JP2003106974A - Measuring method for liquid diffusion coefficient - Google Patents

Measuring method for liquid diffusion coefficient

Info

Publication number
JP2003106974A
JP2003106974A JP2001298343A JP2001298343A JP2003106974A JP 2003106974 A JP2003106974 A JP 2003106974A JP 2001298343 A JP2001298343 A JP 2001298343A JP 2001298343 A JP2001298343 A JP 2001298343A JP 2003106974 A JP2003106974 A JP 2003106974A
Authority
JP
Japan
Prior art keywords
diffusion
solution
diffusion coefficient
concentration
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001298343A
Other languages
Japanese (ja)
Other versions
JP3491042B2 (en
Inventor
Toru Ujihara
徹 宇治原
Kozo Fujiwara
航三 藤原
Noritaka Usami
徳隆 宇佐美
Kazuo Nakajima
一雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2001298343A priority Critical patent/JP3491042B2/en
Publication of JP2003106974A publication Critical patent/JP2003106974A/en
Application granted granted Critical
Publication of JP3491042B2 publication Critical patent/JP3491042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method for a liquid diffusion coefficient capable of accurately measuring the diffusion coefficient. SOLUTION: The measuring method for the liquid diffusion coefficient is characterized by that it has a process of preparing a diffusion cell with two solution pools connected by a capillary tube, inputting a component to be diffused in the solution pools and diffusing it through the capillary tube, a process of measuring a solution concentration change and a solution weight change of each solution pool caused by diffusion, and a process of determining a diffusion flux J and a concentration gradient dc/dx from measured values, and the diffusion coefficient D is determined on the basis of Fick's first law from the determined diffusion flux J and concentration gradient dc/dx.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規なアルゴリズ
ムに基づく液体拡散係数の測定方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid diffusion coefficient measuring method based on a novel algorithm.

【0002】[0002]

【従来の技術】金属・半導体からタンパク質までの多く
の材料が、液相からの結晶成長により作製されている。
良質な結晶を作製するためには、液相内の濃度分布制御
が重要であり、それには数値計算による成長条件の最適
化が不可欠となる。数値計算において拡散係数は極めて
重要な物性値である。
2. Description of the Related Art Many materials from metals and semiconductors to proteins are produced by crystal growth from a liquid phase.
In order to produce high quality crystals, it is important to control the concentration distribution in the liquid phase, and to do so, it is essential to optimize the growth conditions by numerical calculation. The diffusion coefficient is a very important physical property value in numerical calculation.

【0003】しかし、従来の拡散係数測定法は、拡散対
実験により形成される溶液濃度分布をフィックの第二法
則に基づいて解析するものである。しかし、この手法で
は十分な測定精度が得られない。これは、溶液中の濃度
分布の高精度測定が技術的だけではなく、原理的にも非
常に困難であるからで、現状ではこの困難を打破する手
立てがなく、今後の技術発展を見越しても従来法では今
以上の精度向上は望めない。
However, the conventional diffusion coefficient measuring method is to analyze the solution concentration distribution formed by the diffusion pair experiment based on Fick's second law. However, this method cannot obtain sufficient measurement accuracy. This is because it is extremely difficult not only technically but also in principle to measure the concentration distribution in a solution with high accuracy.There is currently no way to overcome this difficulty, and even if future technological development is anticipated. The conventional method cannot be expected to improve the accuracy any more.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたもので、その目的とするところは、液相か
らの結晶成長を実施している産業全般、特に金属・半導
体産業、タンパク質結晶の作製を行う医薬産業におい
て、結晶作製の基礎物性値取得のために必要不可欠なツ
ールとして、液体拡散係数を容易に高精度に取得できる
測定方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a general industry in which crystal growth is carried out from a liquid phase, particularly a metal / semiconductor industry, and a protein. It is an object of the present invention to provide a measuring method capable of easily acquiring a liquid diffusion coefficient with high accuracy as an indispensable tool for acquiring basic physical property values for crystal preparation in the pharmaceutical industry for crystal preparation.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明は次の構成を備えている。
In order to achieve this object, the present invention has the following constitution.

