by setting the flow rate coefficient N to a fixed value.

【0017】すなわち、従来の複合絞り制御ではバーナ
4の流量係数Nを固定値とすること、すなわち、供給さ
れる流体の状態(温度、圧力等)がバーナ前で安定して
いることが必須条件となっているので、バーナ前での状
態が安定している場合は空気比を一定に保持したまま流
体の供給量を正確に制御することができる。
That is, in the conventional composite throttle control, it is an essential condition that the flow coefficient N of the burner 4 be a fixed value, that is, that the state of the supplied fluid (temperature, pressure, etc.) is stable before the burner. Therefore, when the state before the burner is stable, the supply amount of the fluid can be accurately controlled while keeping the air ratio constant.

【0018】ところが、近年、加熱炉等において、熱回
収率の向上を目的にリジェネレーティブバーナ(以下、
リジェネバーナという)が使用されるようになってき
た。
However, in recent years, in a heating furnace or the like, a regenerative burner (hereinafter, referred to as
Regeneration burner) has come into use.

【0019】前記リジェネバーナは、炉内排ガスの保有
する熱量を蓄熱体で回収し、この回収した熱で燃焼用空
気を予熱してからバーナに供給するものなので、炉内温
度が安定するまでは蓄熱体を通過する排ガスの温度変化
(炉の立ち上げ時は常温、加熱炉の定常運転時は例えば
約1100℃)により供給流体の体積が変化し、これに
よりバーナ前の供給圧力Pが変化するため、実設備で
はバーナ(固定絞り手段)の流量係数Nが時々刻々変化
するのに対し、従来の複合絞り制御では流量係数Nを固
定値としているので、流体の状態変化に合わせた流量係
数Nを使って演算することができないという問題があっ
た。
Since the regenerative burner recovers the amount of heat of the exhaust gas in the furnace by the heat storage body and preheats the combustion air with the recovered heat and then supplies the burner air to the burner, until the temperature in the furnace stabilizes. The volume of the supply fluid changes due to the temperature change of the exhaust gas passing through the heat storage body (normal temperature when the furnace is started up, for example, about 1100 ° C. during steady operation of the heating furnace), which changes the supply pressure P 2 before the burner. Therefore, in the actual equipment, the flow coefficient N of the burner (fixed throttle means) changes from moment to moment, whereas in the conventional combined throttle control, the flow coefficient N is set to a fixed value, so that the flow coefficient according to the change in the state of the fluid. There was a problem that it was not possible to calculate using N.

【0020】例えば、前記リジェネバーナを用いた炉の
昇温過程において、バーナの流量係数Nを予熱空気の温
度変化に関係なく固定値として制御すると、操業開始時
と昇温完了時とでは、下記の表2に示すように、燃焼用
空気のバーナ前圧力が3.0kPaから5.0kPaまで変化
し、これを空気比に換算すると約0.2もの誤差が生じ
る。このため、炉の操業の全般にわたって空気比を一定
にすることができないという問題があった。
For example, when the flow coefficient N of the burner is controlled to be a fixed value regardless of the temperature change of the preheated air in the temperature rising process of the furnace using the above-mentioned regenerative burner, at the start of operation and the completion of temperature rise, As shown in Table 2, the pre-burner pressure of the combustion air changes from 3.0 kPa to 5.0 kPa, and when converted into an air ratio, an error of about 0.2 occurs. For this reason, there is a problem that the air ratio cannot be kept constant throughout the operation of the furnace.

【0021】[0021]

【表2】 [Table 2]

【0022】前記従来の問題に鑑み、本発明は、複合絞
り制御を行うバーナの制御方法において、圧力、弁開度
を実測してバーナの実流量係数を決定する事により、バ
ーナの流量係数を流体の状態変化に合わせた実測値とし
て取り扱えるようにすることを目的としている。
In view of the above conventional problems, the present invention provides a burner control method for performing combined throttle control, in which the flow coefficient of the burner is determined by actually measuring the pressure and valve opening to determine the actual flow coefficient of the burner. The purpose is to be able to handle the measured value according to the change of the fluid state.

【0023】[0023]

