JP3491697B2 - Polystyrene film for capacitors - Google Patents

Polystyrene film for capacitors

Info

Publication number
JP3491697B2
JP3491697B2 JP30411693A JP30411693A JP3491697B2 JP 3491697 B2 JP3491697 B2 JP 3491697B2 JP 30411693 A JP30411693 A JP 30411693A JP 30411693 A JP30411693 A JP 30411693A JP 3491697 B2 JP3491697 B2 JP 3491697B2
Authority
JP
Japan
Prior art keywords
film
polystyrene
poly
thickness
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30411693A
Other languages
Japanese (ja)
Other versions
JPH07156263A (en
Inventor
尚伸 小田
知則 吉永
正 奥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP30411693A priority Critical patent/JP3491697B2/en
Publication of JPH07156263A publication Critical patent/JPH07156263A/en
Application granted granted Critical
Publication of JP3491697B2 publication Critical patent/JP3491697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はコンデンサ用シンジオタ
クチックポリスチレン系フィルム、さらに詳しく言えば
電気特性及び耐熱性が良好で、且つ絶縁破壊電圧に優れ
更に厚み均一性に優れたコンデンサ用ポリスチレン系フ
ィルムに関するものである。 【0002】 【従来の技術】シンジオタクチックポリスチレン系重合
体を主成分とする樹脂組成物を二軸延伸、熱固定した二
軸延伸フィルムは耐熱性、電気特性などに優れ、フィル
ムコンデンサの誘電体に展開されている(特開平2-1438
51、特開平3-124750、特開平5-200858)。 【0003】 【発明が解決しようとする課題】しかし、これら従来の
シンジオタクチックポリスチレン系フィルムにおいては
絶縁破壊電圧が不良またはフィルムの厚みむら増大に基
づく絶縁破壊電圧のばらつきやコンデンサとしたあとの
容量のばらつきを発生することが分かった。絶縁破壊電
圧が不良となった場合、フィルムを厚くする必要が生
じ、その結果コンデンサの体積が大きくなるという問題
があった。また、容量や絶縁破壊電圧のばらつきが大き
い場合、コンデンサの信頼性が得られないという問題が
あることが分かった。本発明は、電気特性及び耐熱性が
良好で、且つ絶縁破壊電圧に優れかつ厚み均一性に優れ
たコンデンサ用ポリスチレン系フィルムを提供すること
を目的としている。 【0004】 【課題を解決するための手段】本発明のポリスチレン系
フィルムはシンジオタクチック構造を有するスチレン系
重合体からなり平均屈折率が1.582 以上1.590 以下であ
ることを特徴とする電気特性及び耐熱性が良好で、且つ
絶縁破壊電圧に優れ更に厚み均一性に優れたコンデンサ
用ポリスチレン系フィルム提供するものである。 【0005】本発明に用いられる立体規則性がシンジオ
タクチック構造であるポリスチレン系重合体は、側鎖で
あるフェニル基又は置換フェニル基が核磁気共鳴法によ
り定量されるタクティシティがダイアッド(構成単位が
二個)で85%以上、ペンタッド(構成単位が5個)で50
%以上のシンジオタクチック構造であることが望まし
い。 【0006】該ポリスチレン系重合体としては、ポリス
チレン、ポリ(p-、m-又はo-メチルスチレン)、ポリ
(2,4-、2,5-、3,4-又は3,5-ジメチルスチレン)、ポリ
(p-ターシャリーブチルスチレン)などのポリ(アルキ
ルスチレン)、ポリ(p-、m-又はo-クロロスチレン)、
ポリ(p-、m-又はo-ブロモスチレン)、ポリ(p-、m-又
はo-フルオロスチレン)、ポリ(o-メチル-p- フルオロ
スチレン)などのポリ(ハロゲン化スチレン)、ポリ
(p-、m-又はo-クロロメチルスチレン)などのポリ(ハ
ロゲン置換アルキルスチレン)、ポリ(p-、m-又はo-メ
トキシスチレン)、ポリ(p-、m-又はo-エトキシスチレ
ン)などのポリ(アルコキシスチレン)、ポリ(p-、m-
又はo-カルボキシメチルスチレン)などのポリ(カルボ
キシアルキルスチレン)ポリ(p-ビニルベンジルプロピ
ルエーテル)などのポリ(アルキルエーテルスチレ
ン)、ポリ(p-トリメチルシリルスチレン)などのポリ
(アルキルシリルスチレン)、さらにはポリ(ビニルベ
ンジルジメトキシホスファイド)などが挙げられる。 【0007】本発明においては、前記ポリスチレン系重
合体のなかで、特にポリスチレンが好適である。また、
本発明で用いるシンジオタクチック構造を有するポリス
チレン系重合体は、必ずしも単一化合物である必要はな
く、シンジオタクティシティが前記範囲内であればアタ
クチック構造やアイソタクチック構造のポリスチレン系
