JP3493226B2 - Generator voltage adjustment circuit - Google Patents

Generator voltage adjustment circuit

Info

Publication number
JP3493226B2
JP3493226B2 JP24458794A JP24458794A JP3493226B2 JP 3493226 B2 JP3493226 B2 JP 3493226B2 JP 24458794 A JP24458794 A JP 24458794A JP 24458794 A JP24458794 A JP 24458794A JP 3493226 B2 JP3493226 B2 JP 3493226B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
generator
load
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24458794A
Other languages
Japanese (ja)
Other versions
JPH0889000A (en
Inventor
繁 片瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP24458794A priority Critical patent/JP3493226B2/en
Publication of JPH0889000A publication Critical patent/JPH0889000A/en
Application granted granted Critical
Publication of JP3493226B2 publication Critical patent/JP3493226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野の説明】本発明は発電機の電圧調整
回路に関するものであり、特に小型二輪車等に搭載され
る交流発電機より給電されるバッテリ、ランプ等の交流
負荷電圧を同時に調整する電圧調整回路に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage regulator circuit for a generator, and more particularly to a voltage for simultaneously regulating an AC load voltage of a battery, a lamp or the like fed from an AC generator mounted on a small motorcycle or the like. It relates to the adjustment circuit.

【0002】[0002]

【従来例】図3はこの種の従来回路図で図中1は磁石式
交流発電機等の発電コイル、(a)(b)及び(c)はそ
の出力端子及び中間タップ、Lはランプ等の交流負荷
で、前記発電コイル1の中間タップ(c)と他端(b)
間にスイッチSWを介して接続されている。BATTは
前記発電コイル1の両端子間(a)、(b)の出力によ
り充電されるバッテリ、S1は電機子コイル1の両端子
間(a)(b)又は中間タップ間(c)(b)に並列接
続されたサイリスタ(SCR)で前記交流負荷Lの電圧
又は発電コイル1の電圧が設定値を超えた時に前記交流
発電機1の交流電圧の充電に供しない半サイクルで点弧
する極性に接続されている。COT1は前記交流負荷L
又は発電コイル1の正及び負の両方の電圧を直接検出
し、設定値以上の時に前記サイリスタS1に点弧信号を
与える制御回路、S2は前記バッテリBATTが設定電
圧以下の時に点弧し、前記バッテリBATTに充電電流
が流れる様に接続された第2のサイリスタ、COT2は
前記バッテリBATTの電圧を検出し設定値以下の時に
前記サイリスタS2に点弧信号を与える第2の制御回路
である。
2. Description of the Related Art FIG. 3 is a conventional circuit diagram of this type. In FIG. 3, 1 is a magneto coil of a magnet type AC generator, (a), (b) and (c) are its output terminals and intermediate taps, L is a lamp, etc. With the AC load, the middle tap (c) and the other end (b) of the magneto coil 1
They are connected to each other via a switch SW. BATT is a battery charged by the output of both terminals (a) and (b) of the generator coil 1, and S1 is between both terminals (a) and (b) of the armature coil 1 or between intermediate taps (c) and (b). ) Connected in parallel with the thyristor (SCR), the polarity of which is ignited in a half cycle which is not used for charging the AC voltage of the AC generator 1 when the voltage of the AC load L or the voltage of the magneto coil 1 exceeds a set value. It is connected to the. COT1 is the AC load L
Alternatively, a control circuit for directly detecting both positive and negative voltages of the magneto coil 1 and giving an ignition signal to the thyristor S1 when the voltage is equal to or higher than a set value, S2 is ignited when the battery BATT is equal to or lower than the set voltage, A second thyristor COT2, which is connected so that a charging current flows through the battery BATT, is a second control circuit which detects the voltage of the battery BATT and gives an ignition signal to the thyristor S2 when the voltage is below a set value.

【0003】この回路の動作は、先ずバッテリBATT
電圧が高くなると制御回路COT2によりサイリスタS
2のゲ−ト電流を遮断することによりバッテリ電圧は所
定値に制御される。又スイッチSWが閉じられ交流負荷
Lが作動した場合、該負荷Lの電圧は制御回路COT1
により半波又は全波検出される。該負荷Lに印加する電
圧が高くなると制御回路COT1はサイリスタS1にゲ
−ト電流を流し、タ−ンオンさせ発電コイル1を短絡せ
しめて負荷Lの電圧制御動作を行う。
The operation of this circuit begins with the battery BATT.
When the voltage becomes high, the control circuit COT2 causes the thyristor S
By shutting off the gate current of 2, the battery voltage is controlled to a predetermined value. When the switch SW is closed and the AC load L is activated, the voltage of the load L is controlled by the control circuit COT1.
Half wave or full wave is detected by. When the voltage applied to the load L becomes high, the control circuit COT1 supplies a gate current to the thyristor S1 to turn on the thyristor S1 to short-circuit the generator coil 1 to control the voltage of the load L.

【0004】係る従来回路によればサイリスタS1及び
S2は発電出力の互いに半サイクル時に夫々順方向の極
性に接続されているためバッテリ−の充電時にはサイリ
スタS1は動作をせず従ってバッテリBATTの電圧制
御に何らの影響を与えず、他方、交流負荷電圧制御時に
は該サイリスタS2は不動作状態にあり、交流負荷制御
に影響を与えることなく負荷の電圧効率を向上できる等
安定した電圧制御が可能である。
According to such a conventional circuit, since the thyristors S1 and S2 are connected to the forward polarities during the half cycle of the generated output, the thyristor S1 does not operate when the battery is charged, and therefore the voltage control of the battery BATT is performed. On the other hand, the thyristor S2 is in a non-operating state during AC load voltage control, and stable voltage control is possible such that the voltage efficiency of the load can be improved without affecting AC load control. .

【0005】[0005]

【従来技術の問題点】上記回路では各種の利点がある
が、その一方交流負荷の制御は発電機の余剰電力をサイ
リスタS1により短絡制御するために交流負荷が小容量
の場合或いは負荷変動が大なる場合に発電コイル1とサ
イリスタS1に大きな短絡電流が流れ、これを熱として
消費するため電源効率が悪くなる難点がある。
The above-mentioned circuit has various advantages. On the other hand, in controlling the AC load, since the surplus power of the generator is short-circuited by the thyristor S1, the AC load has a small capacity or a large load fluctuation. In this case, a large short-circuit current flows through the magneto coil 1 and the thyristor S1 and is consumed as heat, which causes a problem that the power supply efficiency is deteriorated.

【0006】[0006]

【発明の目的】本発明は従来回路の利点を損なうことな
く電源効率を向上せしめて発電機の小型化に好適な電圧
調整装置を提供するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a voltage regulator suitable for miniaturization of a generator by improving power supply efficiency without impairing the advantages of conventional circuits.

【0007】[0007]

【課題を解決するための本発明の手段】本発明は発電機
の発電コイルの出力により充電されるバッテリと、前記
バッテリの充電回路に直列に接続されたスイッチング素
子S2と、前記バッテリ電圧を検出して前記スイッチン
グ素子S2を制御する第2の制御回路と、前記発電コイ
ルの両端子間もしくは中間タップ間に寄生ダイオ−ド内
蔵の電界効果トランジスタD0を交流負荷に直列に接続
し、前記電界効果トランジスタD0は、前記発電コイル
の両端子間電圧もしくは交流負荷電圧を検出して制御さ
れる第1の制御回路により制御され、且つ前記第1の制
御回路は、前記発電コイルの正及び負の半波出力の期間
前記電界効果トランジスタのゲ−トバイアス電圧を保持
する保持回路と、前記発電コイルの端子間電圧もしくは
交流負荷電圧が所定電圧を越した時、前記保持回路を開
放し、前記発電コイルの半波出力を制御すると共に、前
記発電コイルの反対極性の半波出力時、電界効果トラン
ジスタD0をゲ−トバイアス状態として寄生ダイオ−ド
を通して交流負荷に給電せしめる開放制御回路を備えた
ことを特徴とする。
SUMMARY OF THE INVENTION The present invention detects a battery charged by an output of a generator coil of a generator, a switching element S2 connected in series to a charging circuit of the battery, and the battery voltage. Then, a second control circuit for controlling the switching element S2 and a field effect transistor D0 having a parasitic diode built-in are connected in series to an AC load between both terminals of the power generation coil or between the intermediate taps, and the field effect is The transistor D0 is controlled by a first control circuit which is controlled by detecting a voltage between both terminals of the power generating coil or an alternating current load voltage, and the first control circuit is a positive and negative half of the power generating coil. A holding circuit that holds the gate bias voltage of the field-effect transistor and a voltage between terminals of the generator coil or an AC load voltage are provided during the period of wave output. When the voltage exceeds the voltage, the holding circuit is opened to control the half-wave output of the generator coil, and when the generator coil has the opposite-polarity half-wave output, the field effect transistor D0 is set to the gate bias state to make a parasitic diode. It is characterized by being provided with an open control circuit for supplying power to an AC load through a battery.

