JP3494730B2 - Vertical axis hydraulic machine suction pipe - Google Patents

Vertical axis hydraulic machine suction pipe

Info

Publication number
JP3494730B2
JP3494730B2 JP01397095A JP1397095A JP3494730B2 JP 3494730 B2 JP3494730 B2 JP 3494730B2 JP 01397095 A JP01397095 A JP 01397095A JP 1397095 A JP1397095 A JP 1397095A JP 3494730 B2 JP3494730 B2 JP 3494730B2
Authority
JP
Japan
Prior art keywords
runner
suction pipe
water
water surface
hydraulic machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01397095A
Other languages
Japanese (ja)
Other versions
JPH08200200A (en
Inventor
藤 晋 作 佐
川 敏 史 黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01397095A priority Critical patent/JP3494730B2/en
Publication of JPH08200200A publication Critical patent/JPH08200200A/en
Application granted granted Critical
Publication of JP3494730B2 publication Critical patent/JP3494730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、縦軸回りに回転するラ
ンナを収納するランナ室内に高圧空気を注入することに
より前記ランナ室内の水を前記ランナ室の下方に連設さ
れている吸出し管内に排水し、その水面を前記ランナよ
り下方に押し下げて前記ランナを空気中において空転さ
せるようにした縦軸水力機械に関する。 【0002】 【従来の技術】日中にはダムに貯水されている水を放流
池に流下させて発電するとともに、深夜には余剰の電力
を活用して放流池の水をダムに揚水する揚水式の発電所
が広く知られている。このような揚水式の発電所におい
ては、図5に模式的に示したような縦型のポンプ水車1
が用いられている。この種のポンプ水車1においては、
電力系統の安定化や電力需要の変化に対する迅速な対応
を図るために、ポンプ水車1のランナ2を空転させる、
いわゆる調相運転が長時間にわたって行われることが多
い。ポンプ水車1をポンプとして作動させている際に調
相運転を行う場合には、まず可動ガイドベーン3を全閉
状態とした後にランナ室4内に高圧空気を供給し、ラン
ナ室4内の水を吸出し管5内に押し戻すことにより水面
6をランナ2の下端部7よりも所定距離だけ押し下げ、
ランナ2を空気中で空転させてランナ2の回転駆動トル
クを低減するようにしている。 【0003】しかしながら、ランナ2と水面6との間の
空間8内の空気は、ランナ3が回転することによりラン
ナ3の回転方向にかきまわされるので、図9に示すよう
に水面6には大きな波立ちや揺動が発生する。これによ
り、吸出し管5内の水が飛散してランナ2に付着し、ラ
ンナ2に回転アンバランスが生じ回転振動が急激に増大
したり、揺動した水面6がランナ2内に侵入することに
よりランナ2の回転駆動トルクが急激に増大したり、さ
らには水面6の揺動によりランナ室4内に供給される高
圧空気の一部が吸出し管5のエルボ部5aを介して吸出
し管5の下流側5bに向かって漏れ出し、ランナ室4内
への高圧空気の供給が追いつかなくなったりする不具合
が生じることがあった。そこで、水面6の揺動の影響が
ランナ2に及ぶことがないように、吸出し管5の高さ方
向の寸法を充分に取ることが考えられるが、吸出し管5
が大型化して高価になることに加えて、この様な大型の
吸出し管5を埋設するための建設コストが大きく上昇し
てしまう。 【0004】 【発明が解決しようとする課題】上述した問題点を解決
するために、特公昭60−44515号公報および実開
昭59−111972号公報には、水面6の位置を規定
することにより吸出し管の高さ方向の寸法を最小限に抑
える技術が開示されているが、この技術は吸出し管内の
水の押し込み水頭が小さいレベルのものを対象としてお
り、近年使用されている高落差かつ高速なポンプ水車に
は適さない。 【0005】また、特公平4−78837号公報および
特開昭55−156274号公報には、水面の動揺を抑
えるために吸出し管内に高圧水もしくは高圧空気を噴出
させる技術が開示されているが、高圧水もしくは高圧空
気を噴出させるための配管や制御装置が新たに必要とな
るばかりでなく、高圧の水もしくは空気を取り扱うため
に配管や制御装置には高い信頼性が求められ、いまだ実
用に至っていない。 【0006】さらに、本願の出願人は、吸出し管内の空
気密度で補正したフルード数を用いて吸出し管の高さを
規定する技術を先に出願しているが(特願平2−585
04号)、ランナと水面との高低差とランナの振動や駆
