JP3491042B2 - How to measure liquid diffusion coefficient - Google Patents

How to measure liquid diffusion coefficient

Info

Publication number
JP3491042B2
JP3491042B2 JP2001298343A JP2001298343A JP3491042B2 JP 3491042 B2 JP3491042 B2 JP 3491042B2 JP 2001298343 A JP2001298343 A JP 2001298343A JP 2001298343 A JP2001298343 A JP 2001298343A JP 3491042 B2 JP3491042 B2 JP 3491042B2
Authority
JP
Japan
Prior art keywords
solution
diffusion
diffusion coefficient
concentration
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001298343A
Other languages
Japanese (ja)
Other versions
JP2003106974A (en
Inventor
徹 宇治原
航三 藤原
徳隆 宇佐美
一雄 中嶋
Original Assignee
東北大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北大学長 filed Critical 東北大学長
Priority to JP2001298343A priority Critical patent/JP3491042B2/en
Publication of JP2003106974A publication Critical patent/JP2003106974A/en
Application granted granted Critical
Publication of JP3491042B2 publication Critical patent/JP3491042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、新規なアルゴリズ
ムに基づく液体拡散係数の測定方法に関するものであ
る。 【0002】 【従来の技術】金属・半導体からタンパク質までの多く
の材料が、液相からの結晶成長により作製されている。
良質な結晶を作製するためには、液相内の濃度分布制御
が重要であり、それには数値計算による成長条件の最適
化が不可欠となる。数値計算において拡散係数は極めて
重要な物性値である。 【0003】しかし、従来の拡散係数測定法は、拡散対
実験により形成される溶液濃度分布をフィックの第二法
則に基づいて解析するものである。しかし、この手法で
は十分な測定精度が得られない。これは、溶液中の濃度
分布の高精度測定が技術的だけではなく、原理的にも非
常に困難であるからで、現状ではこの困難を打破する手
立てがなく、今後の技術発展を見越しても従来法では今
以上の精度向上は望めない。 【0004】 【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたもので、その目的とするところは、液相か
らの結晶成長を実施している産業全般、特に金属・半導
体産業、タンパク質結晶の作製を行う医薬産業におい
て、結晶作製の基礎物性値取得のために必要不可欠なツ
ールとして、液体拡散係数を容易に高精度に取得できる
測定方法を提供するものである。 【0005】 【課題を解決するための手段】この目的を達成するため
に、本発明は次の構成を備えている。 【0006】 【0007】 【0008】 (1)2つの溶液溜を毛細管で接続した
拡散セルを用意し、第一、第二の溶液溜にそれぞれ異な
る濃度の溶液を入れ、かつ、第一の溶液溜に溶液濃度を
一定に保持するための溶質補給用結晶を入れて、各溶液
溜の成分を毛細管を通じて相互に拡散させる工程と、拡
散により生じた溶液重量変化及び溶液濃度変化を測定し
て、これらの測定値から拡散流束Jと濃度勾配dc/d
xを求める工程と、求めた拡散流束Jと濃度勾配dc/
dxとから、フィックの第一法則に基づいて拡散係数D
を求めることを特徴とする液体拡散係数の測定方法。 【0009】要約すると、本発明は、これまで困難であ
った拡散実験中における溶液濃度その場測定法を用いる
ことで、溶液中濃度の時間変化測定を行ない、また新規
な拡散係数導出のアルゴリズムを用いて、液体拡散係数
の測定を可能にするものである。そして、本発明によれ
ば従来法にはない次の構成的特徴をもつ。 【0010】・拡散流束を測定する。 ・フィックの第一法則に基づいて解析を行う。 そして、本発明方法により次の効果を奏する。 ・本手法では測定精度は、その場測定技術に依存してい
る。これは従来の濃度分布測定法の精度向上と比較して
極めて容易である。 ・相互拡散係数、固有拡散係数、自己拡散係数を同時に
取得することが可能である。 ・その場測定法、拡散セルの材質などは、測定する対象
の材料によって、自由にデザイン可能である。 【0011】 【発明の実施の形態】本発明では、特殊な拡散セルによ
り実験を行う。拡散セルは2つの溶液溜め(リザーバ
ー)部分と、それをつなぐ毛細管(キャピラリ)部分か
らなる。図1(a)に示すように、第一の溶液溜10に
溶液と溶質補給用結晶Sを入れると、(b)に示すよう
に毛細管20を通じて毛細管20を通じて溶液成分が拡
散する。それにより、それぞれの溶液溜10,30の溶
液濃度と重量が変化する。第二の溶液溜30の溶液濃度
の重量変化及び濃度変化を測定することで流束Jと濃度
勾配dc/dxを求め、これらの値から下式に示すフィ
ックの第一法則に基づいて拡散係数Dを求める。(c)
は両方の溶液が同じ濃度となり、拡散が終了した状態を
示す。なお、図中C1は第一の溶液溜内の溶液の濃度、
C2は第二の溶液溜内の濃度、tは時間を示す。 【0012】 【式1】 【0013】なお、ここでは、各溶液溜10,30内の
溶液は均質、毛細管20内の拡散は定常であるとの仮定
に基づく。また、図中のセルやその場測定技術は、測定
する材料に従って自由に設計可能であり、本発明はこれ
らの測定法、セル材質に依存しない。 【0014】本発明では流束を求めているが、これは本
発明特有のものである。また、拡散係数の測定精度も、
従来法と同等又はそれ以上のものが得られている。ま
た、本発明による測定値の精度はその場測定技術だけに
依存するため、将来その場測定技術さえ改善されればさ
らに精度向上が見込める。この点が、従来法に対する最
大の優位性である。 【0015】また、図4に示すように、溶質補給用結晶
Sを入れることなく拡散係数を測定することができる。
すなわち、第一の溶液溜10と第二の溶液溜30とのそ
れぞれに拡散係数を測定する溶液を入れる。この時、そ
れぞれの溶液溜には異なる濃度の溶液とする。すると、
(b)に示すように毛細管20を通じて溶液成分が拡散
する。それにより、それぞれの溶液溜10,30の溶液
濃度と重量が変化する。第二の溶液溜30の溶液濃度の
重量変化及び濃度変化を測定することで流束Jと濃度勾
配dc/dxを求め、これらの値から上式に示すフィッ
クの第一法則に基づいて拡散係数Dを求める。 【0016】 【実施例】図1の装置を用いてGaZnの拡散係数測定
を行った。その場測定法には蛍光X線分析による方法
を、拡散セルにはグラファイト製の専用セルを用いてい
る。 【0017】その結果を図2に示す。(a)は拡散流束
J、(b)は毛細管内の濃度勾配dc/dxの実測例を
示す。横軸が測定時間、縦軸がそれぞれの値を示してい
る。流束を濃度勾配の値で割ることで、拡散係数Dが求
められる。 【0018】実施例において測定した拡散係数の精度確
認をするために、溶液溜めの濃度変化を数値計算により
求め、実験値との比較を行った。これを図3に示す。図
において求めた拡散係数の値を用いた計算結果が、実験
値とよい一致を示していることが分かる。 【0019】また、図4の装置を用いた場合にも同様に
実験値とよい一致が見られた。 【0020】なお、本発明者は、GaZnに限らず、G
aGe二元溶液の相互拡散係数、固有拡散係数、自己拡
散係数を測定し、本発明の有用性が確認された。 【0021】 【発明の効果】以上のように本発明によれば、液相から
の結晶成長を実施している産業全般、特に金属・半導体
産業、タンパク質結晶の作製を行う医薬産業において、
結晶作製の基礎物性値取得のために必要不可欠なツール
として、液体拡散係数を容易に高精度に取得できる測定
方法を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a liquid diffusion coefficient based on a novel algorithm. [0002] Many materials, from metals and semiconductors to proteins, are produced by crystal growth from a liquid phase.