【0006】(1) 液体内に所定の成分を拡散させ
て、その拡散流束Jと濃度勾配dc/dxとを求める工
程と、求めた拡散流束Jと濃度勾配dc/dxとから、
フィックの第一法則に基づいて拡散係数Dを求めること
を特徴とする液体拡散係数の測定方法。
(1) A step of diffusing a predetermined component in a liquid to obtain a diffusion flux J and a concentration gradient dc / dx thereof, and the obtained diffusion flux J and concentration gradient dc / dx,
A method for measuring a liquid diffusion coefficient, which comprises obtaining the diffusion coefficient D based on Fick's first law.

【0007】(2) 2つの溶液溜を毛細管で接続した
拡散セルを用意し、第一、第二の溶液溜にそれぞれ異な
る濃度の溶液を入れて、各溶液溜の成分を毛細管を通じ
て相互に拡散させる工程と、拡散により生じた溶液重量
変化及び溶液濃度変化を測定して、これらの測定値から
拡散流束Jと濃度勾配dc/dxを求める工程と、求め
た拡散流束Jと濃度勾配dc/dxとから、フィックの
第一法則に基づいて拡散係数Dを求めることを特徴とす
る液体拡散係数の測定方法。
(2) A diffusion cell in which two solution reservoirs are connected by a capillary tube is prepared, and solutions having different concentrations are put in the first and second solution reservoirs, and the components of each solution reservoir are mutually diffused through the capillary tubes. And the step of measuring the change in solution weight and the change in solution concentration caused by diffusion and obtaining the diffusion flux J and the concentration gradient dc / dx from these measured values, and the determined diffusion flux J and the concentration gradient dc. / Dx, a diffusion coefficient D is calculated based on Fick's first law.

【0008】(3) 2つの溶液溜を毛細管で接続した
拡散セルを用意し、第一、第二の溶液溜にそれぞれ異な
る濃度の溶液を入れ、かつ、第一の溶液溜に溶液濃度を
一定に保持するための溶質補給用結晶を入れて、各溶液
溜の成分を毛細管を通じて相互に拡散させる工程と、拡
散により生じた溶液重量変化及び溶液濃度変化を測定し
て、これらの測定値から拡散流束Jと濃度勾配dc/d
xを求める工程と、求めた拡散流束Jと濃度勾配dc/
dxとから、フィックの第一法則に基づいて拡散係数D
を求めることを特徴とする液体拡散係数の測定方法。
(3) A diffusion cell in which two solution reservoirs are connected by a capillary tube is prepared, solutions having different concentrations are put in the first and second solution reservoirs, and the solution concentration is kept constant in the first solution reservoir. Put the solute replenishing crystal to hold the solution in the solution, diffuse the components of each solution reservoir through the capillary tube, and measure the change in the solution weight and the change in the solution concentration caused by the diffusion. Flux J and concentration gradient dc / d
The step of obtaining x, the obtained diffusion flux J and the concentration gradient dc /
dx and the diffusion coefficient D based on Fick's first law
A method for measuring a liquid diffusion coefficient, which comprises:

【0009】要約すると、本発明は、これまで困難であ
った拡散実験中における溶液濃度その場測定法を用いる
ことで、溶液中濃度の時間変化測定を行ない、また新規
な拡散係数導出のアルゴリズムを用いて、液体拡散係数
の測定を可能にするものである。そして、本発明によれ
ば従来法にはない次の構成的特徴をもつ。
In summary, the present invention measures the time variation of the concentration in a solution by using the in-situ method for measuring the concentration of the solution in the diffusion experiment, which has been difficult until now, and also provides a novel diffusion coefficient deriving algorithm. It is used to enable the measurement of the liquid diffusion coefficient. Further, according to the present invention, it has the following structural features that are not available in the conventional method.