動トルクとの関係については言及していない。 【0007】また、特開昭56−106069号公報お
よび特開平5−195941号公報等には、水面の揺動
を抑制するフィンを吸出し管内に設置する技術が開示さ
れているが、これらのフィンは吸出し管内に常時突出し
ているため、水流の水圧脈動により破損したり、通常時
には運転の妨げとなって運転性能に悪影響を及ぼすこと
があった。 【0008】そこで、本発明の目的は、上記従来の技術
が有する問題点を解消し、吸出し管内の水面を押し下げ
てランナを空気中において空転させる際に、ランナの回
転振動が増大したりランナ回転駆動トルクが増加したり
することがないばかりでなく、水面が大きく揺動してラ
ンナ室内に注入した高圧空気が吸出し管のエルボ部から
下流側に向かって漏れ出すことがなく、長時間にわたっ
て安定して調相運転を行うことができる縦軸水力機械の
吸出し管を提供することにある。 【0009】 【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、吸出し管内に押し下げられた水面の揺
動のエネルギーを正しく示す無次元係数Kを導入すると
ともに、模型試験等により、ランナと押し下げられた水
面との高低差と前記無次元係数Kとの適切な関係、およ
び押し下げられた水面と吸出し管のエルボ部との高低差
と前記無次元係数Kとの適切な関係を見出したものであ
る。 【0010】すなわち、本発明の請求項1に記載の縦軸
水力機械の吸出し管は、縦軸回りに回転するランナを収
納するランナ室内に高圧空気を注入することにより前記
ランナ室内の水を前記ランナ室の下方に連設されている
吸出し管内に排水し、その水面を前記ランナより下方に
押し下げて前記ランナを空気中において空転させるよう
にした縦軸水力機械の吸出し管において、前記ランナの
前記吸出し管に臨む出口部分の直径をDe(m)、前記
出口部分の外周速度をUe(m/sec)、押し下げら
れた水面から前記ランナの下端までの高さをZ1
(m)、前記吸出し管が前記ランナの下方において水平
方向に折れ曲がるエルボ部内の最上端から前記押し下げ
られた水面までの高さをZ2(m)、水面が押し下げら
れた状態における前記高圧空気の密度をρa(kg/
3)および前記吸出し管内の水の密度をρw(kg/m
3)、重力加速度をg(m/sec2)とするとともに、
無次元係数AをA=Z1/De、無次元係数BをB=Z
2/De、無次元フルード数FrをFr=Ue/(g×
De)1/2、無次元係数KをK=(ρa/(ρw−ρa))
1/2×Fr、とそれぞれ定義する時、A≧0.74K+
0.26なる関係を満たすZ1の値およびB≧1.11
K+0.29なる関係を満たすZ2の値に対応して前記
吸出し管の高さ方向の寸法を設定するものである。 【0011】 【作用】本発明の請求項1に記載の縦軸水力機械の吸出
し管によれば、水面が揺動してもランナの回転振動が急
激に増大したりランナ回転駆動トルクが急激に増加した
りすることがないようにランナと押し下げ水面との高低
差を明確に規定することができ、かつ押し下げた水面が
大きく揺動してランナ室内に注入した高圧空気が吸出し
管のエルボ部から下流側に向かって漏れ出すことを防止
することができるように押し下げ水面とエルボ部内の最
上端部との高低差を明確に規定することができるから
吸出し管の高さ方向の寸法を適切に設定することができ
る。 【0012】 【実施例】以下、本発明による縦軸水力機械の吸出し管
の実施例を、図面を参照して詳細に説明する。なお、以
下の説明においては、同一の部分に同一の符号を用いる
こてにより説明を省略するものとする。 【0013】図1に示すように、本発明を適用する縦軸
水力機械としてのポンプ水車1がポンプとして作動して
いる際に、ランナ2を空気中において空転させる、いわ
ゆる調相運転を行う場合には、可動ガイドベーン3を全
閉状態とした後にランナ室4内に高圧空気を供給し、ラ
ンナ室4内の水を吸出し管5内に押し戻すことにより水
面6をランナ2の下端部7よりも下方に押し下げる。こ
の状態において、水面6とランナ2の下端7との高低差
をZ1(m)、かつ水面6と吸出し管5のエルボ部5a
内の最上端部5cとの高低差をZ2(m)とする。 【0014】また、ランナ2の吸出し管5に臨む出口部
分の直径をDe(m)、前記出口部分の外周速度をUe
(m/sec)、重力加速度をg(m/sec2)、水
面6を押し下げた状態における高圧空気の密度をρ
a(kg/m3)および吸出し管5内の水の密度をρ
w(kg/m3)、重力加速度をg(m/sec2)とす
る。 【0015】さらに、無次元係数Aを 【数1】 無次元係数Bを 【数2】 無次元フルード数Frを 【数3】 無次元係数Kを 【数4】 と、それぞれ定義する。 【0016】このようなポンプ水車1の模型を製作して
前記無次元係数Kの値を種々変更した調相運転を行い、
前記ランナ室4の上カバー4aの振動の大きさ、および
吸出し管5のエルボ部5aから下流5b側への高圧空気
の漏れ出し量を測定した結果を図2に示す。図2は、前
記無次元係数AおよびBを横軸に、前記上カバー4aの
振動の大きさを右側縦軸に、高圧空気の漏れ出し量を左
側縦軸にそれぞれ取るとともに、前記無次元係数Kの値
がK=1.02およびK=1.22の場合について、前
記上カバー4aの振動の大きさの変化を点線で、高圧空
気の漏れ出し量の変化を実線で表したものである。この
図2から明らかなように、上カバー4aの振動(点線)
および高圧空気の漏れ出し量(実線)は、ほぼ一定とな