In order to produce high-quality crystals, it is important to control the concentration distribution in the liquid phase, and it is essential to optimize the growth conditions by numerical calculations. In numerical calculations, the diffusion coefficient is an extremely important physical property value. However, the conventional diffusion coefficient measurement method analyzes a solution concentration distribution formed by a diffusion pair experiment based on Fick's second law. However, this method does not provide sufficient measurement accuracy. This is because high-precision measurement of the concentration distribution in a solution is not only technical, but also very difficult in principle, so there is no way to overcome this difficulty at present and even in anticipation of future technological developments No further improvement in accuracy can be expected with the conventional method. SUMMARY OF THE INVENTION [0004] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a general industry for performing crystal growth from a liquid phase, particularly, a metal / semiconductor. It is an object of the present invention to provide a measurement method capable of easily and accurately obtaining a liquid diffusion coefficient as an indispensable tool for obtaining basic physical property values for crystal production in the industry and the pharmaceutical industry for producing protein crystals. [0005] In order to achieve the above object, the present invention has the following arrangement. [0008] (1) A diffusion cell in which two solution reservoirs are connected by a capillary tube is prepared, and solutions having different concentrations are respectively placed in first and second solution reservoirs, and a first solution is supplied. A step of putting a solute replenishing crystal for keeping the solution concentration constant in the reservoir, and allowing the components of each solution reservoir to mutually diffuse through a capillary tube, and measuring a change in solution weight and a change in solution concentration caused by the diffusion, From these measurements, the diffusion flux J and the concentration gradient dc / d
x, the obtained diffusion flux J and the concentration gradient dc /
dx, the diffusion coefficient D based on Fick's first law
A method for measuring a liquid diffusion coefficient, wherein In summary, the present invention measures the time change of the concentration in a solution by using an in-situ method for measuring the concentration of a solution during a diffusion experiment, which has been difficult so far, and provides a new algorithm for deriving a diffusion coefficient. Used to measure the liquid diffusion coefficient. According to the present invention, there are the following structural features not found in the conventional method. Measuring the diffusion flux;・ Perform analysis based on Fick's first law. The following effects are obtained by the method of the present invention. -In this method, the measurement accuracy depends on the in-situ measurement technology. This is extremely easy compared with the improvement of the accuracy of the conventional concentration distribution measuring method. -It is possible to acquire the mutual diffusion coefficient, the intrinsic diffusion coefficient, and the self diffusion coefficient at the same time. -The in-situ measurement method and the material of the diffusion cell can be freely designed depending on the material to be measured. DETAILED DESCRIPTION OF THE INVENTION In the present invention, an experiment is performed using a special diffusion cell. The diffusion cell is composed of two solution reservoirs (reservoirs) and a capillary section connecting them. When the solution and the solute replenishing crystal S are put into the first solution reservoir 10 as shown in FIG. 1A, the solution component is diffused through the capillary tube 20 through the capillary tube 20 as shown in FIG. 1B. Thereby, the solution concentration and the weight of the respective solution reservoirs 10 and 30 change. The flux J and the concentration gradient dc / dx are obtained by measuring the weight change and the concentration change of the solution concentration of the second solution reservoir 30, and the diffusion coefficient is calculated from these values based on Fick's first law shown in the following equation. Find D. (C)