【0010】・拡散流束を測定する。 ・フィックの第一法則に基づいて解析を行う。 そして、本発明方法により次の効果を奏する。 ・本手法では測定精度は、その場測定技術に依存してい
る。これは従来の濃度分布測定法の精度向上と比較して
極めて容易である。 ・相互拡散係数、固有拡散係数、自己拡散係数を同時に
取得することが可能である。 ・その場測定法、拡散セルの材質などは、測定する対象
の材料によって、自由にデザイン可能である。
Measuring the diffusive flux. -Perform analysis based on Fick's first law. The method of the present invention has the following effects. -In this method, measurement accuracy depends on in-situ measurement technology. This is extremely easy as compared with the improvement in accuracy of the conventional concentration distribution measuring method. -It is possible to acquire the mutual diffusion coefficient, the intrinsic diffusion coefficient, and the self diffusion coefficient at the same time. -The in-situ measurement method and the material of the diffusion cell can be freely designed depending on the material to be measured.

【0011】[0011]

【発明の実施の形態】本発明では、特殊な拡散セルによ
り実験を行う。拡散セルは2つの溶液溜め(リザーバ
ー)部分と、それをつなぐ毛細管(キャピラリ)部分か
らなる。図1(a)に示すように、第一の溶液溜10に
溶液と溶質補給用結晶Sを入れると、(b)に示すよう
に毛細管20を通じて毛細管20を通じて溶液成分が拡
散する。それにより、それぞれの溶液溜10,30の溶
液濃度と重量が変化する。第二の溶液溜30の溶液濃度
の重量変化及び濃度変化を測定することで流束Jと濃度
勾配dc/dxを求め、これらの値から下式に示すフィ
ックの第一法則に基づいて拡散係数Dを求める。(c)
は両方の溶液が同じ濃度となり、拡散が終了した状態を
示す。なお、図中C1は第一の溶液溜内の溶液の濃度、
C2は第二の溶液溜内の濃度、tは時間を示す。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an experiment is conducted using a special diffusion cell. The diffusion cell is composed of two solution reservoir parts and a capillary part connecting them. As shown in FIG. 1A, when the solution and solute replenishing crystal S are put into the first solution reservoir 10, the solution component diffuses through the capillary tube 20 and the capillary tube 20 as shown in FIG. 1B. As a result, the solution concentration and weight of the respective solution reservoirs 10 and 30 change. The flux J and the concentration gradient dc / dx are obtained by measuring the weight change and the concentration change of the solution concentration of the second solution reservoir 30, and the diffusion coefficient is calculated from these values based on Fick's first law shown in the following equation. Find D. (C)
Indicates that both solutions have the same concentration and the diffusion is completed. In the figure, C1 is the concentration of the solution in the first solution reservoir,
C2 represents the concentration in the second solution reservoir, and t represents time.

【0012】[0012]

【式1】 [Formula 1]

【0013】なお、ここでは、各溶液溜10,30内の
溶液は均質、毛細管20内の拡散は定常であるとの仮定
に基づく。また、図中のセルやその場測定技術は、測定
する材料に従って自由に設計可能であり、本発明はこれ
らの測定法、セル材質に依存しない。
Here, it is based on the assumption that the solution in each of the solution reservoirs 10 and 30 is homogeneous and the diffusion in the capillary tube 20 is stationary. The cell in the figure and the in-situ measurement technique can be freely designed according to the material to be measured, and the present invention does not depend on these measurement methods and cell material.

【0014】本発明では流束を求めているが、これは本
発明特有のものである。また、拡散係数の測定精度も、
従来法と同等又はそれ以上のものが得られている。ま
た、本発明による測定値の精度はその場測定技術だけに
依存するため、将来その場測定技術さえ改善されればさ
らに精度向上が見込める。この点が、従来法に対する最
大の優位性である。
The present invention requires a flux, which is peculiar to the present invention. Also, the measurement accuracy of the diffusion coefficient
The same or better than the conventional method has been obtained. Further, since the accuracy of the measured value according to the present invention depends only on the in-situ measurement technique, further improvement in accuracy can be expected if only the in-situ measurement technique is improved in the future. This is the greatest advantage over the conventional method.