【課題を解決するための手段】前記目的を達成するた
め、第1の本発明は、予め固定値として設定されたバー
ナの流量係数Nと、前記バーナの燃焼量に対して予め設
定された燃料流量並びにこの燃料流量と予め設定された
空気比とから求められる燃焼用空気の流量と、燃料供給
系及び燃焼用空気供給系に設けた流量調整弁の一次側に
おける流体の供給圧力Pとの関係を示す下記の式
(A)に前記供給圧力Pの実測値を適用して前記燃料
供給系及び燃焼用空気供給系に設けた流量調整弁の流量
係数Vをそれぞれ演算するとともに、予め前記流量調整
弁の弁開度S’と流量係数V’との関係を実測してお
き、この実測した流量係数V’と前記演算により求めた
流量係数Vとを比較して偏差を求め、この偏差が零とな
るように弁開度を調整することで空気比を一定に保持し
たまま燃焼量を制御するバーナの燃焼制御方法におい
て、バーナを固定絞りとした場合のバーナ前における流
体の供給圧力Pと流体の流量Qとバーナの流量係数N
との関係、並びに、流量調整弁を可変絞りとした場合の
流量調整弁での流体の差圧P−Pと流体の流量Qと
流量調整弁の流量係数Vとの関係から導かれる下記の式
(B)に、前記流量調整弁の一次側の供給圧力Pの実
測値と、バーナ前の供給圧力Pの実測値と、実測した
流量調整弁の弁開度S’から求められる流量調整弁の流
量係数V’とを適用してバーナの実流量係数N’を求
め、この実流量係数N’を前記式(A)のバーナの流量
係数Nの代わりに適用し、バーナの流量係数を流体の状
態に合わせた変動値とすることを特徴とするバーナの燃
焼制御方法を提供するものである。
To achieve the above object, the first aspect of the present invention provides a burner flow coefficient N preset as a fixed value and a fuel preset for the burner combustion amount. The flow rate and the flow rate of the combustion air obtained from this fuel flow rate and a preset air ratio, and the supply pressure P 0 of the fluid on the primary side of the flow rate adjusting valve provided in the fuel supply system and the combustion air supply system. The measured value of the supply pressure P 0 is applied to the following equation (A) indicating the relationship to calculate the flow coefficient V of the flow rate adjusting valves provided in the fuel supply system and the combustion air supply system, and The relationship between the valve opening degree S ′ of the flow rate adjusting valve and the flow rate coefficient V ′ is actually measured, the measured flow rate coefficient V ′ is compared with the flow rate coefficient V obtained by the above calculation, and a deviation is obtained. The valve opening can be adjusted so that In the combustion control method of the burner for controlling the leaving combustion rate maintaining the air ratio constant, the feed pressure P 2 and the fluid of the fluid at the front burner in the case of the fixed throttle burner flow rate Q and the burner of the flow coefficient N
And the relationship between the differential pressure P 0 -P 2 of the fluid in the flow rate adjusting valve when the flow rate adjusting valve is a variable throttle, the flow rate Q of the fluid, and the flow rate coefficient V of the flow rate adjusting valve. Equation (B) is obtained from the measured value of the supply pressure P 0 on the primary side of the flow rate control valve, the measured value of the supply pressure P 2 before the burner, and the measured valve opening S ′ of the flow rate control valve. The actual flow coefficient N'of the burner is obtained by applying the flow coefficient V'of the flow control valve, and this actual flow coefficient N'is applied instead of the flow coefficient N of the burner in the above formula (A) to obtain the flow rate of the burner. The present invention provides a burner combustion control method characterized in that a coefficient is set to a variation value according to a fluid state.

【0024】[0024]

【数5】 [Equation 5]