る領域と急激に増大する領域とに区分することができ、
その境界となる部分をそれぞれ図2中に示す直線イおよ
び直線アにより区切ることができる。 【0017】一方、図3は、上カバー4aの振動、ある
いはこの振動とほぼ同様の現象的変化を示すランナ回転
駆動力が急激に増大することのない領域を、前記無次元
係数Kを横軸に取るとともに前記無次元係数Aを縦軸に
取ったグラフ上に、ハッチングを付して表したものであ
る。この図3から明らかなように、上カバー4aの振動
あるいはランナ回転駆動力が急激に増大することのない
領域は、図3中にA=0.74K+0.26で表される
直線の左上側と表すことができる。 【0018】したがって、ランナ2の寸法およびポンプ
水車1の運転条件から前記無次元係数Kの値が求められ
たならば、A≧0.74K+0.26となるようにAの
値、すなわちZ1の値を決定すれば良い。そして、押し
下げる水面6とランナ下端7との高低差をZ1とするこ
とができるように吸出し管5の高さ方向の寸法を決定す
ることにより、上カバー4aの振動あるいはランナ回転
駆動力が急激に増大することがない縦軸水力機械の吸出
し管を得ることができる。 【0019】同様に、図4は高圧空気の漏れ出し量が急
激に増大する領域を、前記無次元係数Kを横軸に取ると
ともに前記無次元係数Bを縦軸に取ったグラフ上に、ハ
ッチングを付して表したものである。この図2から明ら
かなように、高圧空気の漏れ出し量が急激に増大するこ
とがない領域は、図2中にB=1.11K+0.29で
表される直線の左上側と表すことができる。 【0020】したがって、ランナ2の寸法およびポンプ
水車1の運転条件から前記無次元係数Kの値が求められ
たならば、B≧1.11K+0.29となるようにBの
値、すなわちZ2の値を決定すれば良い。そして、押し
下げられた水面6と吸出し管5のエルボ部5a内の最上
端部5cとの高低差をZ2とすることができるように吸
出し管5のエルボ部5aの形状を決定することにより、
ランナ室4内に供給した高圧空気が吸出し管5のエルボ
部5aから下流5b側に向かって漏れ出す量が急激に増
大することがない縦軸水力機械の吸出し管を得ることが
できる。 【0021】すなわち、本実施例のポンプ水車1は、ポ
ンプ水車1のランナ2の寸法およびポンプ水車1の運転
条件から求められる無次元係数Kの値に基づいて、無次
元係数AがA≧0.74K+0.26となるようにZ1
の値を決定するとともに、無次元数係数BがB≧1.1
1K+0.29となるようにZ2の値を決定し、かつこ
れらのZ1およびZ2の値を満たすことができるように
吸出し管5の高さ方向の寸法を設定したものであるか
ら、上カバー4aの振動あるいはランナ回転駆動力が急
激に増大したり、高圧空気が吸出し管5のエルボ部5a
から下流5b側に向かって漏れ出す量が急激に増大した
りすることがなく、ポンプ水車1を長時間にわたって安
定的に調相運転を行うことができる。 【0022】 【発明の効果】本発明の縦軸水力機械の吸出し管は上述
のように構成したものであるから、ランナ室内に高圧空
気を注入して水面を吸出し管内に押し下げ、ランナを空
気中で空転させる調相運転を行う際に、水面が大きく揺
動して水が飛散し、ランナの羽根に付着して回転アンバ
ランスが生じランナの回転振動が増大したり、ランナの
羽根が揺動した水面に衝突することによりランナ回転駆
動トルクが急激に増大したりすることがないばかりでな
く、ランナ室内に注入した高圧空気が吸出し管のエルボ
部から下流側に向かって漏れ出すことがない。したがっ
て、本発明によれば長時間にわたって安定して調相運転
を行うことができる縦軸水力機械の吸出し管を提供する
ことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for injecting high-pressure air into a runner chamber for accommodating a runner rotating about a vertical axis to thereby reduce the water in the runner chamber. The present invention relates to a vertical-axis hydraulic machine that drains water into a suction pipe continuously provided below the water pipe and pushes down the water surface below the runner to cause the runner to idle in the air. 2. Description of the Related Art In the daytime, water stored in a dam flows down to a discharge pond to generate electricity, and at night, excess power is used to pump water from the discharge pond to a dam. Type power plants are widely known. In such a pumping type power plant, a vertical pump turbine 1 as schematically shown in FIG.