重合体との混合物や、共重合体及びそれらの混合物でも
よい。また本発明に用いるポリスチレン系重合体は、重
量平均分子量が10,000以上、更に好ましくは50,000以上
である。重量平均分子量が10,000未満のものでは、強伸
度特性や耐熱性に優れたフィルムを得ることができな
い。重量平均分子量の上限については、特に限定される
ものではないが、1500,000以上では延伸張力の増加に伴
う破断の発生などが生じるため余り好ましくない。 【0008】本発明に用いられるシンジオタクチックポ
リスチレン系重合体には必要に応じて、公知の酸化防止
剤、帯電防止剤、滑り性を付与するための微粒子等を適
量配合したものを用いることができる。配合量はシンジ
オタクチックポリスチレン系重合体100 重量%に対して
10重量%以下が望ましい。10重量%を越えると延伸時に
破断を起こしやすくなり、生産安定性不良となるので好
ましくない。 【0009】微粒子としては、例えばシリカ、二酸化チ
タン、タルク、カオリナイト、ゼオライト等の金属酸化
物、炭酸カルシウム、リン酸カルシウム、硫酸バリウム
などの金属の塩またはシリコーン樹脂、架橋ポリスチレ
ン等の有機重合体からなる粒子等の添加が例示される。
そして、これら微粒子は、いずれか一種を単独で用いて
もよく、また2種以上を併用してもよいが、使用する微
粒子の平均粒子系は0.01μm以上2.0 μm以下、特に0.
05μm以上1.5 μm以下が好ましく、粒子径のばらつき
度(標準偏差と平均粒子径との比率)が25%以下が好ま
しい。添加量はシンジオタクチックポリスチレン系重合
体100 重量%に対し0.005 重量%以上2.0 重量%以下含
有することが好ましく、特に0.1 重量%以上1.0 重量%
以下が好ましい。 【0010】そして、前記の平均屈折率は、フィルムの
製膜条件調整される。得られたフィルムの平均屈折率が
所定の範囲にはいるならば製造条件は特に限定されない
が、例えば、縦延伸及び横延伸を順に行なう逐次二軸延
伸方法のほか、横・縦・縦延伸法、縦・横・縦延伸法、
縦・縦・横延伸法などの延伸方法を採用することがで
き、要求される強度や寸法安定性などの諸特性に応じて
選択される。また、熱固定処理、縦弛緩処理、横弛緩処
理などを施すことができる。特に実施例に示してある様
な製膜条件が好ましく、本発明を達成することができ
る。また、蒸着層の接着特性等を向上するために、イン
ラインコートやオフラインコートにより接着層を設けた
り、コロナ処理や火炎プラズマ処理等を行うことができ
る。 【0011】本発明のポリスチレン系フィルムの平均屈
折率は1.582 以上、更に好ましくは1.584 以上である。
平均屈折率が1.582 未満では絶縁破壊電圧が不良とな
る。また、平均屈折率の上限は1.590 以下、更に好まし
くは1.589 以下である。平均屈折率が1.590 より大きく
なると厚みむらが大きくなるため、フィルムの破壊電圧
の絶対値の変動が大きくなり且つ容量変化が増大するた
め、コンデンサとしての信頼性が低くなる。 【0012】更に、本発明のポリスチレン系フィルムの
150 ℃における熱収縮率は3%以下、好ましくは2.5 %
以下、更に好ましくは2%以下である。熱収縮率が3%
より大きいとコンデンサーの製造工程で収縮や平面性の
乱れが生じ、製品の不良につながる。ここで、熱収縮率
を下げるために高温にフィルムを長時間さらすと耐摩耗
性が不良になるため、縦延伸処理後に緩和処理を行うこ
とや、熱固定温度及び時間を一定範囲に保つこと、更に
必要に応じて熱固定処理後に横及び/又は縦弛緩処理す
ることが好ましい。ここで、縦延伸後の縦弛緩処理は延
伸温度以上、冷結晶化温度以下で弛緩処理し、熱固定処
理は220℃以上、融点未満の温度で30秒以内、好ましく
は20秒以内で行い、横及び縦方向の弛緩処理は熱固定処
理の最高温度以下で平面性が乱れない程度に弛緩処理す
ることが好ましい。 【0013】実施例 以下に実施例にて本発明を具体的に説明するが、本発明
はこれら実施例のみに限定されるものではない。なお、
フィルムの評価方法を以下に示す。 【0014】(1)平均屈折率 アタゴ光学社製アッベ屈折計4Tを用い、フィルムの屈折
率を長手方向、幅方向および厚み方向について測定し、
それら3方向の屈折率を平均し、平均屈折率を求めた。 【0015】(2)絶縁破壊電圧 JIS C-2318に準じて行なった。10KV直流耐電圧試験機を
用い、23℃,50%RHの雰囲気下に於て、100V/secの昇圧速
度で、フィルムが破壊し短絡したときの電圧を読み取っ
た。 【0016】(3)厚みむら ミクロン計測器社製連続厚さ測定器によりフィルムの幅
方向の中央部を長手方向に沿って測定し、次式により算
出した。 厚みむら=(最大厚さー最小厚さ)/平均厚さ×100 % 1級:厚みむら10%以上 2級:厚みむら8〜10% 3級:厚みむら6〜8% 4級:厚みむら4〜6% 5級:厚みむら4%以下 【0017】(4)150℃における熱収縮率 無張力の状態で150 ℃の雰囲気中30分におけるフィルム
の収縮率を求めた。 【0018】(5)平均粒子径 微粒子を(株)日立製作所製S-510型走査型電子顕微
鏡で観察し、写真撮影したものを拡大して複写し、微粒
子の外形をトレースし任意に200 個の粒子を黒く塗りつ
ぶした。この像をニレコ(株)製ルーゼックス500 型画
像解析装置を用いて、それぞれの粒子の水平方向のフェ
レ径を測定し、その平均値を平均粒子径とした。また、
粒子径のばらつき度は下記の式により算出した。 ばらつき度=(粒子径の標準偏差/平均粒子径)× 100