【0025】また、第2の発明は、予め固定値として設
定されたバーナの流量係数Nと、前記バーナの燃焼量に
対して予め設定された燃料流量並びにこの燃料流量と予
め設定された空気比とから求められる燃焼用空気の流量
と、燃料供給系及び燃焼用空気供給系に設けた流量調整
弁の一次側における流体の供給圧力Pとの関係を示す
下記の式(A)に前記供給圧力Pの実測値を適用して
前記燃料供給系及び燃焼用空気供給系に設けた流量調整
弁の流量係数Vをそれぞれ演算するとともに、予め前記
流量調整弁の弁開度S’と流量係数V’との関係を実測
しておき、この実測した流量係数V’と前記演算により
求めた流量係数Vとを比較して偏差を求め、この偏差が
零となるように弁開度を調整するバーナの燃焼制御方法
と、バーナを固定絞りとした場合のバーナ前における流
体の供給圧力Pと流体の流量Qとバーナの流量係数N
との関係、並びに、流量調整弁を可変絞りとした場合の
流量調整弁での流体の差圧P−Pと流体の流量Qと
流量調整弁の流量係数Vとの関係から導かれる下記の式
(B)に、前記流量調整弁の一次側の供給圧力Pの実
測値と、バーナ前の供給圧力Pの実測値と、実測した
流量調整弁の弁開度S’に対し、予め実測した流量調整
弁の弁開度S’と流量係数V’との関係から求められる
流量調整弁の流量係数V’とを適用してバーナの実流量
係数N’を求め、この実流量係数N’を前記式(A)の
バーナの流量係数Nに適用して前記燃料供給系及び燃焼
用空気供給系に設けた流量調整弁の流量係数Vをそれぞ
れ演算するとともに、前記実測した弁開度S’に対する
流量係数V’と前記演算により求めた流量係数Vとを比
較して偏差を求め、この偏差が零となるように弁開度を
調整するバーナの燃焼制御方法と、を炉の操業状態に合
わせて切り換えることを特徴とするバーナの燃焼制御方
法を提供するものである。
In the second aspect of the invention, the burner flow coefficient N set as a fixed value in advance, the fuel flow rate set in advance with respect to the combustion amount of the burner, and the fuel flow rate and the preset air ratio are set. The following equation (A) showing the relationship between the flow rate of the combustion air obtained from the above and the supply pressure P 0 of the fluid on the primary side of the flow rate adjusting valve provided in the fuel supply system and the combustion air supply system The measured value of the pressure P 0 is applied to calculate the flow rate coefficient V of the flow rate adjusting valves provided in the fuel supply system and the combustion air supply system, and the valve opening degree S ′ and the flow rate coefficient of the flow rate adjusting valve are calculated in advance. The relationship with V ′ is actually measured, the measured flow coefficient V ′ is compared with the flow coefficient V calculated by the above calculation to obtain a deviation, and the valve opening is adjusted so that the deviation becomes zero. Burner combustion control method and fixed throttle Flow rate Q and burner flow coefficient N of the supply pressure P 2 and the fluid of the fluid at the front burner in the case of the
And the relationship between the differential pressure P 0 -P 2 of the fluid in the flow rate adjusting valve when the flow rate adjusting valve is a variable throttle, the flow rate Q of the fluid, and the flow rate coefficient V of the flow rate adjusting valve. In equation (B), the measured value of the supply pressure P 0 on the primary side of the flow rate control valve, the measured value of the supply pressure P 2 before the burner, and the measured valve opening S ′ of the flow rate control valve are: The actual flow coefficient N'of the burner is obtained by applying the flow rate coefficient V'of the flow rate adjustment valve obtained from the relationship between the valve opening degree S'of the flow rate adjustment valve measured in advance and the flow rate coefficient V '. N ′ is applied to the flow rate coefficient N of the burner of the formula (A) to calculate the flow rate coefficient V of the flow rate adjusting valves provided in the fuel supply system and the combustion air supply system, and the measured valve opening degree The deviation is calculated by comparing the flow coefficient V ′ for S ′ with the flow coefficient V obtained by the above calculation, and the deviation is calculated. (EN) A burner combustion control method for adjusting the valve opening so that the difference becomes zero, and a burner combustion control method for switching the combustion control method according to the operating state of the furnace.

【0026】[0026]

【数6】 [Equation 6]

【0027】[0027]

【発明の実施の形態】図1及び図2は、本発明に係るバ
ーナ制御方法が適用されるバーナ11A,11Bを加熱
手段として備える加熱炉等の設備1を示している。な
お、図1において、前記図4と同一の要素には同一の符
号を付している。
1 and 2 show a facility 1 such as a heating furnace provided with burners 11A and 11B to which the burner control method according to the present invention is applied as heating means. In FIG. 1, the same elements as those in FIG. 4 are designated by the same reference numerals.

【0028】本実施形態では、蓄熱室12A,12Bを
それぞれ有するバーナ11A,11Bを一対とするリジ
ェネレーティブバーナ(以下、リジェネバーナという)
について説明する。リジェネバーナは、例えば一方のバ
ーナ11Aの燃焼中には他方のバーナ11Bからの燃焼
排ガスを吸引し、高温の燃焼排ガスはバーナ11Bの蓄
熱室12Bを通って排気され、その間に蓄熱室12B内
の蓄熱体に該燃焼排ガスの保有する熱が蓄熱される。そ
して、所定時間が経過すると排気中のバーナが燃焼状態
に、燃焼状態にあったバーナが排気状態に切り換えら
れ、蓄熱した蓄熱室12Bに燃焼用空気を供給して直接
熱交換することで、高温の燃焼用空気が高効率で得られ
る。その後、前記燃焼状態と排気状態とを所定時間ごと
に切り換える。
In this embodiment, a regenerative burner having a pair of burners 11A and 11B respectively having heat storage chambers 12A and 12B (hereinafter referred to as "regenerative burner").
Will be described. The regenerative burner, for example, sucks the combustion exhaust gas from the other burner 11B during the combustion of the one burner 11A, and the high temperature combustion exhaust gas is exhausted through the heat storage chamber 12B of the burner 11B, and in the meantime, inside the heat storage chamber 12B. The heat of the combustion exhaust gas is stored in the heat storage body. Then, after a lapse of a predetermined time, the burner in the exhaust gas is switched to the combustion state, and the burner in the combustion state is switched to the exhaust state, and the combustion air is supplied to the heat storage chamber 12B in which heat is stored to directly exchange heat, thereby increasing the temperature. The combustion air can be obtained with high efficiency. Then, the combustion state and the exhaust state are switched every predetermined time.