Is used. In this type of pump turbine 1,
In order to stabilize the power system and quickly respond to changes in power demand, the runner 2 of the pump turbine 1 is run idle.
The so-called phase adjustment operation is often performed for a long time. When performing the phase adjustment operation when the pump-turbine 1 is operated as a pump, first, the movable guide vane 3 is fully closed, and then high-pressure air is supplied into the runner chamber 4. Is pushed back into the suction pipe 5 to push down the water surface 6 by a predetermined distance from the lower end 7 of the runner 2.
The runner 2 is idled in the air to reduce the rotational driving torque of the runner 2. [0003] However, the air in the space 8 between the runner 2 and the water surface 6 is swirled in the rotation direction of the runner 3 by the rotation of the runner 3, so that the air on the water surface 6 is large as shown in FIG. 9. Rippling and swinging occur. As a result, the water in the suction pipe 5 is scattered and adheres to the runner 2, causing a rotational imbalance in the runner 2, causing a sudden increase in rotational vibration, and a swinging water surface 6 entering the runner 2. A part of the high-pressure air supplied into the runner chamber 4 due to a sudden increase in the rotational driving torque of the runner 2 or furthermore due to the swinging of the water surface 6 flows downstream of the suction pipe 5 through the elbow portion 5 a of the suction pipe 5. Leakage may occur toward the side 5b, and supply of high-pressure air into the runner chamber 4 may not be able to keep up. In order to prevent the swing of the water surface 6 from affecting the runner 2, it is conceivable to take a sufficient size in the height direction of the suction pipe 5.
In addition to the increase in size and cost, the construction cost for burying such a large suction pipe 5 is greatly increased. [0004] In order to solve the above-mentioned problems, Japanese Patent Publication No. 60-44515 and Japanese Utility Model Laid-Open Publication No. 59-111972 disclose the position of the water surface 6 by defining the position. A technique for minimizing the height dimension of the draft tube has been disclosed, but this technology is intended for those with a small level of water penetration head in the draft tube. Not suitable for simple pump turbines. Further, Japanese Patent Publication No. 4-78837 and Japanese Patent Application Laid-Open No. 55-156274 disclose a technique in which high-pressure water or high-pressure air is jetted into a suction pipe in order to suppress the fluctuation of the water surface. Not only are new piping and control equipment required to eject high-pressure water or high-pressure air, but also high reliability is required for piping and control equipment to handle high-pressure water or air. Not in. Further, the applicant of the present application has previously filed an application for a technique for defining the height of the suction pipe using the Froude number corrected by the air density in the suction pipe (Japanese Patent Application No. 2-585).