(%) 【0019】実施例1 滑剤として、平均粒子径0.5 μm、ばらつき度20% 、面
積形状係数80% のシリカをシンジオタクチックポリスチ
レン(重量平均分子量300000)100 重量%に対して0.5
重量%添加したポリマーチップと、滑剤の添加されてい
ないポリマーチップを重量比で1対9の割合で混合した
後、乾燥し、290 ℃で溶融し、800 μmのリップギャッ
プのT ダイから押し出し、50℃の冷却ロールに静電印荷
法により密着・冷却固化し、60μmの無定形シートを得
た。該無定形シートをまず金属ロールにより95℃に予熱
し、表面温度141 ℃のセラミックロールを用い縦方向に
3倍延伸した後冷却し、更に120 ℃の金属ロールを用い
縦方向に1.2 倍延伸した。次いで、テンターでフィルム
を120 ℃に予熱し、横方向に延伸温度120 ℃で2倍延伸
し、更に150 ℃で1.6 倍延伸した後、255 ℃で12秒熱固
定処理した。その後、225 ℃で3%横弛緩処理した。得ら
れたフィルムの厚みは5.3 μmであり、走行性、ハンド
リング性が良好であった。また、アルミニウム薄膜を蒸
着により積層した場合においても平面性は良好でありコ
ンデンサ用フィルムとして好ましいものであると判断さ
れた。得られたフィルムの物性を表1に示す。 【0020】実施例2 縦延伸を141 ℃のセラミックロールにおいて2.4倍延伸
した後一度冷却し、更に120 ℃の金属ロールで1.5 倍延
伸した以外は実施例1と同様に行った。得られたフィル
ムの厚みは5.3 μmであり、アルミニウム薄膜を蒸着に
より積層した場合においても平面性は良好でありコンデ
ンサ用フィルムとして好ましいものであると判断され
た。得られたフィルムの物性を表1に示す。 【0021】比較例1 縦延伸141 ℃のセラミックロールにおいて2.4 倍延伸し
た後冷却せず、更に120 ℃の金属ロールで1.5倍延伸し
た以外は実施例1と同様に行った。得られたフィルムの
厚みは5.3μmであり、アルミニウム薄膜を蒸着により
積層した場合におい てもわずかに平面性にみだれが観
察されがコンデンサ用フィルムとして問題はないもので
あると判断された。得られたフィルムの物性を表1に示
す。 【0022】比較例2 滑剤として、平均粒子径0.5 μm、ばらつき度20% 、面
積形状係数80% のシリカをシンジオタクチックポリスチ
レン(重量平均分子量300000)100 重量%に対して0.5
重量%添加したポリマーチップと、滑剤の添加されてい
ないポリマーチップを重量比で1対9の割合で混合した
後、乾燥し、290 ℃で溶融し、800 μmのリップギャッ
プのT ダイから押し出し、50℃の冷却ロールに静電印荷
法により密着・冷却固化し、48μmの無定形シートを得
た。無定形シートをまず金属ロールにより95℃に予熱
し、表面温度141℃のセラミックロールを用い縦方向に
3倍延伸した。次いで、テンターでフィルムを120 ℃に
予熱し、横方向に延伸温度120 ℃で2倍延伸し、更に15
0 ℃で1.5 倍延伸した後、255 ℃で12秒熱固定処理し
た。その後、225 ℃で3%横弛緩処理した。得られたフィ
ルムの厚みは5.3 μmであった。該フィルムの平面性は
不良でありコンデンサ用フィルムとして好ましいもので
はないと判断された。得られたフィルムの物性を表1に
示す。 【0023】比較例3 熱固定処理を215 ℃で20秒実施した以外は実施例1と同
様に行った。得られたフィルムの厚みは5.3 μmであっ
た。得られたフィルムの物性を表1に示す。得られたフ
ィルムはアルミニウム薄膜を蒸着により積層することに
より平面性にみだれを生じ、コンデンサ用フィルムとし
て好ましいものではないと判断された。 【0024】表より、実施例1、2で得られたフィルム
は絶縁破壊電圧に優れておりまたフィルム厚みの変動が
小さいためコンデンサ用フィルムとして優れたものであ
ることが分かる。 【0025】 【発明の効果】以上、記載のとおり、本発明は前記特許
請求の範囲に記載のとおりの構成を採用することによ
り、絶縁破壊電圧に優れかつ厚み均一性に優れたコンデ
ンサ用ポリスチレン系フィルムが提供され、従って、本
発明の工業的価値は大である。 【0026】 【表1】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a syndiotactic polystyrene film for a capacitor, and more particularly, to a film having good electric characteristics and heat resistance, excellent dielectric breakdown voltage and excellent thickness. The present invention relates to a polystyrene film for capacitors having excellent uniformity. [0002] A biaxially stretched film obtained by biaxially stretching and heat setting a resin composition containing a syndiotactic polystyrene-based polymer as a main component has excellent heat resistance, electrical properties, etc. (Japanese Patent Laid-Open No. 2-1438)