【0029】このリジェネバーナを備える加熱炉1で
は、炉温の上昇とともにバーナ前における流体の温度が
変化(上昇)するので、複合絞り制御を行う際にバーナ
の流量係数を従来と同様に固定値(固定流量係数N)と
して扱うと、実際には前記温度変化(温度上昇)に起因
する供給圧力の変化により流量係数が変動するので、所
定の空気比を維持するのに必要な弁開度となっていなか
った。
In the heating furnace 1 equipped with this regenerative burner, the temperature of the fluid in front of the burner changes (increases) as the furnace temperature rises. Therefore, when performing complex throttle control, the flow coefficient of the burner is fixed at a fixed value as in the conventional case. When treated as (fixed flow rate coefficient N), the flow rate coefficient actually fluctuates due to the change in the supply pressure caused by the temperature change (temperature rise), so that the valve opening required to maintain a predetermined air ratio is It wasn't.

【0030】そこで、本実施形態では、リジェネバーナ
等の使用により、炉の昇温時等にバーナ(固定絞り手
段)の流量係数が流体の状態変化にともなって変化する
場合、その変化に合わせた流量係数(実流量係数N’)
を使う複合絞り制御を行う。以下、この制御について説
明する。
Therefore, in the present embodiment, if the flow coefficient of the burner (fixed throttle means) changes due to the change of the fluid state when the temperature of the furnace is raised by using a regenerative burner or the like, the change is adjusted to the change. Flow coefficient (actual flow coefficient N ')
Performs compound aperture control. Hereinafter, this control will be described.

【0031】「従来の技術」の欄で説明したように、複
合絞り制御は、バーナ11A,11Bを固定絞りとし
た場合のバーナの流量係数Nと流体の流量Qとバーナ前
の供給圧力Pとの関係(前記式(3))と、流量調
整弁5を可変絞りとした場合の流量調整弁の流量係数V
と流体の流量Qと流量調整弁5での差圧Pとの関係
(前記式(2))と、流量調整弁5の一次側の供給圧
力Pと流量調整弁5での差圧Pとバーナ前の供給圧
力Pとの関係(前記式(1))とから、流量Qと流量
調整弁5の流量係数Vとバーナ11A(あるいは11
B)の流量係数Nと流量調整弁5の一次側の供給圧力P
との関係(前記式(1a))が決まるものである。
As described in the section "Prior Art", the composite throttle control is performed in the case where the burners 11A and 11B are fixed throttles, the flow coefficient N of the burner, the flow rate Q of the fluid, and the supply pressure P 2 before the burner. And the flow coefficient V of the flow rate adjusting valve when the flow rate adjusting valve 5 is a variable throttle.
And the flow rate Q of the fluid and the differential pressure P 1 at the flow rate adjusting valve 5 (Equation (2)), the supply pressure P 0 on the primary side of the flow rate adjusting valve 5 and the differential pressure P at the flow rate adjusting valve 5. 1 and the supply pressure P 2 before the burner (equation (1) above), the flow rate Q, the flow rate coefficient V of the flow rate adjusting valve 5 and the burner 11A (or 11).
B) flow rate coefficient N and supply pressure P on the primary side of the flow rate adjusting valve 5
The relationship with 0 (formula (1a)) is determined.

【0032】ここで、前記式(1a)を流量調整弁5の
流量係数Vについて展開すると、流量調整弁5の流量係
数Vは流量Qとバーナ11A(あるいは11B)の流量
係数Nと供給圧力Pとの関係(前記式(4))で表さ
れる。
When the above equation (1a) is developed for the flow rate coefficient V of the flow rate adjusting valve 5, the flow rate coefficient V of the flow rate adjusting valve 5 is calculated by the flow rate Q, the flow rate coefficient N of the burner 11A (or 11B) and the supply pressure P. It is represented by the relationship with 0 (the above formula (4)).

【0033】ここで供給圧力Pは実測値として得ら
れ、流量Qは炉内温度(測定値)と設定温度との偏差か
ら決定されるバーナの燃焼量に対応して予め決定されて
いる。また、従来の複合絞り制御では、バーナの流量係
数は事前にある流量に対して実測した値を固定値(固定
流量係数N)として使用していたが、これではバーナ前
の流体の供給状態の変化に対応できない。
Here, the supply pressure P 0 is obtained as a measured value, and the flow rate Q is determined in advance in accordance with the burner combustion amount determined from the deviation between the furnace temperature (measured value) and the set temperature. Further, in the conventional combined throttle control, the flow coefficient of the burner uses a value measured in advance for a certain flow rate as a fixed value (fixed flow coefficient N). I cannot respond to change.

【0034】そこで、本発明では、前記式(2),
(3)からバーナの流量係数Nと流量調整弁5の一次側
での供給圧力Pとバーナ前の供給圧力Pとの関係式
(3a)を求める。
Therefore, in the present invention, the above equation (2),
The relational expression (3a) between the flow coefficient N of the burner, the supply pressure P 0 on the primary side of the flow rate adjusting valve 5 and the supply pressure P 2 before the burner is obtained from (3).