No. 04) does not mention the relationship between the height difference between the runner and the water surface and the vibration and drive torque of the runner. Japanese Patent Application Laid-Open Nos. 56-106069 and 5-195941 disclose techniques for installing fins for suppressing water surface swing in a suction pipe. Since it always protrudes into the suction pipe, it may be damaged by the water pressure pulsation of the water flow, or may interfere with the operation at normal times and adversely affect the operation performance. Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to increase the rotational vibration of the runner or increase the runner rotation when the water surface in the suction pipe is pushed down to cause the runner to idle in the air. Not only does the driving torque not increase, but also the water surface swings greatly and the high-pressure air injected into the runner chamber does not leak downstream from the elbow of the suction pipe, and is stable for a long time It is an object of the present invention to provide a suction pipe of a vertical axis hydraulic machine capable of performing a phase adjusting operation. [0009] In order to achieve the above object, the present invention introduces a dimensionless coefficient K which correctly indicates the energy of rocking of a water surface pushed down into a suction pipe, and By a test or the like, an appropriate relationship between the height difference between the runner and the depressed water surface and the dimensionless coefficient K, and an appropriate relationship between the height difference between the depressed water surface and the elbow portion of the suction pipe and the dimensionless coefficient K, It is a thing that found a relationship. That is, in the suction pipe of the vertical-axis hydraulic machine according to the first aspect of the present invention, the water in the runner chamber is filled by injecting high-pressure air into a runner chamber that houses a runner rotating around the vertical axis. In a suction pipe of a vertical axis hydraulic machine, the water is drained into a suction pipe continuously provided below the runner chamber, and the surface of the water is pushed down below the runner so that the runner idles in air. The diameter of the outlet part facing the suction pipe is De (m), the outer peripheral speed of the outlet part is Ue (m / sec), and the height from the depressed water surface to the lower end of the runner is Z1.
( M ) the suction pipe is horizontal below the runner
Push down from the top end in the elbow that bends in the direction
The height to the given water surface is Z2 (m), and the density of the high-pressure air in a state where the water surface is pushed down is ρ a (kg /
m 3 ) and the density of water in the suction pipe are ρ w (kg / m
3 ) With the gravitational acceleration being g (m / sec 2 ),
A = Z1 / De for dimensionless coefficient A , B = Z for dimensionless coefficient B
2 / De, the dimensionless Froude number Fr is expressed as Fr = Ue / (g ×
De) 1/2 , and the dimensionless coefficient K is K = (ρ a / (ρ w −ρ a ))
When each is defined as 1/2 × Fr, A ≧ 0.74K +
The value of Z1 that satisfies the relationship 0.26 and B ≧ 1.11
The height dimension of the draft tube is set corresponding to the value of Z2 satisfying the relationship of K + 0.29 . According to the suction pipe of the hydraulic machine according to the first aspect of the present invention, even when the water surface swings, the rotational vibration of the runner rapidly increases or the runner rotation driving torque increases rapidly. The height difference between the runner and the depressed water surface can be clearly defined so that it does not increase , and the depressed water surface swings greatly , and the high-pressure air injected into the runner chamber is discharged from the elbow of the suction pipe. since Ru can be clearly defined difference in height between the uppermost end of the water surface and the elbow depressed so that it can be prevented from leaking toward the downstream side,
The height dimension of the suction pipe can be appropriately set. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a suction pipe of a vertical hydraulic machine according to the present invention will be described below in detail with reference to the drawings. In the following description, the same parts will be denoted by the same reference numerals, and description thereof will be omitted. As shown in FIG. 1, when a pump-turbine 1 as a vertical-axis hydraulic machine to which the present invention is applied operates as a pump, a so-called phase-shifting operation in which the runner 2 idles in the air is performed. After the movable guide vane 3 is fully closed, high-pressure air is supplied into the runner chamber 4, and water in the runner chamber 4 is pushed back into the suction pipe 5 so that the water surface 6 is moved from the lower end 7 of the runner 2. Also push down. In this state, the height difference between the water surface 6 and the lower end 7 of the runner 2 is Z1 (m), and the water surface 6 and the elbow portion 5a of the suction pipe 5 are set.
The height difference from the uppermost end portion 5c is defined as Z2 (m). The diameter of the outlet portion of the runner 2 facing the suction pipe 5 is De (m), and the outer peripheral speed of the outlet portion is Ue.
(M / sec), the gravitational acceleration is g (m / sec 2 ), and the density of the high-pressure air with the water surface 6 depressed is ρ
a (kg / m 3 ) and the density of water in the suction pipe 5
w (kg / m 3 ) and gravitational acceleration g (m / sec 2 ). Further, the dimensionless coefficient A is expressed as The dimensionless coefficient B is given by Dimensionless Froude number Fr The dimensionless coefficient K is given by Are defined respectively. A model of such a pump-turbine 1 is manufactured, and a phase adjustment operation in which the value of the dimensionless coefficient K is variously changed is performed.