Indicates that both solutions have the same concentration and diffusion has been completed. In the figure, C1 is the concentration of the solution in the first solution reservoir,
C2 indicates the concentration in the second solution reservoir, and t indicates time. [Equation 1] Here, it is assumed that the solution in each of the solution reservoirs 10 and 30 is homogeneous, and that the diffusion in the capillary tube 20 is steady. Further, the cell and the in-situ measurement technique in the figure can be freely designed according to the material to be measured, and the present invention does not depend on these measurement methods and cell materials. The present invention seeks the flux, which is unique to the present invention. In addition, the measurement accuracy of the diffusion coefficient
Equivalent or better than conventional methods have been obtained. Further, since the accuracy of the measured value according to the present invention depends only on the in-situ measurement technique, further improvement in the in-situ measurement technique can be expected in the future. This is the greatest advantage over the conventional method. Further, as shown in FIG. 4, the diffusion coefficient can be measured without adding the solute replenishing crystal S.
That is, the solution whose diffusion coefficient is to be measured is put into each of the first solution reservoir 10 and the second solution reservoir 30. At this time, solutions having different concentrations are stored in the respective solution reservoirs. Then
As shown in (b), the solution component diffuses through the capillary tube 20. Thereby, the solution concentration and the weight of the respective solution reservoirs 10 and 30 change. The flux J and the concentration gradient dc / dx are obtained by measuring the weight change and the concentration change of the solution concentration in the second solution reservoir 30, and the diffusion coefficient is calculated from these values based on Fick's first law shown in the above equation. Find D. EXAMPLE The diffusion coefficient of GaZn was measured using the apparatus shown in FIG. For the in-situ measurement method, a method by X-ray fluorescence analysis is used, and for the diffusion cell, a dedicated cell made of graphite is used. FIG. 2 shows the results. (A) shows a diffusion flux J, and (b) shows an actual measurement example of a concentration gradient dc / dx in a capillary tube. The horizontal axis indicates the measurement time, and the vertical axis indicates the respective values. Diffusion coefficient D is determined by dividing the flux by the value of the concentration gradient. In order to confirm the accuracy of the diffusion coefficient measured in the examples, the change in the concentration of the solution reservoir was obtained by numerical calculation and compared with the experimental value. This is shown in FIG. It can be seen that the calculation results using the diffusion coefficient values obtained in the figure show good agreement with the experimental values. Also, when the apparatus shown in FIG. 4 was used, good agreement with the experimental values was similarly observed. Note that the present inventors are not limited to GaZn,
The mutual diffusion coefficient, intrinsic diffusion coefficient, and self-diffusion coefficient of the binary aGe solution were measured, and the usefulness of the present invention was confirmed. As described above, according to the present invention, in all industries which carry out crystal growth from a liquid phase, particularly in the metal / semiconductor industry and the pharmaceutical industry for producing protein crystals,
As a tool indispensable for obtaining basic physical property values of crystal production, it is possible to provide a measurement method capable of easily and accurately obtaining a liquid diffusion coefficient.