【0035】[0035]

【数7】 [Equation 7]

【0036】ここで、供給圧力P、Pは前記の通り
実測値であり、流量調整弁5の流量係数V’は、流量調
整弁5の開度を実測した値S’から一義的に決定される
ものなので、これらの値を式(3a)に適用することで
実流量係数N’はバーナ前の流体の状態に応じた値とし
て演算できる。そして、この実流量係数N’をバーナの
流量係数として前記式(4)に適用する事により、バー
ナ前の供給圧力の変化に応じた流量係数を演算(実流量
係数N’)して正確な制御を行うことができる。
Here, the supply pressures P 0 and P 2 are measured values as described above, and the flow coefficient V ′ of the flow rate adjusting valve 5 is uniquely determined from the value S ′ obtained by actually measuring the opening degree of the flow rate adjusting valve 5. Since these values are determined, the actual flow coefficient N ′ can be calculated as a value according to the state of the fluid before the burner by applying these values to the equation (3a). Then, by applying this actual flow coefficient N ′ as the flow coefficient of the burner to the above equation (4), the flow coefficient according to the change of the supply pressure before the burner is calculated (actual flow coefficient N ′) to obtain an accurate value. Control can be performed.

【0037】ところで、バーナの流量係数Nを固定値と
して扱う場合と変動値として扱う場合とでは流体の制御
特性が変わる。
By the way, the control characteristic of the fluid changes depending on whether the flow coefficient N of the burner is treated as a fixed value or as a variable value.

【0038】すなわち、前記流量係数Nを固定値として
扱う場合、空気比を所定誤差内に保持した状態での燃焼
量のターンダウン比が大きくとれる代わりに流体の供給
状態の変化(変動)に合わせた空気比の制御はできな
い。逆に、前記流量係数Nを変動値として扱う場合、空
気比を所定誤差内に保持した状態での燃焼量のターンダ
ウン比は小さくなるが、流体の供給状態に合わせた精度
の良い空気比制御ができるという特性を有する。
That is, when the flow rate coefficient N is treated as a fixed value, the turndown ratio of the combustion amount can be made large while the air ratio is kept within a predetermined error, but the change (fluctuation) of the fluid supply state is adjusted. The air ratio cannot be controlled. On the contrary, when the flow coefficient N is treated as a variation value, the turndown ratio of the combustion amount becomes small when the air ratio is kept within a predetermined error, but the air ratio control is performed with high accuracy according to the fluid supply state. It has the property that

【0039】前記特性の差は、流量を求める式に差圧の
項目を含むか否かによる違いである。すなわち、前記式
(1a)を流量Qについて展開した下記する式(1b)
についてみてみると、バーナの流量係数Nを変動値とし
て扱う場合、前記式(3a)を式(1b)に代入して流
量Qを求めるので式(1b)内に流量調整弁5の差圧の
項目(P−P)を含むことになり、流量調整弁5が
図3に示す差圧センサのドリフト誤差によるオリフィス
式流量計測の誤差と同じ特性を有することになるので、
ターンダウン比を大きくとることができないのに対し、
バーナの流量係数Nを固定値として扱う場合、式(1
b)内に差圧項目を含まないので差圧センサが必要なく
ドリフト誤差の発生がないので、流量調整弁5の開度が
ターンダウン比にほとんど影響を与えない。
The difference in the characteristics depends on whether or not the equation for calculating the flow rate includes the item of the differential pressure. That is, the following formula (1b) obtained by expanding the formula (1a) with respect to the flow rate Q.
When considering the flow coefficient N of the burner as a variation value, the above equation (3a) is substituted into the equation (1b) to obtain the flow rate Q. Therefore, the differential pressure of the flow rate adjusting valve 5 is calculated in the equation (1b). Since the item (P 0 −P 2 ) is included, the flow rate adjusting valve 5 has the same characteristic as the error of the orifice type flow rate measurement due to the drift error of the differential pressure sensor shown in FIG.
Whereas a large turndown ratio cannot be achieved,
When the flow coefficient N of the burner is treated as a fixed value, the formula (1
Since the differential pressure item is not included in b), a differential pressure sensor is not required and a drift error does not occur. Therefore, the opening degree of the flow rate adjusting valve 5 has almost no influence on the turndown ratio.

【0040】[0040]

【数8】 [Equation 8]

【0041】つまり、炉が定常状態で運転されている通
常操業時であれば、バーナの流量係数Nを固定値として
扱うことにより空気比を一定に保持したまま材料の処理
量等の変動に合わせて燃焼量を大きく変更することがで
きるのに対し、リジェネバーナ等を採用した炉において
バーナ前での流体の供給状態が安定しない炉の立上げ時
であれば、バーナの流量係数Nを変動値として扱うこと
によりバーナ前での流体の供給状態の変化(変動)に合
わせて空気比を一定に保持することができる。
That is, during normal operation in which the furnace is operating in a steady state, the flow coefficient N of the burner is treated as a fixed value to keep the air ratio constant and adjust to the fluctuation of the material throughput. While the combustion amount can be changed significantly by using a regenerative burner, etc., the flow coefficient N of the burner can be changed to a variable value when the furnace is starting up when the fluid supply state before the burner is not stable. The air ratio can be kept constant in accordance with the change (fluctuation) of the fluid supply state before the burner.