51, JP-A-3-124750, JP-A-5-200858). [0003] However, in these conventional syndiotactic polystyrene-based films, the breakdown voltage is poor or the thickness of the film is increased due to unevenness in the breakdown voltage and the capacitance after the capacitor is used. Was found to occur. When the dielectric breakdown voltage becomes poor, it is necessary to make the film thicker, and as a result, there is a problem that the volume of the capacitor becomes large. In addition, it was found that there was a problem that the reliability of the capacitor could not be obtained when the variation in the capacitance and the breakdown voltage was large. SUMMARY OF THE INVENTION An object of the present invention is to provide a polystyrene film for a capacitor having good electric characteristics and heat resistance, excellent in dielectric breakdown voltage, and excellent in thickness uniformity. [0004] The polystyrene-based film of the present invention comprises a styrene-based polymer having a syndiotactic structure and has an average refractive index of 1.582 or more and 1.590 or less. An object of the present invention is to provide a polystyrene-based film for a capacitor having good properties, excellent dielectric breakdown voltage, and excellent thickness uniformity. The polystyrene-based polymer having a stereoregular syndiotactic structure used in the present invention has a tacticity in which a phenyl group or a substituted phenyl group as a side chain is determined by a nuclear magnetic resonance method. 85% or more for two) and 50 for pentads (five constituent units)
% Or more of the syndiotactic structure. Examples of the polystyrene-based polymer include polystyrene, poly (p-, m- or o-methylstyrene), and poly (2,4-, 2,5-, 3,4- or 3,5-dimethylstyrene). ), Poly (alkylstyrene) such as poly (p-tert-butylstyrene), poly (p-, m- or o-chlorostyrene),
Poly (halogenated styrene) such as poly (p-, m- or o-bromostyrene), poly (p-, m- or o-fluorostyrene), poly (o-methyl-p-fluorostyrene), poly ( Poly (halogen-substituted alkylstyrene) such as p-, m- or o-chloromethylstyrene, poly (p-, m- or o-methoxystyrene), poly (p-, m- or o-ethoxystyrene) etc. Poly (alkoxystyrene), poly (p-, m-