【図面の簡単な説明】 【図1】拡散係数測定の概略説明図で、(a)は実験当
初の状態、(b)は拡散途中の状態、(c)は両方の溶
液が同じ濃度となり、拡散が終了した状態を示す。 【図2】GaZnの拡散係数測定を行った実施例の結果
を示し、(a)は拡散流束の時間経過を示す図、(b)
は毛細管内の濃度勾配の実測例を示す図。 【図3】溶液溜めの濃度変化を数値計算により求め、実
験値との比較を行った図。 【図4】図1とは別の拡散係数測定の概略説明図で、
(a)は実験当初の状態、(b)は拡散途中の状態、
(c)は両方の溶液が同じ濃度となり、拡散が終了した
状態を示す。 【符号の説明】 10...第一の溶液溜 20...毛細管 30...第二の溶液溜 S....溶質補給用結晶
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of a diffusion coefficient measurement, wherein (a) is a state at the beginning of an experiment, (b) is a state in the middle of diffusion, and (c) is the same concentration in both solutions. This shows a state where the diffusion has been completed. FIGS. 2A and 2B show the results of an example in which the diffusion coefficient of GaZn was measured. FIG.
FIG. 4 is a view showing an example of actual measurement of a concentration gradient in a capillary. FIG. 3 is a diagram in which a change in the concentration of a solution reservoir is obtained by numerical calculation and is compared with an experimental value. FIG. 4 is a schematic explanatory view of a diffusion coefficient measurement different from FIG. 1;
(A) is the state at the beginning of the experiment, (b) is the state during diffusion,
(C) shows a state in which both solutions have the same concentration and the diffusion has been completed. [Description of Signs] . . First solution reservoir 20. . . Capillary 30. . . Second solution reservoir S. . . . Crystal for solute supply