【0042】実操業においては、バーナの流量係数を固
定値(固定流量係数N)として扱う領域と実測定値(実
流量係数N’)を使う領域とを予め設定しておき、それ
ぞれの領域で流量係数を切り換えて使用する。
In actual operation, a region in which the flow coefficient of the burner is treated as a fixed value (fixed flow coefficient N) and a region in which the actual measured value (actual flow coefficient N ') is used are set in advance, and the flow rate is set in each area. Switch the coefficient to use.

【0043】この切り換えは、例えば、1200℃の目
標炉温に対して、測定炉温が特定の温度、例えば10
00℃になった時点で実流量係数N’を用いる制御から
固定流量係数Nを用いる制御に切り換える、測定炉温
が1200℃の所定割合(例えば、95%)に達した場
合に切り換えるなど、使用者の都合に合わせて設定する
ことができる。
This switching is performed, for example, with respect to the target furnace temperature of 1200 ° C., the measured furnace temperature is a specific temperature, for example, 10
When the temperature reaches 00 ° C, the control using the actual flow coefficient N'is switched to the control using the fixed flow coefficient N, or when the measured furnace temperature reaches a predetermined ratio of 1200 ° C (for example, 95%), use It can be set according to the convenience of the person.

【0044】このように、バーナの流量係数として固定
流量係数Nと実流量係数N’とをバーナ前の流体の供給
状態に合わせて切り換える事により、炉の操業全般にわ
たって安定して空気比を一定に保つ事ができる。
In this way, by switching the fixed flow coefficient N and the actual flow coefficient N'as the flow coefficient of the burner in accordance with the supply state of the fluid before the burner, the air ratio is stably maintained over the entire operation of the furnace. Can be kept at

【0045】なお、実流量係数N’を使う複合絞り制御
は、リジェネバーナを用いた炉の立ち上げ時に限定され
るものではなく、例えば、高速噴流型のバーナのような
燃焼用空気、燃料ガスのノズル先端を絞って高速で噴射
する際に、その背圧がバーナの一次側に影響するような
バーナ、すなわち、バーナ前での流体の供給状態が安定
しないバーナであれば何にでも適用できる。
The composite throttle control using the actual flow coefficient N'is not limited to the start-up of the furnace using the regenerative burner. For example, combustion air such as a high-speed jet burner, fuel gas, etc. Can be applied to any burner whose back pressure affects the primary side of the burner when the nozzle tip of the nozzle is squeezed at high speed, that is, any burner in which the fluid supply state before the burner is not stable. .

【0046】[0046]

【発明の効果】以上の説明から明らかなように、本発明
に係る複合絞り制御を使用したバーナ制御方法では、圧
力、弁開度を実測してバーナの実流量係数を決定するこ
とにより、バーナの流量係数を流体の供給状態に合わせ
た実測値として扱うことができるので、バーナ前で流体
の供給圧力が変化する際にも安定した空気比で燃焼制御
できる。また、バーナの流量係数を炉の操業状態に合わ
せて切り変えることにより、炉の操業の全般にわたって
空気比を一定に保持できる。
As is apparent from the above description, in the burner control method using the composite throttle control according to the present invention, the burner is determined by actually measuring the pressure and the valve opening to determine the actual flow coefficient of the burner. Since the flow rate coefficient can be treated as an actual measurement value according to the fluid supply state, combustion control can be performed with a stable air ratio even when the fluid supply pressure changes before the burner. Further, by changing the flow coefficient of the burner according to the operating state of the furnace, the air ratio can be kept constant throughout the operation of the furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明が適用されるリジェネバーナを用いた
加熱炉を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a heating furnace using a regenerative burner to which the present invention is applied.

【図2】 リジェネバーナを示す概略図である。FIG. 2 is a schematic diagram showing a regenerative burner.

【図3】 差圧センサのドリフト誤差によるオリフィス
式流量計測の誤差を示す線図である。
FIG. 3 is a diagram showing an error in orifice type flow rate measurement due to a drift error of a differential pressure sensor.

【図4】 従来のバーナを示す概略図である。FIG. 4 is a schematic view showing a conventional burner.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 温度調節装置 3 バーナ制御装置 4,11A,11B バーナ 5 流量調整弁 12A,12B 蓄熱室 1 heating furnace 2 Temperature control device 3 Burner control device 4,11A, 11B burner 5 Flow control valve 12A, 12B heat storage chamber