【0015】また、図4に示すように、溶質補給用結晶
Sを入れることなく拡散係数を測定することができる。
すなわち、第一の溶液溜10と第二の溶液溜30とのそ
れぞれに拡散係数を測定する溶液を入れる。この時、そ
れぞれの溶液溜には異なる濃度の溶液とする。すると、
(b)に示すように毛細管20を通じて溶液成分が拡散
する。それにより、それぞれの溶液溜10,30の溶液
濃度と重量が変化する。第二の溶液溜30の溶液濃度の
重量変化及び濃度変化を測定することで流束Jと濃度勾
配dc/dxを求め、これらの値から上式に示すフィッ
クの第一法則に基づいて拡散係数Dを求める。
Further, as shown in FIG. 4, the diffusion coefficient can be measured without inserting the solute supplementing crystal S.
That is, the solution for measuring the diffusion coefficient is put in each of the first solution reservoir 10 and the second solution reservoir 30. At this time, different solution concentrations are used for the respective solution reservoirs. Then,
As shown in (b), the solution component diffuses through the capillary tube 20. As a result, the solution concentration and weight of the respective solution reservoirs 10 and 30 change. The flux J and the concentration gradient dc / dx are obtained by measuring the weight change and the concentration change of the solution concentration of the second solution reservoir 30, and the diffusion coefficient is calculated from these values based on Fick's first law shown in the above equation. Find D.

【0016】[0016]

【実施例】図1の装置を用いてGaZnの拡散係数測定
を行った。その場測定法には蛍光X線分析による方法
を、拡散セルにはグラファイト製の専用セルを用いてい
る。
EXAMPLES The diffusion coefficient of GaZn was measured using the apparatus shown in FIG. A fluorescent X-ray analysis method is used for the in-situ measurement method, and a dedicated graphite cell is used for the diffusion cell.

【0017】その結果を図2に示す。(a)は拡散流束
J、(b)は毛細管内の濃度勾配dc/dxの実測例を
示す。横軸が測定時間、縦軸がそれぞれの値を示してい
る。流束を濃度勾配の値で割ることで、拡散係数Dが求
められる。
The results are shown in FIG. (A) shows a diffusion flux J, and (b) shows an example of actual measurement of the concentration gradient dc / dx in the capillary. The horizontal axis represents the measurement time, and the vertical axis represents each value. The diffusion coefficient D is obtained by dividing the flux by the value of the concentration gradient.

【0018】実施例において測定した拡散係数の精度確
認をするために、溶液溜めの濃度変化を数値計算により
求め、実験値との比較を行った。これを図3に示す。図
において求めた拡散係数の値を用いた計算結果が、実験
値とよい一致を示していることが分かる。
In order to confirm the accuracy of the diffusion coefficient measured in the examples, the concentration change in the solution reservoir was obtained by numerical calculation and compared with the experimental value. This is shown in FIG. It can be seen that the calculation result using the value of the diffusion coefficient obtained in the figure shows good agreement with the experimental value.

【0019】また、図4の装置を用いた場合にも同様に
実験値とよい一致が見られた。
Also, when the apparatus of FIG. 4 is used, a good agreement with the experimental value was similarly found.

【0020】なお、本発明者は、GaZnに限らず、G
aGe二元溶液の相互拡散係数、固有拡散係数、自己拡
散係数を測定し、本発明の有用性が確認された。
The present inventor is not limited to GaZn, and
The usefulness of the present invention was confirmed by measuring the mutual diffusion coefficient, the intrinsic diffusion coefficient and the self diffusion coefficient of the aGe binary solution.