Or poly (carboxyalkylstyrene) such as o-carboxymethylstyrene) poly (alkyletherstyrene) such as poly (p-vinylbenzylpropylether); poly (alkylsilylstyrene) such as poly (p-trimethylsilylstyrene); and Include poly (vinylbenzyldimethoxyphosphide). In the present invention, among the polystyrene polymers, polystyrene is particularly preferred. Also,
The polystyrene polymer having a syndiotactic structure used in the present invention does not necessarily need to be a single compound, and a polystyrene polymer having an atactic structure or an isotactic structure as long as the syndiotacticity is within the above range. Or a copolymer and a mixture thereof. The polystyrene-based polymer used in the present invention has a weight average molecular weight of 10,000 or more, more preferably 50,000 or more. If the weight average molecular weight is less than 10,000, a film having excellent elongation characteristics and heat resistance cannot be obtained. The upper limit of the weight-average molecular weight is not particularly limited. However, if the weight-average molecular weight is 1500,000 or more, breakage occurs due to an increase in stretching tension, and thus it is not preferable. The syndiotactic polystyrene polymer used in the present invention may be, if necessary, a compound in which known antioxidants, antistatic agents, fine particles for imparting lubricity and the like are blended in appropriate amounts. it can. The amount is based on 100% by weight of the syndiotactic polystyrene polymer.
10% by weight or less is desirable. If the content exceeds 10% by weight, breakage is likely to occur during stretching, resulting in poor production stability. The fine particles include, for example, metal oxides such as silica, titanium dioxide, talc, kaolinite, and zeolite; salts of metals such as calcium carbonate, calcium phosphate, and barium sulfate; and silicone resins; and organic polymers such as cross-linked polystyrene. The addition of particles and the like is exemplified.
These fine particles may be used alone or in combination of two or more.The average particle system of the fine particles to be used is 0.01 μm or more and 2.0 μm or less, particularly 0.1 μm or less.
It is preferably from 05 μm to 1.5 μm, and the degree of dispersion of the particle diameter (the ratio between the standard deviation and the average particle diameter) is preferably 25% or less. The added amount is preferably from 0.005% to 2.0% by weight, more preferably from 0.1% to 1.0% by weight, based on 100% by weight of the syndiotactic polystyrene-based polymer.