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F23N 5/18 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) F23N 5/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予め固定値として設定されたバーナの流
量係数Nと、前記バーナの燃焼量に対して予め設定され
た燃料流量並びにこの燃料流量と予め設定された空気比
とから求められる燃焼用空気の流量と、燃料供給系及び
燃焼用空気供給系に設けた流量調整弁の一次側における
流体の供給圧力Pとの関係を示す下記の式(A)に前
記供給圧力Pの実測値を適用して前記燃料供給系及び
燃焼用空気供給系に設けた流量調整弁の流量係数Vをそ
れぞれ演算するとともに、予め前記流量調整弁の弁開度
S’と流量係数V’との関係を実測しておき、この実測
した流量係数V’と前記演算により求めた流量係数Vと
を比較して偏差を求め、この偏差が零となるように弁開
度を調整することで空気比を一定に保持したまま燃焼量
を制御するバーナの燃焼制御方法において、 バーナを固定絞りとした場合のバーナ前における流体の
供給圧力Pと流体の流量Qとバーナの流量係数Nとの
関係、並びに、流量調整弁を可変絞りとした場合の流量
調整弁での流体の差圧P−Pと流体の流量Qと流量
調整弁の流量係数Vとの関係から導かれる下記の式
(B)に、前記流量調整弁の一次側の供給圧力Pの実
測値と、バーナ前の供給圧力Pの実測値と、実測した
流量調整弁の弁開度S’から求められる流量調整弁の流
量係数V’とを適用してバーナの実流量係数N’を求
め、この実流量係数N’を前記式(A)のバーナの流量
係数Nの代わりに適用し、バーナの流量係数を流体の状
態に合わせた変動値とすることを特徴とするバーナの燃
焼制御方法。 【数1】
1. A burner flow coefficient N set as a fixed value in advance, a fuel flow rate set in advance for the combustion amount of the burner, and a combustion flow rate obtained from the fuel flow rate and a preset air ratio. The measured value of the supply pressure P 0 is given by the following formula (A) showing the relationship between the flow rate of air and the supply pressure P 0 of the fluid on the primary side of the flow rate adjusting valve provided in the fuel supply system and the combustion air supply system. Is applied to calculate the flow rate coefficient V of the flow rate adjusting valves provided in the fuel supply system and the combustion air supply system, respectively, and the relationship between the valve opening degree S ′ of the flow rate adjusting valve and the flow rate coefficient V ′ is calculated in advance. The air ratio is kept constant by actually measuring and comparing the measured flow coefficient V ′ with the flow coefficient V obtained by the above calculation to obtain a deviation and adjusting the valve opening so that the deviation becomes zero. Burner fuel that controls the amount of combustion while being held at The control method, the relationship between the supply pressure P 2 and the fluid flow rate Q and the burner of the flow coefficient N of the fluid before the burner in the case of the fixed throttle burner, and the flow rate adjustment in the case where the flow control valve and the variable throttle The differential pressure P 0 -P 2 of the fluid at the valve, the flow rate Q of the fluid, and the flow rate coefficient V of the flow rate adjusting valve are introduced into the following equation (B) to supply pressure P on the primary side of the flow rate adjusting valve. The actual flow coefficient of the burner is applied by applying the measured value of 0, the measured value of the supply pressure P 2 before the burner, and the flow coefficient V ′ of the flow adjustment valve obtained from the measured valve opening S ′ of the flow adjustment valve. A burner characterized in that N ′ is obtained, and this actual flow coefficient N ′ is applied in place of the flow coefficient N of the burner in the above formula (A), and the flow coefficient of the burner is set as a variation value according to the state of the fluid. Combustion control method. [Equation 1]
【請求項2】 予め固定値として設定されたバーナの流
量係数Nと、前記バーナの燃焼量に対して予め設定され
た燃料流量並びにこの燃料流量と予め設定された空気比
とから求められる燃焼用空気の流量と、燃料供給系及び
燃焼用空気供給系に設けた流量調整弁の一次側における
流体の供給圧力Pとの関係を示す下記の式(A)に前
記供給圧力Pの実測値を適用して前記燃料供給系及び
燃焼用空気供給系に設けた流量調整弁の流量係数Vをそ
れぞれ演算するとともに、予め前記流量調整弁の弁開度
S’と流量係数V’との関係を実測しておき、この実測
した流量係数V’と前記演算により求めた流量係数Vと
を比較して偏差を求め、この偏差が零となるように弁開
度を調整するバーナの燃焼制御方法と、バーナを固定絞
りとした場合のバーナ前における流体の供給圧力P
流体の流量Qとバーナの流量係数Nとの関係、並びに、
流量調整弁を可変絞りとした場合の流量調整弁での流体
の差圧P−Pと流体の流量Qと流量調整弁の流量係
数Vとの関係から導かれる下記の式(B)に、前記流量
調整弁の一次側の供給圧力Pの実測値と、バーナ前の
供給圧力Pの実測値と、実測した流量調整弁の弁開度
S’に対し、予め実測した流量調整弁の弁開度S’と流
量係数V’との関係から求められる流量調整弁の流量係
数V’とを適用してバーナの実流量係数N’を求め、こ
の実流量係数N’を前記式(A)のバーナの流量係数N
に適用して前記燃料供給系及び燃焼用空気供給系に設け
た流量調整弁の流量係数Vをそれぞれ演算するととも
に、前記実測した弁開度S’に対する流量係数V’と前
記演算により求めた流量係数Vとを比較して偏差を求
め、この偏差が零となるように弁開度を調整するバーナ
の燃焼制御方法と、を炉の操業状態に合わせて切り換え
ることを特徴とするバーナの燃焼制御方法。 【数2】
2. A burner flow coefficient N set as a fixed value in advance, a fuel flow rate set in advance for the combustion amount of the burner, and a combustion flow rate obtained from the fuel flow rate and a preset air ratio. The measured value of the supply pressure P 0 is given by the following formula (A) showing the relationship between the flow rate of air and the supply pressure P 0 of the fluid on the primary side of the flow rate adjusting valve provided in the fuel supply system and the combustion air supply system. Is applied to calculate the flow rate coefficient V of the flow rate adjusting valves provided in the fuel supply system and the combustion air supply system, respectively, and the relationship between the valve opening degree S ′ of the flow rate adjusting valve and the flow rate coefficient V ′ is calculated in advance. A burner combustion control method in which actual measurement is performed, a deviation is obtained by comparing the measured flow coefficient V ′ with the flow coefficient V obtained by the above calculation, and the valve opening is adjusted so that the deviation becomes zero. , Burner with fixed throttle Relationship between the supply pressure P 2 and the fluid flow rate Q and the burner of the flow coefficient N of the fluid in, and,
When the flow control valve is a variable throttle, the following equation (B) is derived from the relationship between the fluid pressure difference P 0 -P 2 at the flow control valve, the flow rate Q of the fluid, and the flow coefficient V of the flow control valve. The flow control valve measured in advance with respect to the measured value of the supply pressure P 0 on the primary side of the flow control valve, the measured value of the supply pressure P 2 before the burner, and the measured valve opening S ′ of the flow control valve. The actual flow coefficient N'of the burner is obtained by applying the flow coefficient V'of the flow rate adjusting valve obtained from the relationship between the valve opening degree S'of FIG. A) burner flow coefficient N
To calculate the flow rate coefficient V of the flow rate adjusting valves provided in the fuel supply system and the combustion air supply system, and to calculate the flow rate coefficient V'for the measured valve opening S'and the flow rate obtained by the calculation. The burner combustion control method is characterized in that a deviation is obtained by comparing with the coefficient V, and the burner combustion control method in which the valve opening is adjusted so that the deviation becomes zero, and the burner combustion control method is switched according to the operating state of the furnace. Method. [Equation 2]
JP2001028672A 2001-02-05 2001-02-05 Burner combustion control method Expired - Lifetime JP3495995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028672A JP3495995B2 (en) 2001-02-05 2001-02-05 Burner combustion control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028672A JP3495995B2 (en) 2001-02-05 2001-02-05 Burner combustion control method

Publications (2)

Publication Number Publication Date
JP2002228149A JP2002228149A (en) 2002-08-14
JP3495995B2 true JP3495995B2 (en) 2004-02-09

Family

ID=18893132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028672A Expired - Lifetime JP3495995B2 (en) 2001-02-05 2001-02-05 Burner combustion control method

Country Status (1)

Country Link
JP (1) JP3495995B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365438B2 (en) * 2009-09-14 2013-12-11 新日鐵住金株式会社 Burner combustion control device and burner combustion control method

Also Published As

Publication number Publication date
JP2002228149A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
US20070101724A1 (en) Fuel control for starting a gas turbine engine
JP3495995B2 (en) Burner combustion control method
JPH07180904A (en) Hot water-supplying apparatus
JP2001021141A (en) Combustion control method of heating furnace and combustion control device
JPH02223724A (en) Air fuel ratio control method of heater
JP7413145B2 (en) combustion device
JP3346110B2 (en) Combustion control device
CN113048802B (en) Method for reducing nitrogen oxides in multi-control-section heating furnace under low heat load
JP7220971B2 (en) Combustion control method for combustion equipment
JPH0378528B2 (en)
JP7073025B1 (en) Combustion equipment
JPH0745930B2 (en) Air-fuel ratio controller for gas combustion equipment
JP2619044B2 (en) Temperature control device
JP2529503B2 (en) Combustion control device
JP3769660B2 (en) Water heater
JPH0942766A (en) Combustion appliance having hot water supply function and correction data input device
JPH02223761A (en) Temperature control device for hot water supply equipment
JP2566007B2 (en) Combustion control device
JP2669662B2 (en) Water heater control device
JP3020328B2 (en) Flow control method in mixing ratio control device
JPH0783430A (en) Burner
JP3046467B2 (en) Heating furnace heating control method
KR940001218B1 (en) Combustion control device for hot water boiler
JP2001099420A (en) Exhaust gas flow controller for heat storage burner
JPH0233558A (en) Hot water feeder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3495995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

EXPY Cancellation because of completion of term