FIG. 2 shows the results of measuring the magnitude of vibration of the upper cover 4a of the runner chamber 4 and the amount of high-pressure air leaking from the elbow section 5a of the suction pipe 5 to the downstream side 5b. FIG. 2 shows the dimensionless coefficients A and B on the horizontal axis, the magnitude of vibration of the upper cover 4a on the right vertical axis, and the leakage amount of high-pressure air on the left vertical axis. When the value of K is K = 1.02 and K = 1.22, the change in the magnitude of the vibration of the upper cover 4a is indicated by a dotted line, and the change in the amount of high-pressure air leaked is indicated by a solid line. . As is apparent from FIG. 2, the vibration of the upper cover 4a (dotted line)
And the leakage amount of the high-pressure air (solid line) can be divided into a region where it is almost constant and a region where it increases rapidly.
The boundary portion can be separated by a straight line A and a straight line A shown in FIG. On the other hand, FIG. 3 shows a region where the vibration of the upper cover 4a or the runner rotation driving force which shows a phenomenal change substantially similar to this vibration does not suddenly increase, and the dimensionless coefficient K is plotted on the horizontal axis. And the hatching is shown on a graph in which the dimensionless coefficient A is plotted on the vertical axis. As is apparent from FIG. 3, the region where the vibration of the upper cover 4a or the runner rotation driving force does not suddenly increase corresponds to the upper left side of the straight line represented by A = 0.74K + 0.26 in FIG. Can be represented. Accordingly, if the value of the dimensionless coefficient K is obtained from the dimensions of the runner 2 and the operating conditions of the pump turbine 1, the value of A, that is, the value of Z1, is set so that A ≧ 0.74K + 0.26. Should be determined. Then, by determining the height dimension of the suction pipe 5 so that the height difference between the water surface 6 to be pushed down and the runner lower end 7 can be set to Z1, the vibration of the upper cover 4a or the runner rotation driving force suddenly decreases. It is possible to obtain a suction pipe of a vertical hydraulic machine that does not increase. Similarly, FIG. 4 shows the area where the amount of high-pressure air leaks sharply increases on a graph in which the dimensionless coefficient K is plotted on the horizontal axis and the dimensionless coefficient B is plotted on the vertical axis. It is represented by adding. As is apparent from FIG. 2, the region where the amount of high-pressure air leakage does not increase rapidly can be expressed as the upper left side of the straight line represented by B = 1.11K + 0.29 in FIG. . Therefore, if the value of the dimensionless coefficient K is obtained from the dimensions of the runner 2 and the operating conditions of the pump turbine 1, the value of B, that is, the value of Z2, is such that B ≧ 1.11K + 0.29. Should be determined. Then, the shape of the elbow portion 5a of the suction pipe 5 is determined so that the height difference between the depressed water surface 6 and the uppermost end portion 5c in the elbow portion 5a of the suction pipe 5 can be set to Z2.
It is possible to obtain a suction pipe of a vertical axis hydraulic machine in which the amount of high-pressure air supplied into the runner chamber 4 leaking from the elbow section 5a of the suction pipe 5 toward the downstream side 5b does not increase sharply. That is, in the pump turbine 1 of this embodiment , the dimensionless coefficient A is A ≧ 0 based on the dimension of the runner 2 of the pump turbine 1 and the value of the dimensionless coefficient K obtained from the operating conditions of the pump turbine 1. 0.74K + 0.26
And the dimensionless number coefficient B is B ≧ 1.1
Since the value of Z2 is determined so as to be 1K + 0.29, and the dimension in the height direction of the suction pipe 5 is set so as to satisfy these values of Z1 and Z2, the upper cover 4a Vibration or runner rotation driving force may increase rapidly, or high pressure air may flow through the elbow 5a of the suction pipe 5.
The amount of water leaking toward the downstream side 5b from the water turbine does not suddenly increase, and the pump turbine 1 can be stably operated for a long period of time in a stable manner. Since the suction pipe of the vertical hydraulic machine of the present invention is constructed as described above, high-pressure air is injected into the runner chamber, the water surface is pushed down into the suction pipe, and the runner is placed in the air. When performing the phase-shifting operation in which the idler is performed, the water surface oscillates greatly and the water scatters and adheres to the blades of the runner, causing rotational imbalance and increasing the rotational vibration of the runner, and the runner blades oscillate Not only does the runner rotational drive torque not suddenly increase due to the collision with the water surface, but also the high-pressure air injected into the runner chamber does not leak downstream from the elbow portion of the suction pipe. Therefore, according to the present invention, it is possible to provide a suction pipe of a vertical hydraulic machine capable of performing a phase adjustment operation stably for a long time.