【0008】[0008]

【実施例】図1、 図2は本発明の実施例を示す基本回
路図で従来例と同一符号は同等部分を示す。図1は発電
コイル1に中間端子(c)を設け一方を充電コイルL
1、他方をランプコイルL2とした例を示し、図2では特
に中間端子を設けない発電コイル1の例を示し、他は図
B 1、図2共通である。図1、 図2においてMOSF
ETは寄生ダイオ−ドD0内蔵の電界効果トランジスタ
(以下MOSFET)を示し、ランプ負荷Lと直列回路
を形成して、ランプコイルL2間(図1)或は発電コイ
ル(図2)に接続されている。COT1はMOSFET
の制御回路、REGは電圧調整装置を示し、図中イ〜ニ
は各接続端子を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 are basic circuit diagrams showing an embodiment of the present invention. In FIG. 1, the generator coil 1 is provided with an intermediate terminal (c) , one of which is a charging coil L.
1 shows an example in which the other one is a lamp coil L2, and FIG. 2 shows an example of a magneto coil 1 not particularly provided with an intermediate terminal.
B 1 is common to FIG. 2. 1 and 2, MOSF
ET represents a field effect transistor (hereinafter MOSFET) with a built-in parasitic diode D0, which forms a series circuit with the lamp load L and is connected between the lamp coils L2 (FIG. 1) or the generator coil (FIG. 2). There is. COT1 is a MOSFET
, REG indicates a voltage adjusting device, and A to D in the figure indicate respective connection terminals.

【0009】この回路の基本動作は発電コイル1の上側
(充電コイルL1側)が+の時、サイリスタS2はON状
態になりバッテリBATTを充電する。そしてバッテリ
BATTの充電々圧が規定値以上になると制御回路CO
T2を通しサイリスタS2はOFFし充電を停止する。
以上この動作を繰り返す。(従来回路と同様)一方上記
の状態ではMOSFETはソ−ス・ドレイン間は逆バイ
アス状態であるが、本発明ではこの間後述する制御回路
COT1の動作によりゲ−ト・ソ−ス間をゲ−トバイア
ス状態(MOSFETのインピ−ダンスを低下させて)
として寄生ダイオ−ドD0を介してランプLに給電す
る。この状態を繰返す。
The basic operation of this circuit is that when the upper side of the power generation coil 1 (on the side of the charging coil L1) is +, the thyristor S2 is turned on and the battery BATT is charged. When the charging voltage of the battery BATT exceeds a specified value, the control circuit CO
Through T2, thyristor S2 is turned off and charging is stopped.
The above operation is repeated. On the other hand, the MOSFET is reverse-biased between the source and the drain in the above state (in the same manner as the conventional circuit). Tobias state (reduce the impedance of MOSFET)
As a power supply to the lamp L via the parasitic diode D0. This state is repeated.

【0010】次に発電コイル1の下側が+時(図示と反
対極性)、サイリスタS2はOFF状態になりバッテリ
BATTは充電がなされない。一方MOSFETはラン
プLの電圧が規定以下であればMOSFETはドレイン
・ソ−ス間が順バイアスとなりONし、ランプLに給電
する。そしてランプLの電圧又は発電コイル1の電圧が
規定値以上になると制御回路COT1の動作によりMO
SFETのゲ−トバイアス状態が開放されMOSFET
はOFFする。MOSFETはこの状態(ON−OF
F)を検出電圧に応じて繰返すため、この期間(負の半
サイクル時)パルス状の制御を行いランプ電圧を規定値
に制限する。
Next, when the lower side of the magneto coil 1 is + (the polarity opposite to that shown in the figure), the thyristor S2 is turned off and the battery BATT is not charged. On the other hand, in the MOSFET, if the voltage of the lamp L is less than the specified value, the MOSFET is forward biased between the drain and the source and turned on to supply power to the lamp L. When the voltage of the lamp L or the voltage of the magneto coil 1 exceeds a specified value, the operation of the control circuit COT1 causes the MO
The gate bias state of the SFET is released and the MOSFET
Turns off. MOSFET is in this state (ON-OF
Since F) is repeated according to the detected voltage, pulse-shaped control is performed during this period (in the negative half cycle) to limit the lamp voltage to the specified value.

【0011】図4、 図5、 図6は本発明の実施例に適
用される電圧調整装置REGの結線図で各入出力端子
(イ)〜(ニ)は図1、 図2の端子に対応する。先ず
図B 4において、サイリスタS2の制御回路COT2は
バッテリ電圧検出用基準ツェナ−ダイオ−ドZD1、制
限抵抗R1、逆流阻止用ダイオ−ドD1、ゲ−ト保護用ダ
イオ−ドD2等により形成され、バッテリ電圧に応じて
サイリスタS2のゲ−トをON−OFF制御する周知の
動作を行う。次に制御回路COT1において(1)は交
流負荷電圧又は発電コイルの電圧検出回路で、電圧検出
用ブリッジREC、同平均値電圧検出用コンデンサC
1、検出基準用ツェナ−ダイオ−ドDZ2、検出信号発生
用制御スイッチ素子Tr1、抵抗R2、R3等により形成
され、検出電圧が規定値を 越えるとコンデンサC1−ス
イッチ素子Tr1−ツェナ−ダイオ−ドDZ2の経路に電
流が流れ、スイッチ素子Tr1のONにより電圧検出信
号を発生する。(なお、発生コイル1の電圧検出を行う
場合図中端子ホを端子イ側に接続する。)
FIGS. 4, 5 and 6 are wiring diagrams of a voltage regulator REG applied to an embodiment of the present invention, in which input / output terminals (a) to (d) correspond to the terminals of FIGS. 1 and 2. To do. First, in FIG. B4, the control circuit COT2 of the thyristor S2 is formed by a reference zener diode ZD1 for battery voltage detection, a limiting resistor R1, a reverse current blocking diode D1, a gate protection diode D2 and the like. , The well-known operation of ON-OFF controlling the gate of the thyristor S2 according to the battery voltage is performed. Next, in the control circuit COT1, (1) is a voltage detection circuit for an AC load voltage or a generator coil, which includes a voltage detection bridge REC and an average value voltage detection capacitor C.
1. Zener diode DZ2 for detection reference, control switch element Tr1 for detection signal generation, resistors R2, R3, etc., and capacitor C1-switch element Tr1-zener diode when the detection voltage exceeds a specified value. A current flows in the path of DZ2 and a voltage detection signal is generated when the switch element Tr1 is turned on. (When detecting the voltage of the generating coil 1, the terminal E in the figure is connected to the terminal A side.)

【0012】次に(2)はMOSFETのゲ−トバイア
ス開放制御回路で、C2はゲ−トバイア ス電圧保持用コ
ンデンサで、MOSFETのゲ−トG・ソ−スS間に接
続され、ドレイン(D)側が(+)極性の時ダイオ−ド
D3、抵抗R4より成る充電回路を介して充電される。な
お、この充電回路のダイオ−ドD3及び抵抗R4を省略し
て、電圧検出回路(1)側の抵抗R2及びブリッジダイ
オ−ドRECに置き換えてもよい。DZ3はコンデンサ
C2の充電々圧を規定値に制限するツェナ−ダイオ−
ド、Tr2はMOSFETのゲ−ト(G)、ソ−ス
(S)間(コンデンサC2の両端間)に接続されたゲ−
トバイアス開放用の制御スイッチ素子である。この回路
の動作は、発電コイルの出力によりコンデンサC2は一
旦図示の極性に充電されると、この充電々荷は発電コイ
ルの出力が正の半サイクル及び負の半サイクルの期間保
持され、MOSFETのゲ−ト・ソ−ス間にゲ−トバイ
アス電圧印加状態を保持する。そして、発電コイルの極
性が上側(+)の時(図示極性)は、MOSFETの
ソ−ス・ドレイン間は逆バイアス状態にも係わらずゲ−
ト・バイアス状態で寄生ダイオ−ドD0を通して交流負
荷側(ハ端子)に給電する。又、発電コイルの下側
(+)の時、電圧検出回路(1)の制御スイッチ素子T
r1がONになると制御スイッチ素子Tr2がON(導通
状態)し、コンデンサC2の電荷をTr2を通し放電し、
MOSFETのゲ−ト・ソ−ス間電圧を短絡して、MO
SFETをOFF(遮断)する。
Next, (2) is a MOSFET gate via.
In the open circuit control circuit, C2 is a gate bias voltage holding coil.
A MOSFET is connected between the gate G and the source S of the MOSFET.
When the drain (D) side has (+) polarity, the diode
It is charged through a charging circuit composed of D3 and resistor R4. Na
By the way, omit the diode D3 and the resistor R4 of this charging circuit.
The voltage detection circuit (1) side resistor R2 and bridge die
It may be replaced with the mode REC. DZ3 is a capacitor
Zener diode that limits the charging voltage of C2 to a specified value
And Tr2 are the gate (G) and source of the MOSFET.
A gate connected between (S) (between both ends of the capacitor C2)
It is a control switch element for releasing the bias. This circuit
The operation of the capacitor C2 is
When the battery is charged to the polarity shown in the figure,
Output for a positive half cycle and a negative half cycle.
Held between the gate and source of the MOSFET.
The as-voltage applied state is maintained. And the pole of the generator coil
Sex is upperButWhen (+) (polarity shown in the figure),
Despite the reverse bias condition, the gate between the source and drain is
AC bias through parasitic diode D0
Supply power to the load side (C terminal). Also, under the generator coilBut
When (+), the control switch element T of the voltage detection circuit (1)
When r1 is turned on, the control switch element Tr2 is turned on (conduction
State), and the electric charge of the capacitor C2 is discharged through Tr2,
The gate-source voltage of the MOSFET is short-circuited to
Turn off (cut off) the SFET.

【0013】以下図4の回路動作について、詳述する。
なお、バッテリBATTの制御動作は従来例と同様であ
り省略する。先ず図示の極性(発電コイル上側が(+)
の時)・コイル1より発電される交流電圧の正サイクル
はMOSFETの寄生ダイオ−ドD0流れ、ランプL
に印加される。コイル1の発電電圧の負サイクルの時、
ランプL→ダイオ−ドD3→抵抗R4→ツェナDZ3、コ
ンデンサC2を介して電流が流れ、コンデンサC2を充電
し、ツェナダイオ−ドDZ3の電源電圧が立上がる。同
時にMOSFETゲ−ト・ソ−ス間にツェナダイオ−ド
の電圧が印加されMOSFETはONする。よってラン
プLにコイル1の発電電圧の負サイクルが印加される。
次にコイル1の回転数上昇によりランプLの両端に発生
する電圧が上がってくると 抵抗R2→ブリッジREC
→抵抗R5、コンデンサC1→抵抗R6→ブリッジREC
→抵抗R7を介して電流が流れ、ランプL電圧を検出す
る。コンデンサC1はランプLの印加電圧を平均値的に
検出するため挿入してある。したがってランプLのフリ
ッカ−等が発生しにくい。又、ランプ両端に発生する電
圧によりツェナダイオ−ドトランジスタ→Tr1のベ−
スと電流が流れトランジスタTr1がONする。それに
よりトランジスタTr1のコレクタ→抵抗R8→抵抗R
9、トランジスタTr2のベ−スと電流が流れトランジス
タTr2がONする。トランジスタTr2がONすること
によりMOSFETのゲ−トがショ−トされMOSFE
TがOFFする。ランプ両端に発生する電圧がトランジ
スタTr1のVBE+ツェナダイオ−ドDZ2の電圧以下に
なるとトランジスタTr1、Tr2がOFFしMOSFE
TがONする。以上を繰り返すことにより、ランプL電
圧が一定となるように制御する。またコイル1の電圧の
正サイクルの時、コンデンサC2によりツェナダイオ−
ドDZ3電圧がMOSFETのゲ−トに印加されている
のでMOSFETは逆向きにONしており、電圧降下
(損失)を小さくできる。
The circuit operation of FIG. 4 will be described in detail below.
The control operation of the battery BATT is the same as that of the conventional example and will not be described. First, the polarity shown (upper side of the generator coil is (+)
The positive cycle of the AC voltage generated from the coil 1 flows to the parasitic diode D0 of the MOSFET, and the lamp L
Applied to. When the negative cycle of the generated voltage of coil 1
A current flows through the lamp L → diode D3 → resistor R4 → zener DZ3 and capacitor C2 to charge the capacitor C2, and the power supply voltage of the Zener diode DZ3 rises. At the same time, a Zener diode voltage is applied between the MOSFET gate and source, and the MOSFET is turned on. Therefore, the negative cycle of the generated voltage of the coil 1 is applied to the lamp L.
Next, it is generated at both ends of the lamp L due to the increase in the rotation speed of the coil 1.
When voltage rises, resistance R2 → bridge REC
→ resistor R5, capacitor C1 → resistor R6 → bridge REC
→ A current flows through the resistor R7 and detects the lamp L voltage. The capacitor C1 is inserted to detect the voltage applied to the lamp L as an average value. Therefore, flicker of the lamp L is unlikely to occur. Also, the electricity generated at both ends of the lamp
Zener diode transistor → Tr1 base by pressure
Current flows and the transistor Tr1 turns on. As a result, the collector of the transistor Tr1 → resistor R8 → resistor R
9. The base of the transistor Tr2 and the current flow to turn on the transistor Tr2. When the transistor Tr2 is turned on, the gate of the MOSFET is gated and the MOSFET is turned on.
T turns off. When the voltage generated across the lamp becomes lower than the voltage of VBE of transistor Tr1 + voltage of Zener diode DZ2, transistors Tr1 and Tr2 turn off and MOSFE
T turns on. By repeating the above, the lamp L voltage is controlled to be constant. Also, during the positive cycle of the voltage of the coil 1, the zener diode is connected by the capacitor C2.
Since the voltage DZ3 is applied to the gate of the MOSFET, the MOSFET is turned on in the reverse direction, and the voltage drop (loss) can be reduced.

【0014】次に図5は 図4の回路を一部簡略した実
施例を示すもので制御スイッチ素子Tr2を省略し、制
御スイッチ素子Tr1にこの機能を兼用せしめるように
したものでこれにより同様な効果を得る。
Next, FIG. 5 shows an embodiment in which the circuit of FIG. 4 is partly simplified, in which the control switch element Tr2 is omitted and the control switch element Tr1 also has this function. Get the effect.

【0015】図6は本発明の他の実施例を示し、上記の
実施例と相違する所はMOSFETとしてPチャンネル
型MOSFETを使用した例を示したものでこれによっ
ても上記と同様な動作、効果を奏するものである。
FIG. 6 shows another embodiment of the present invention, which is different from the above embodiment in that a P-channel type MOSFET is used as the MOSFET. Is played.

【0016】[0016]

【発明の効果】以上の説明から明らかなように本発明に
よれば発電コイルの出力に対し、バッテリ電圧制御及び
交流負荷電圧制御を夫々独立して制御しているので相互
に安定した制御が可能であり両負荷に対し余剰電力を短
絡消費することなく電源カット(開放)方式で制御する
ため電源効率が向上する。特に交流負荷に対しバッテリ
に電力を給電しない半サイクル出力の期間PWM(パル
ス巾制御)か可能なために小型交流負荷或は負荷変動に
対し効率の良い電圧制御が可能となり発電機自体の小型
化に貢献できる等実用上の効果は大きい。
As is apparent from the above description, according to the present invention, the battery voltage control and the AC load voltage control are independently controlled with respect to the output of the magneto coil, so that mutual stable control is possible. Therefore, the power supply efficiency is improved because the power is cut off (opened) to both loads without short-circuit consumption of surplus power. In particular, it is possible to perform PWM (pulse width control) during half-cycle output when AC power is not supplied to the battery, so efficient voltage control is possible for small AC loads or load fluctuations, and the generator itself is miniaturized. It has great practical effects such as contributing to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の基本回路FIG. 1 is a basic circuit of an embodiment of the present invention.

【図2】本発明実施例の基本回路FIG. 2 is a basic circuit of an embodiment of the present invention.

【図3】従来回路FIG. 3 Conventional circuit

【図4】本発明の一実施例回路図(結線図)FIG. 4 is a circuit diagram (wiring diagram) of an embodiment of the present invention.

【図5】本発明の一実施例回路図(結線図)FIG. 5 is a circuit diagram (wiring diagram) of an embodiment of the present invention.

【図6】本発明の一実施例回路(結線図)FIG. 6 is a circuit diagram (wiring diagram) of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 発電機の発電コイル S1 MOSFET S2 サイリスタ COT1 制御回路 COT2 制御回路 BATT バッテリ L 交流負荷(ランプ) (1) 電圧検出回路 (2) 開放制御回路 C1、C2 コンデンサ DZ1、DZ2、DZ3 ツェナ−ダイオ−ド Tr1、Tr2 制御スイッチ素子(トランジスタ) D0 寄生ダイオ−ド D3、R4 充電回路用ダイオ−ド、抵抗 1 generator coil S1 MOSFET S2 thyristor COT1 control circuit COT2 control circuit BATT battery L AC load (lamp) (1) Voltage detection circuit (2) Open control circuit C1 and C2 capacitors DZ1, DZ2, DZ3 Zener diode Tr1, Tr2 control switch element (transistor) D0 Parasitic diode D3, R4 diode for charging circuit, resistor

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02P 9/30 H02J 7/14 H02J 7/24 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) H02P 9/30 H02J 7/14 H02J 7/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 発電機の発電コイルの出力により充電さ
れるバッテリと、前記バッテリの充電回路に直列に接続
されたスイッチング素子S2と、前記バッテリ電圧を検
出して前記スイッチング素子S2を制御する第2の制御
回路と、前記発電コイルの両端子間もしくは中間タップ
間に寄生ダイオ−ド内蔵の電界効果トランジスタD0を
交流負荷に直列に接続し、前記電界効果トランジスタD
0は、前記発電コイルの両端子間電圧もしくは交流負荷
電圧を検出して制御される第1の制御回路により制御さ
れ、且つ前記第1の制御回路は、前記発電コイルの正及
び負の半波出力の期間前記電界効果トランジスタのゲ−
トバイアス電圧を保持する保持回路と、前記発電コイル
の端子間電圧もしくは交流負荷電圧が所定電圧を越した
時、前記保持回路を開放し、前記発電コイルの半波出力
を制御すると共に、前記発電コイルの反対極性の半波出
力時、電界効果トランジスタD0をゲ−トバイアス状態
として寄生ダイオ−ドを通して交流負荷に給電せしめる
開放制御回路を備えたことを特徴とする発電機の電圧調
整回路。
1. A battery is charged by the output of a generator coil of a generator.
Connected in series with the battery and the charging circuit of the battery
The switched switching element S2 and the battery voltage
Second control for outputting and controlling the switching element S2
Between the circuit and both terminals of the generator coil or an intermediate tap
In between, a field effect transistor D0 with a built-in parasitic diode
The field effect transistor D connected in series with an AC load
0 is the voltage between both terminals of the generator coil or AC load
It is controlled by the first control circuit which detects and controls the voltage.
And the first control circuit is connected to the generator coil.
And the negative half-wave output period, the field effect transistor gate
Holding circuit for holding a bias voltage and the generator coil
The voltage between terminals or the AC load voltage exceeds the specified voltage.
When the holding circuit is opened, the half-wave output of the generator coil
Control and the half-wave of opposite polarity of the generator coil.
When the power is applied, the field effect transistor D0 is in the gate bias state.
As a power supply to an AC load through a parasitic diode
Voltage control of generator characterized by having an open control circuit
Alignment circuit.
【請求項2】 前記開放制御回路は、電界効果トランジ
スタD0のゲ−ト・ソ−ス間に、制御スイッチ素子Tr
2、及びゲ−トバイアス電圧保持用コンデンサC2が並
列に接続され、発電コイルの端子間電圧もしくは交流負
荷電圧が所定値に達すると前記制御スイッチ素子Tr2
が導通し、前記コンデンサを短絡してゲ−トバイアス電
圧を開放するように構成したことを特徴とする請求項1
記載の発電機の電圧調整回路。
2. The open control circuit comprises a field effect transistor.
Between the gate and source of the star D0, the control switch element Tr
2 and the gate bias voltage holding capacitor C2
Connected to the column, the voltage between the terminals of the generator coil or AC negative
When the load voltage reaches a predetermined value, the control switch element Tr2
Conducts, and the capacitor is short-circuited, and the gate bias voltage is
The pressure is released so as to release the pressure.
The voltage regulator circuit of the described generator.
JP24458794A 1994-09-13 1994-09-13 Generator voltage adjustment circuit Expired - Lifetime JP3493226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24458794A JP3493226B2 (en) 1994-09-13 1994-09-13 Generator voltage adjustment circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24458794A JP3493226B2 (en) 1994-09-13 1994-09-13 Generator voltage adjustment circuit

Publications (2)

Publication Number Publication Date
JPH0889000A JPH0889000A (en) 1996-04-02
JP3493226B2 true JP3493226B2 (en) 2004-02-03

Family

ID=17120945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24458794A Expired - Lifetime JP3493226B2 (en) 1994-09-13 1994-09-13 Generator voltage adjustment circuit

Country Status (1)

Country Link
JP (1) JP3493226B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619890B1 (en) * 2004-07-22 2006-09-19 엘지전자 주식회사 A method and a apparatus of charging constant current at rechargeable battery for mobile phone
JP5282952B2 (en) * 2008-11-05 2013-09-04 新電元工業株式会社 Electric power control device for motorcycles
JP5778019B2 (en) * 2011-12-09 2015-09-16 新電元工業株式会社 Battery charging device and battery charging system
JP5813522B2 (en) * 2012-01-27 2015-11-17 新電元工業株式会社 Battery charging device, battery charging system and battery charging device control method

Also Published As

Publication number Publication date
JPH0889000A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
EP0123030A1 (en) Isolated power supply feedback
JP3871345B2 (en) Power circuit
JP2649950B2 (en) Power supply
JPS61185093A (en) Variable speed controller for universal motor
JP3493226B2 (en) Generator voltage adjustment circuit
EP0662747B1 (en) A DC/DC converter for outputting multiple signals
JPH06284596A (en) Voltage regulator of ac generator for vehicle
JPH10513637A (en) Power supply circuit
JP4107816B2 (en) Generator voltage regulator
JP3517708B2 (en) Power supply using solar cells
JP3302206B2 (en) converter
US20050253557A1 (en) Electric charging system
KR20010096535A (en) Voltage control apparatus for vehicle generator
JP4012646B2 (en) Switching circuit
JP3583866B2 (en) Power supply circuit
JPH08237945A (en) Switching power supply
JP3603172B2 (en) Inverter with output adjustment mechanism
JPS61132046A (en) Atmospheric pressure adjustor for magnet type ac generator
JP2000184613A (en) Multi-output battery charger
JP3064502B2 (en) DC power supply
JPS6237401Y2 (en)
JP3557139B2 (en) Power supply
JPH05688Y2 (en)
RU2177561C2 (en) Single-ended transistorized voltage changer
KR200237623Y1 (en) Apparatus for battery charge

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

EXPY Cancellation because of completion of term