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−121130(JP,A) 特開 昭61−226637(JP,A) 理化学辞典,日本,岩波書店,1991年 1月10日,第4版,1077頁 (58)調査した分野(Int.Cl.7,DB名) G01N 13/00 G01N 9/32 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-55-121130 (JP, A) JP-A-61-226637 (JP, A) Dictionary of Physical and Chemical Sciences, Iwanami Shoten, Japan, January 10, 1991 4th edition, p. 1077 (58) Fields investigated (Int. Cl. 7 , DB name) G01N 13/00 G01N 9/32

Claims (1)

(57)【特許請求の範囲】 【請求項1】 2つの溶液溜を毛細管で接続した拡散セ
ルを用意し、第一、第二の溶液溜にそれぞれ異なる濃度
の溶液を入れ、かつ、第一の溶液溜に溶液濃度を一定に
保持するための溶質補給用結晶を入れて、各溶液溜の成
分を毛細管を通じて相互に拡散させる工程と、拡散によ
り生じた溶液重量変化及び溶液濃度変化を測定して、こ
れらの測定値から拡散流束Jと濃度勾配dc/dxを求
める工程と、求めた拡散流束Jと濃度勾配dc/dxと
から、フィックの第一法則に基づいて拡散係数Dを求め
ることを特徴とする液体拡散係数の測定方法。
(57) [Claims 1] A diffusion cell in which two solution reservoirs are connected by a capillary is prepared, and solutions having different concentrations are respectively put into first and second solution reservoirs, and A step of putting a solute replenishing crystal for keeping the solution concentration constant in the solution reservoir and diffusing the components of each solution reservoir through a capillary tube, and measuring the change in the solution weight and the solution concentration caused by the diffusion. A step of obtaining a diffusion flux J and a concentration gradient dc / dx from these measured values, and a diffusion coefficient D based on Fick's first law from the obtained diffusion flux J and concentration gradient dc / dx. A method for measuring a liquid diffusion coefficient, characterized in that:
JP2001298343A 2001-09-27 2001-09-27 How to measure liquid diffusion coefficient Expired - Lifetime JP3491042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298343A JP3491042B2 (en) 2001-09-27 2001-09-27 How to measure liquid diffusion coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298343A JP3491042B2 (en) 2001-09-27 2001-09-27 How to measure liquid diffusion coefficient

Publications (2)

Publication Number Publication Date
JP2003106974A JP2003106974A (en) 2003-04-09
JP3491042B2 true JP3491042B2 (en) 2004-01-26

Family

ID=19119256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298343A Expired - Lifetime JP3491042B2 (en) 2001-09-27 2001-09-27 How to measure liquid diffusion coefficient

Country Status (1)

Country Link
JP (1) JP3491042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237075A (en) * 2013-06-13 2014-12-24 中国石油天然气集团公司 Method for evaluating diffusion and permeation properties of dissolved carbon dioxide in anticorrosion coating