【0021】[0021]

【発明の効果】以上のように本発明によれば、液相から
の結晶成長を実施している産業全般、特に金属・半導体
産業、タンパク質結晶の作製を行う医薬産業において、
結晶作製の基礎物性値取得のために必要不可欠なツール
として、液体拡散係数を容易に高精度に取得できる測定
方法を提供することができる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, in the industries in which crystal growth is carried out from a liquid phase, particularly in the metal / semiconductor industry and the pharmaceutical industry for producing protein crystals,
As a tool indispensable for acquiring basic physical property values for crystal production, it is possible to provide a measuring method that can easily and accurately acquire a liquid diffusion coefficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】拡散係数測定の概略説明図で、(a)は実験当
初の状態、(b)は拡散途中の状態、(c)は両方の溶
液が同じ濃度となり、拡散が終了した状態を示す。
FIG. 1 is a schematic explanatory diagram of diffusion coefficient measurement, where (a) shows a state at the beginning of the experiment, (b) shows a state in the middle of diffusion, and (c) shows a state where both solutions have the same concentration and the diffusion is completed. .

【図2】GaZnの拡散係数測定を行った実施例の結果
を示し、(a)は拡散流束の時間経過を示す図、(b)
は毛細管内の濃度勾配の実測例を示す図。
FIG. 2 shows the results of an example in which the diffusion coefficient of GaZn was measured, (a) is a diagram showing the time course of diffusion flux, and (b) is a diagram.
FIG. 4 is a diagram showing an example of actual measurement of concentration gradient in a capillary tube.

【図3】溶液溜めの濃度変化を数値計算により求め、実
験値との比較を行った図。
FIG. 3 is a diagram in which a change in concentration of a solution reservoir is obtained by numerical calculation and is compared with an experimental value.

【図4】図1とは別の拡散係数測定の概略説明図で、
(a)は実験当初の状態、(b)は拡散途中の状態、
(c)は両方の溶液が同じ濃度となり、拡散が終了した
状態を示す。
FIG. 4 is a schematic explanatory view of diffusion coefficient measurement different from FIG.
(A) is the initial state of the experiment, (b) is in the process of diffusion,
(C) shows a state where both solutions have the same concentration and the diffusion is completed.

【符号の説明】[Explanation of symbols]

10...第一の溶液溜 20...毛細管 30...第二の溶液溜 S....溶質補給用結晶 10. . . First solution reservoir 20. . . Capillaries 30. . . Second solution reservoir S. . . . Solute supply crystal

フロントページの続き (72)発明者 中嶋 一雄 宮城県黒川郡大和町もみじケ丘1−35−6Continued front page    (72) Inventor Kazuo Nakajima             1-35-6 Momijigaoka, Yamato-cho, Kurokawa-gun, Miyagi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液体内に所定の成分を拡散させて、その
拡散流束Jと濃度勾配dc/dxとを求める工程と、求
めた拡散流束Jと濃度勾配dc/dxとから、フィック
の第一法則に基づいて拡散係数Dを求めることを特徴と
する液体拡散係数の測定方法。
1. A process of diffusing a predetermined component in a liquid to obtain a diffusion flux J and a concentration gradient dc / dx thereof, and a diffusion flux J and a concentration gradient dc / dx thus determined, A method for measuring a liquid diffusion coefficient, which comprises obtaining the diffusion coefficient D based on the first law.
【請求項2】 2つの溶液溜を毛細管で接続した拡散セ
ルを用意し、第一、第二の溶液溜にそれぞれ異なる濃度
の溶液を入れて、各溶液溜の成分を毛細管を通じて相互
に拡散させる工程と、拡散により生じた溶液重量変化及
び溶液濃度変化を測定して、これらの測定値から拡散流
束Jと濃度勾配dc/dxを求める工程と、求めた拡散
流束Jと濃度勾配dc/dxとから、フィックの第一法
則に基づいて拡散係数Dを求めることを特徴とする液体
拡散係数の測定方法。
2. A diffusion cell in which two solution reservoirs are connected by a capillary tube is prepared, and solutions having different concentrations are put into the first and second solution reservoirs, and the components of each solution reservoir are mutually diffused through the capillary tube. The steps, the step of measuring the change in the solution weight and the change in the solution concentration caused by diffusion, and obtaining the diffusion flux J and the concentration gradient dc / dx from these measured values, and the obtained diffusion flux J and the concentration gradient dc / A method for measuring a liquid diffusion coefficient, which comprises obtaining a diffusion coefficient D from dx based on Fick's first law.
【請求項3】 2つの溶液溜を毛細管で接続した拡散セ
ルを用意し、第一、第二の溶液溜にそれぞれ異なる濃度
の溶液を入れ、かつ、第一の溶液溜に溶液濃度を一定に
保持するための溶質補給用結晶を入れて、各溶液溜の成
分を毛細管を通じて相互に拡散させる工程と、拡散によ
り生じた溶液重量変化及び溶液濃度変化を測定して、こ
れらの測定値から拡散流束Jと濃度勾配dc/dxを求
める工程と、求めた拡散流束Jと濃度勾配dc/dxと
から、フィックの第一法則に基づいて拡散係数Dを求め
ることを特徴とする液体拡散係数の測定方法。
3. A diffusion cell in which two solution reservoirs are connected by a capillary tube is prepared, solutions having different concentrations are respectively placed in the first and second solution reservoirs, and the solution concentration is kept constant in the first solution reservoir. Put a solute replenishing crystal for holding and diffuse the components of each solution reservoir mutually through a capillary tube, and measure the change in solution weight and the change in solution concentration caused by diffusion, and measure the diffusion flow from these measured values. A step of obtaining the bundle J and the concentration gradient dc / dx, and a diffusion coefficient D obtained based on Fick's first law from the obtained diffusion flow flux J and the concentration gradient dc / dx. Measuring method.
JP2001298343A 2001-09-27 2001-09-27 How to measure liquid diffusion coefficient Expired - Lifetime JP3491042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298343A JP3491042B2 (en) 2001-09-27 2001-09-27 How to measure liquid diffusion coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298343A JP3491042B2 (en) 2001-09-27 2001-09-27 How to measure liquid diffusion coefficient