The following is preferred. The average refractive index is adjusted by adjusting the film forming conditions. The production conditions are not particularly limited as long as the average refractive index of the obtained film is within a predetermined range. For example, in addition to a sequential biaxial stretching method in which longitudinal stretching and transverse stretching are sequentially performed, a horizontal / longitudinal / longitudinal stretching method is used. , Vertical / horizontal / vertical stretching method,
A stretching method such as a longitudinal / longitudinal / lateral stretching method can be employed, and is selected according to various properties such as required strength and dimensional stability. In addition, a heat setting treatment, a vertical relaxation treatment, a horizontal relaxation treatment and the like can be performed. Particularly, the film forming conditions as shown in the examples are preferable, and the present invention can be achieved. In addition, in order to improve the adhesive properties of the deposited layer, an adhesive layer can be provided by in-line coating or off-line coating, or corona treatment, flame plasma treatment, or the like can be performed. The average refractive index of the polystyrene film of the present invention is 1.582 or more, more preferably 1.584 or more.
If the average refractive index is less than 1.582, the dielectric breakdown voltage becomes poor. The upper limit of the average refractive index is 1.590 or less, more preferably 1.589 or less. If the average refractive index is more than 1.590, the thickness unevenness becomes large, the fluctuation of the absolute value of the breakdown voltage of the film becomes large, and the capacitance change increases, so that the reliability as a capacitor is lowered. Further, the polystyrene-based film of the present invention
Heat shrinkage at 150 ° C. is 3% or less, preferably 2.5%
Or less, more preferably 2% or less. 3% heat shrinkage
If it is larger, shrinkage or disorder in flatness occurs in the capacitor manufacturing process, which leads to defective products. Here, if the film is exposed to a high temperature for a long time to lower the heat shrinkage, the abrasion resistance becomes poor, so that the relaxation treatment is performed after the longitudinal stretching treatment, and the heat setting temperature and time are kept within a certain range, Further, if necessary, it is preferable to perform a horizontal and / or vertical relaxation treatment after the heat setting treatment. Here, the longitudinal relaxation treatment after longitudinal stretching is at or above the stretching temperature, the relaxation treatment is performed at a temperature lower than the cold crystallization temperature, and the heat setting treatment is performed at a temperature of 220 ° C. or more and less than the melting point within 30 seconds, preferably within 20 seconds, The relaxation treatment in the horizontal and vertical directions is preferably performed at a temperature not higher than the maximum temperature of the heat setting treatment so that the flatness is not disturbed. EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to only these examples. In addition,
The evaluation method of the film is shown below. (1) Average refractive index The refractive index of the film was measured in the longitudinal direction, width direction and thickness direction using an Abbe refractometer 4T manufactured by Atago Optical Co., Ltd.
The refractive indices in these three directions were averaged to obtain an average refractive index. (2) Dielectric breakdown voltage This was performed according to JIS C-2318. Using a 10 KV DC withstanding voltage tester, the voltage at the time when the film was broken and short-circuited was read at an increase rate of 100 V / sec in an atmosphere of 23 ° C. and 50% RH. (3) Uneven thickness The center of the film in the width direction was measured along the longitudinal direction using a continuous thickness measuring instrument manufactured by Micron Keisoku Co., Ltd., and calculated by the following equation. Thickness unevenness = (maximum thickness-minimum thickness) / average thickness x 100% First grade: Uneven thickness 10% or more Second grade: Thickness irregularity 8-10% Third grade: Thickness irregularity 6-8% Fourth grade: Thickness irregularity 4 to 6% Class 5: Uneven thickness of 4% or less (4) Thermal shrinkage at 150 ° C. The shrinkage of the film was measured for 30 minutes in an atmosphere of 150 ° C. under no tension. (5) Observation of fine particles having an average particle diameter with a scanning electron microscope (S-510, manufactured by Hitachi, Ltd.) Particles were painted black. This image was measured for the horizontal Feret diameter of each particle using a Luzex 500 image analyzer manufactured by Nireco Co., Ltd., and the average value was defined as the average particle diameter. Also,
The degree of variation in particle diameter was calculated by the following equation. Variation = (standard deviation of particle diameter / average particle diameter) x 100
Example 1 As a lubricant, silica having an average particle diameter of 0.5 μm, a degree of dispersion of 20%, and an area shape coefficient of 80% was added to 100% by weight of syndiotactic polystyrene (weight average molecular weight: 300,000) by 0.5%.