【図面の簡単な説明】 【図1】本発明による縦軸水力機械の吸出し管の1実施
例の要部を模式的に示す縦断面図。 【図2】無次元係数AおよびBを横軸に、ランナ室の上
カバーの振動の大きさを右側縦軸に、高圧空気の漏れ出
し量を左側縦軸にそれぞれ取るとともに、無次元係数K
の値をK=1.02およびK=1.22とした場合につ
いて、上カバーの振動の大きさの変化を点線で、高圧空
気の漏れ出し量の変化を実線でそれぞれ表した線図。 【図3】無次元係数Kを横軸に、無次元係数Aを縦軸に
取り、かつランナ駆動トルクが急激に増大することがな
い領域をハッチングを付して表した線図。 【図4】無次元係数Kを横軸に、無次元係数Bを縦軸に
取り、かつランナ室内に供給される高圧空気の漏れ出し
量が急激に増大することがない領域をハッチングを付し
て表した線図。 【図5】従来の縦軸水力機械の吸出し管の要部を模式的
に示した縦断面図。 【符号の説明】 1 ポンプ水車 2 ランナ 3 ガイドベーン 4 ランナ室 5 吸出し管 5a 吸出し管のエルボ部 5b 吸出し管の下流部 5c エルボ部内側の最上端部 5d 吸出し管の内側壁面 5e 収納凹部 5f 貫通孔 6 押し下げられた水面 7 ランナ下端 8 ランナと水面との間の空間 9 回転軸
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view schematically showing a main part of an embodiment of a suction pipe of a vertical hydraulic machine according to the present invention. FIG. 2 shows the dimensionless coefficients A and B on the horizontal axis, the magnitude of vibration of the upper cover of the runner chamber on the right vertical axis, and the amount of high-pressure air leaked on the left vertical axis.
Is a diagram in which, when K = 1.02 and K = 1.22, the change in the magnitude of the vibration of the upper cover is indicated by a dotted line, and the change in the leakage amount of high-pressure air is indicated by a solid line. FIG. 3 is a diagram in which a dimensionless coefficient K is plotted on the horizontal axis and a dimensionless coefficient A is plotted on the vertical axis, and a region where runner driving torque does not increase sharply is hatched. FIG. 4 shows the dimensionless coefficient K on the horizontal axis and the dimensionless coefficient B on the vertical axis, and hatches a region where the leakage amount of the high-pressure air supplied into the runner chamber does not suddenly increase. FIG. FIG. 5 is a longitudinal sectional view schematically showing a main part of a suction pipe of a conventional vertical hydraulic machine. [Description of Signs] 1 Pump-turbine 2 Runner 3 Guide vane 4 Runner chamber 5 Suction pipe 5a Elbow section 5b of suction pipe 5b Downstream section 5c of suction pipe Top end 5d inside elbow section 5e Inside wall face of suction pipe 5e Storage recess 5f Penetration Hole 6 Depressed water surface 7 Runner lower end 8 Space between runner and water surface 9 Rotation axis

フロントページの続き (56)参考文献 特開 平2−157481(JP,A) 特開 平2−201070(JP,A) 特開 平3−260375(JP,A) 実開 昭59−111972(JP,U) 特公 昭60−44515(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F03B 11/00 F03B 3/10 Continuation of the front page (56) References JP-A-2-157481 (JP, A) JP-A-2-201070 (JP, A) JP-A-3-260375 (JP, A) , U) JP 60-44515 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) F03B 11/00 F03B 3/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】縦軸回りに回転するランナを収納するラン
ナ室内に高圧空気を注入することにより前記ランナ室内
の水を前記ランナ室の下方に連設されている吸出し管内
に排水し、その水面を前記ランナより下方に押し下げて
前記ランナを空気中において空転させるようにした縦軸
水力機械の吸出し管において、 前記ランナの前記吸出し管に臨む出口部分の直径をDe
(m)、 前記出口部分の外周速度をUe(m/sec)、 押し下げられた水面から前記ランナの下端までの高さを
Z1(m)、前記吸出し管が前記ランナの下方において水平方向に折
れ曲がるエルボ部内の最上端から前記押し下げられた水
面までの高さをZ2(m)、 水面が押し下げられた状態における前記高圧空気の密度
をρa(kg/m3)および前記吸出し管内の水の密度を
ρw(kg/m3)、 重力加速度をg(m/sec2)とするとともに、 無次元係数AをA=Z1/De、無次元係数BをB=Z2/De、 無次元フルード数FrをFr=Ue/(g×D
e)1/2、 無次元係数KをK=(ρa/(ρw−ρa))1/2×Fr、 とそれぞれ定義する時、 A≧0.74K+0.26なる関係を満たすZ1の値
よびB≧1.11K+0.29なる関係を満たすZ2の
値に対応して前記吸出し管の高さ方向の寸法が設定され
ることを特徴とする縦軸水力機械の吸出し管。
(57) [Claim 1] High-pressure air is injected into a runner chamber for accommodating a runner rotating around a vertical axis, so that water in the runner chamber is connected below the runner chamber. Drain in the suction pipe, and the water surface is pushed down below the runner so that the runner idles in the air.In the suction pipe of the vertical hydraulic machine, the diameter of the outlet part of the runner facing the suction pipe is De
(M), the outer peripheral speed of the outlet portion is Ue (m / sec), the height from the depressed water surface to the lower end of the runner is Z1 (m), and the suction pipe is horizontally folded below the runner.
The water pushed down from the top end in the elbow
The height to the surface is Z2 (m), the density of the high-pressure air when the water surface is depressed is ρ a (kg / m 3 ), the density of water in the suction pipe is ρ w (kg / m 3 ), The gravitational acceleration is g (m / sec 2 ), the dimensionless coefficient A is A = Z1 / De, the dimensionless coefficient B is B = Z2 / De, and the dimensionless Froude number Fr is Fr = Ue / (g × D
e) 1/2, the dimensionless coefficient K K = (ρ a / ( ρ w -ρ a)) 1/2 × Fr, and when defining each of Z1 satisfying A ≧ 0.74K + 0.26 the relationship value your
And Z2 satisfying the relationship of B ≧ 1.11K + 0.29
A suction pipe for a vertical axis hydraulic machine, wherein a height dimension of the suction pipe is set according to a value.
JP01397095A 1995-01-31 1995-01-31 Vertical axis hydraulic machine suction pipe Expired - Lifetime JP3494730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01397095A JP3494730B2 (en) 1995-01-31 1995-01-31 Vertical axis hydraulic machine suction pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01397095A JP3494730B2 (en) 1995-01-31 1995-01-31 Vertical axis hydraulic machine suction pipe

Publications (2)

Publication Number Publication Date
JPH08200200A JPH08200200A (en) 1996-08-06
JP3494730B2 true JP3494730B2 (en) 2004-02-09

Family

ID=11848088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01397095A Expired - Lifetime JP3494730B2 (en) 1995-01-31 1995-01-31 Vertical axis hydraulic machine suction pipe

Country Status (1)

Country Link
JP (1) JP3494730B2 (en)

Also Published As

Publication number Publication date
JPH08200200A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
EP1270953B1 (en) Axial-flow type hydraulic machine
JP2009144721A5 (en)
JP3494730B2 (en) Vertical axis hydraulic machine suction pipe
JPH1181288A (en) Hydraulic power generating device
JPH116496A (en) Impeller of sewage pump
JP3494719B2 (en) Hydraulic machinery
JP3495089B2 (en) Hydraulic machinery
JPH0673719A (en) Method for setting capacity of closed type air cushion surge chamber
JP3964535B2 (en) Pump head turbine pipe for high head and high indentation depth
RU2348830C1 (en) Method for increase of hydropower plant capacity and hydropower plant
JP3497574B2 (en) Hydraulic machinery
JPH0478837B2 (en)
JPH10205424A (en) Reversible pump-turbine for high head high forced draft
JP6785490B1 (en) The structure of a water-sealed ventilation pipe in hydroelectric power generation, and a routine maintenance method for a siphon-type water pipe that forcibly discharges air bubbles and air masses in the siphon-type water pipe.
JPH10176648A (en) Pelton turbine device
JP3633946B2 (en) Hydraulic machine
EP3194763B1 (en) Energy generation on a structure subject to swell
JP2003262179A (en) Pump hydraulic turbine and operating method thereof
JPH03260375A (en) Elbow-shaped draft tube of large head hydraulic machine
JPH08284874A (en) Vertical shaft pump and pumping unit
JPH10110665A (en) Water circulating device for generation
JPH08291786A (en) Leakage preventing device at the time of condenser operation
JP2023021882A (en) Small hydroelectric power generation water turbine device
JP3868049B2 (en) Water wheel or pump water wheel
JPH0972271A (en) Water turbine or reversible pump turbine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

EXPY Cancellation because of completion of term