Publications (2)

Publication Number Publication Date
JP2003106974A true JP2003106974A (en) 2003-04-09
JP3491042B2 JP3491042B2 (en) 2004-01-26

Family

ID=19119256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298343A Expired - Lifetime JP3491042B2 (en) 2001-09-27 2001-09-27 How to measure liquid diffusion coefficient

Country Status (1)

Country Link
JP (1) JP3491042B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2351822A1 (en) * 2007-01-16 2011-02-11 Mondragon Goi Eskola Politeknikoa S.Co "a molecular diffusion device for determining the coefficient of molecular diffusion of liquid mixtures at atmospheric pressure and constant temperature and a method of obtaining the molecular diffusion coefficient" (Machine-translation by Google Translate, not legally binding)
CN104316395A (en) * 2014-10-30 2015-01-28 凯尔测控试验系统(天津)有限公司 Coaxial centering regulation platform for mechanical testing machine
CN104502236A (en) * 2014-12-15 2015-04-08 中国石油大学(华东) Method for measuring diffusion coefficient and equilibrium concentration of CO2 in process of diffusion from water phase to oil phase
CN104502237A (en) * 2014-12-15 2015-04-08 中国石油大学(华东) Device for measuring diffusion coefficient of CO2 diffusing from aqueous phase to oil phase and operating method thereof
CN102662038B (en) * 2006-02-28 2015-09-30 霍夫曼-拉罗奇有限公司 The method of assessing absorption properties of low solubilitycompounds
JP2015210119A (en) * 2014-04-24 2015-11-24 日本電信電話株式会社 Diffusion coefficient measurement method and diffusion coefficient measurement device
JP2017015424A (en) * 2015-06-29 2017-01-19 日本電信電話株式会社 Method for measuring molecular weight distribution, and molecular weight distribution measurement device
JP2020012639A (en) * 2018-07-13 2020-01-23 株式会社大林組 Dead leg evaluation method and dead leg evaluation system
CN112730157A (en) * 2020-12-30 2021-04-30 湖南大学 Method for measuring diffusion coefficient of solute substance in solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237075B (en) * 2013-06-13 2016-08-31 中国石油天然气集团公司 Evaluate solubilised state carbon dioxide to spread in corrosion-inhibiting coating and the method for permeance property