After mixing the polymer chip added by weight% and the polymer chip without added lubricant at a ratio of 1: 9 by weight, dried, melted at 290 ° C., extruded from a T-die having a lip gap of 800 μm, It was closely adhered to a cooling roll at 50 ° C. by an electrostatic loading method and solidified by cooling to obtain a 60 μm amorphous sheet. The amorphous sheet was first preheated to 95 ° C. with a metal roll, stretched three times in the machine direction using a ceramic roll having a surface temperature of 141 ° C., cooled, and further stretched 1.2 times in the machine direction using a metal roll at 120 ° C. . Next, the film was preheated to 120 ° C. by a tenter, stretched twice in the transverse direction at a stretching temperature of 120 ° C., further stretched 1.6 times at 150 ° C., and heat-set at 255 ° C. for 12 seconds. Then, it was subjected to a 3% transverse relaxation treatment at 225 ° C. The thickness of the obtained film was 5.3 μm, and the running property and the handling property were good. In addition, even when an aluminum thin film was laminated by vapor deposition, the flatness was good, and it was determined that this was preferable as a film for a capacitor. Table 1 shows the physical properties of the obtained film. Example 2 The procedure of Example 1 was repeated except that the film was stretched 2.4 times in a ceramic roll at 141 ° C., cooled once, and then stretched 1.5 times with a metal roll at 120 ° C. The thickness of the obtained film was 5.3 μm, and the flatness was good even when an aluminum thin film was laminated by vapor deposition, and it was judged that the film was preferable as a film for capacitors. Table 1 shows the physical properties of the obtained film. Comparative Example 1 The procedure of Example 1 was repeated, except that the film was stretched 2.4 times in a longitudinally stretched 141 ° C. ceramic roll, not cooled, and further stretched 1.5 times with a 120 ° C. metal roll. The thickness of the obtained film was 5.3 μm, and even when an aluminum thin film was laminated by vapor deposition, slight unevenness was observed in the flatness, but it was judged that there was no problem as a film for a capacitor. Table 1 shows the physical properties of the obtained film. Comparative Example 2 As a lubricant, silica having an average particle diameter of 0.5 μm, a degree of dispersion of 20%, and an area shape factor of 80% was added in an amount of 0.5 to 100% by weight of syndiotactic polystyrene (weight average molecular weight: 300,000).
After mixing the polymer chip added by weight% and the polymer chip without added lubricant at a ratio of 1: 9 by weight, dried, melted at 290 ° C., extruded from a T-die having a lip gap of 800 μm, It was adhered to a cooling roll at 50 ° C. by an electrostatic printing method and cooled and solidified to obtain a 48 μm amorphous sheet. The amorphous sheet was first preheated to 95 ° C. by a metal roll, and stretched three times in the machine direction using a ceramic roll having a surface temperature of 141 ° C. Next, the film is preheated to 120 ° C. with a tenter, stretched twice in the transverse direction at a stretching temperature of 120 ° C., and further stretched for 15 minutes.