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991864B1 (en) * 2006-02-28 2018-03-21 F.Hoffmann-La Roche Ag Method for assessing absorption properties of low solubility compounds
ES2351822B1 (en) * 2007-01-16 2011-12-01 Mondragon Goi Eskola Politeknikoa S.Co "A MOLECULAR DIFFUSION DEVICE TO DETERMINE THE MOLECULAR DIFFUSION COEFFICIENT OF LIQUID MIXES AT ATMOSPHERIC PRESSURE AND CONSTANT TEMPERATURE AND A METHOD OF OBTAINING THE MOLECULAR DIFFUSION COEFFICIENT"
JP6243287B2 (en) * 2014-04-24 2017-12-06 日本電信電話株式会社 Diffusion coefficient measuring method and diffusion coefficient measuring apparatus
CN104316395B (en) * 2014-10-30 2016-09-14 凯尔测控试验系统(天津)有限公司 A kind of same shaft assignment regulation platform of mechanics machine
CN104502236B (en) * 2014-12-15 2017-03-22 中国石油大学(华东) Method for measuring diffusion coefficient and equilibrium concentration of CO2 in process of diffusion from water phase to oil phase
CN104502237B (en) * 2014-12-15 2017-01-11 中国石油大学(华东) Device for measuring diffusion coefficient of CO2 diffusing from aqueous phase to oil phase and operating method thereof
JP6346126B2 (en) * 2015-06-29 2018-06-20 日本電信電話株式会社 Molecular weight distribution measuring method and molecular weight distribution measuring apparatus
JP7073954B2 (en) * 2018-07-13 2022-05-24 株式会社大林組 Dead leg evaluation method and dead leg evaluation system
CN112730157B (en) * 2020-12-30 2022-03-18 湖南大学 Method for measuring diffusion coefficient of solute substance in solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
理化学辞典,日本,岩波書店,1991年 1月10日,第4版,1077頁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237075A (en) * 2013-06-13 2014-12-24 中国石油天然气集团公司 Method for evaluating diffusion and permeation properties of dissolved carbon dioxide in anticorrosion coating
CN104237075B (en) * 2013-06-13 2016-08-31 中国石油天然气集团公司 Evaluate solubilised state carbon dioxide to spread in corrosion-inhibiting coating and the method for permeance property

Also Published As

Publication number Publication date
JP2003106974A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP3491042B2 (en) How to measure liquid diffusion coefficient
Holz et al. Calibration in accurate spin-echo self-diffusion measurements using 1H and less-common nuclei
Krieger et al. Diffusion coefficients for gases in liquids from the rates of solution of small gas bubbles
Boes et al. Electrochemical methods for studying diffusion, permeation and solubility of hydrogen in metals
Chow et al. Shear‐induced particle migration in Couette and parallel‐plate viscometers: NMR imaging and stress measurements
Stulík et al. Microelectrodes. Definitions, characterization, and applications (Technical report)
Otto et al. The facilitated transport of carbon dioxide through bicarbonate solutions
Mialdun et al. A comprehensive study of diffusion, thermodiffusion, and Soret coefficients of water-isopropanol mixtures
Pawlisch et al. Solute diffusion in polymers. 1. The use of capillary column inverse gas chromatography
Wang Tracer—diffusion in Liquids. I. Diffusion of Tracer Amount of Sodium Ion in Aqueous Potassium Chloride Solutions
Price Theory of the taylor dispersion technique for three-component-system diffusion measurements
Reinmuth Three-dimensional representation of voltammetric processes
Gilbert et al. Direct estimation of the electrons involved in polarographic reduction
Bidokhti et al. The structure of a turbulent free shear layer in a rotating fluid
Leaist et al. Diffusion in buffered protein solutions: combined Nernst–Planck and multicomponent Fick equations
Inch Problems associated with the use of the exposed platinum electrode for measuring oxygen tension in vivo
Keulegan Hydrodynamics of cathode films
CN1904589A (en) Technology of photometry determining silicone content in common steel low alloy steel
Favier et al. A test of the boundary layer model in unsteady Czochralski growth
CN112683182A (en) Method for testing thickness of metal wire coating
Durst Ion‐Selective Electrodes–The Early Years
Oldham Unified treatment of electrolysis at an expanding mercury electrode
Nisancioḡl̄ū et al. Diffusion in aqueous nitric acid solutions
CN104792888B (en) Compound terramycin injection content determination method
Burkell et al. Measurements of self-diffusion in aqueous solutions of sodium dihydrogen phosphate

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350