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102662038B (en) * 2006-02-28 2015-09-30 霍夫曼-拉罗奇有限公司 The method of assessing absorption properties of low solubilitycompounds
ES2351822A1 (en) * 2007-01-16 2011-02-11 Mondragon Goi Eskola Politeknikoa S.Co "a molecular diffusion device for determining the coefficient of molecular diffusion of liquid mixtures at atmospheric pressure and constant temperature and a method of obtaining the molecular diffusion coefficient" (Machine-translation by Google Translate, not legally binding)
JP2015210119A (en) * 2014-04-24 2015-11-24 日本電信電話株式会社 Diffusion coefficient measurement method and diffusion coefficient measurement device
CN104316395A (en) * 2014-10-30 2015-01-28 凯尔测控试验系统(天津)有限公司 Coaxial centering regulation platform for mechanical testing machine
CN104502236A (en) * 2014-12-15 2015-04-08 中国石油大学(华东) Method for measuring diffusion coefficient and equilibrium concentration of CO2 in process of diffusion from water phase to oil phase
CN104502237A (en) * 2014-12-15 2015-04-08 中国石油大学(华东) Device for measuring diffusion coefficient of CO2 diffusing from aqueous phase to oil phase and operating method thereof
CN104502236B (en) * 2014-12-15 2017-03-22 中国石油大学(华东) Method for measuring diffusion coefficient and equilibrium concentration of CO2 in process of diffusion from water phase to oil phase
JP2017015424A (en) * 2015-06-29 2017-01-19 日本電信電話株式会社 Method for measuring molecular weight distribution, and molecular weight distribution measurement device
JP2020012639A (en) * 2018-07-13 2020-01-23 株式会社大林組 Dead leg evaluation method and dead leg evaluation system
JP7073954B2 (en) 2018-07-13 2022-05-24 株式会社大林組 Dead leg evaluation method and dead leg evaluation system
CN112730157A (en) * 2020-12-30 2021-04-30 湖南大学 Method for measuring diffusion coefficient of solute substance in solution

Also Published As

Publication number Publication date
JP3491042B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
Holz et al. Calibration in accurate spin-echo self-diffusion measurements using 1H and less-common nuclei
JP2003106974A (en) Measuring method for liquid diffusion coefficient
Wells et al. Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics
Suba et al. Capillary isoelectric focusing method development and validation for investigation of recombinant therapeutic monoclonal antibody
Koutsou et al. Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers
JP2016147094A (en) Method for calibration of diffusion tensor imaging pulse sequences used in mri
Reinmuth Three-dimensional representation of voltammetric processes
Guo et al. Microfluidic chip capillary electrophoresis coupled with electrochemiluminescence for enantioseparation of racemic drugs using central composite design optimization
Parris et al. The diffusivity of carbon in austenite
Shulman et al. Measurement of magnetic susceptibility of diamagnetic liquids exploiting the moses effect
WO2017181392A1 (en) Method for measuring diffusion coefficient of carbon dioxide in crude oil
Oldham Convolution of voltammograms as a method of chemical analysis
King et al. The Rate of Dissolution of Magnesium in Acids
Goldberg et al. Improved method for diffusion coefficient determinations employing the silver membrane filter
JPH0495752A (en) Method for measuring concentration of dissolved gas in liquid by using gas transmitting film
CN103884368B (en) Hemodialysis machine detector performance automatic calibrating method
Čermák et al. Diffusion-elastic phenomenon and diffusivity of hydrogen in nickel
JP4567895B2 (en) Nitrate ion concentration measuring device
JP2721024B2 (en) Method and apparatus for analyzing metal cleaning liquid
US20210382023A1 (en) Automated online chromatographic sample dilution & preparation system
Hills et al. NMR microimaging studies of water diffusivity in saturated, microporous systems
JP2637239B2 (en) How to measure total organic carbon
Umemoto et al. Measuring calcium in plasma
JPH02208567A (en) Protein determining method
Kontturi et al. Electrical migration in convective electrophoresis: Modelling and membrane separation of bovum serum albumin (BSA) and cytochrome c

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350