After stretching 1.5 times at 0 ° C., it was heat-set at 255 ° C. for 12 seconds. Then, it was subjected to a 3% transverse relaxation treatment at 225 ° C. The thickness of the obtained film was 5.3 μm. The flatness of the film was poor, and it was judged that it was not preferable as a film for a capacitor. Table 1 shows the physical properties of the obtained film. Comparative Example 3 The procedure of Example 1 was repeated except that the heat-setting treatment was performed at 215 ° C. for 20 seconds. The thickness of the obtained film was 5.3 μm. Table 1 shows the physical properties of the obtained film. The resulting film was degraded in flatness by laminating an aluminum thin film by vapor deposition, and was judged to be not preferable as a capacitor film. From the table, it can be seen that the films obtained in Examples 1 and 2 are excellent in dielectric breakdown voltage and have a small variation in film thickness, so that they are excellent as films for capacitors. As described above, according to the present invention, a polystyrene-based capacitor for a capacitor having an excellent dielectric breakdown voltage and an excellent thickness uniformity is obtained by adopting the constitution as described in the claims. A film is provided, and thus the industrial value of the present invention is great. [Table 1]

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 55/12 C08J 5/18 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B29C 55/12 C08J 5/18

Claims (1)

(57)【特許請求の範囲】 【請求項1】 シンジオタクチック構造を有するスチレ
ン系重合体からなる平均屈折率が1.582 以上1.590 以下
であり、且つ150 ℃における収縮率が3%以下であるこ
とを特徴とするコンデンサ用ポリスチレン系フィルム。
(57) [Claims] 1. The average refractive index of a styrene polymer having a syndiotactic structure is 1.582 or more and 1.590 or less, and the shrinkage at 150 ° C. is 3% or less. A polystyrene film for capacitors characterized by the following.
JP30411693A 1993-12-03 1993-12-03 Polystyrene film for capacitors Expired - Fee Related JP3491697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30411693A JP3491697B2 (en) 1993-12-03 1993-12-03 Polystyrene film for capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30411693A JP3491697B2 (en) 1993-12-03 1993-12-03 Polystyrene film for capacitors

Publications (2)

Publication Number Publication Date
JPH07156263A JPH07156263A (en) 1995-06-20
JP3491697B2 true JP3491697B2 (en) 2004-01-26

Family

ID=17929227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30411693A Expired - Fee Related JP3491697B2 (en) 1993-12-03 1993-12-03 Polystyrene film for capacitors

Country Status (1)

Country Link
JP (1) JP3491697B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE551705T1 (en) 2007-06-21 2012-04-15 Teijin Ltd INSULATING FILM
JP5801532B2 (en) 2009-11-30 2015-10-28 帝人株式会社 High insulation film
US9617407B2 (en) 2011-04-26 2017-04-11 Teijin Limited Highly insulating film
JP5629235B2 (en) * 2011-04-26 2014-11-19 帝人株式会社 High insulation film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3309933B2 (en) 1993-12-01 2002-07-29 東洋紡績株式会社 Polystyrene film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3309933B2 (en) 1993-12-01 2002-07-29 東洋紡績株式会社 Polystyrene film

Also Published As

Publication number Publication date
JPH07156263A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
KR101797785B1 (en) High-insulating film
JPH10119127A (en) Biaxially oriented polypropylene film and condenser
US6319587B1 (en) Biaxially-oriented polyester film
JP5771068B2 (en) High insulation film
JP3309933B2 (en) Polystyrene film
JP3567523B2 (en) Polystyrene film for capacitors
JP3270135B2 (en) Syndiotactic polystyrene biaxially stretched film for condenser
JP3491697B2 (en) Polystyrene film for capacitors
EP2712883B1 (en) High-insulating film
JP2002154187A (en) Polypropylene film and film capacitor
JP3567516B2 (en) Polystyrene film
US4886705A (en) Polyphenylene sulfide film
JP3271374B2 (en) Polystyrene film
JPH07117187A (en) Polystyrene laminated film
JP3692758B2 (en) Inline coating method
JP3317411B2 (en) Polystyrene film
JP3622863B2 (en) Polystyrene-based biaxially stretched film
JPH0848791A (en) Polystyrene film and capacitor made thereof
JPH0839741A (en) Laminated film and capacitor using it
JPH11129327A (en) Biaxially drawn film
JPH11302408A (en) Biaxially oriented polyester film
JP2864602B2 (en) Thermoplastic resin film
JP2570449B2 (en) Method for producing biaxially oriented thermoplastic resin film
JPH0848008A (en) Laminated film and condenser using the same
JPH09131844A (en) Biaxially oriented polyester film for capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees