JP3489410B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine

Info

Publication number
JP3489410B2
JP3489410B2 JP26984997A JP26984997A JP3489410B2 JP 3489410 B2 JP3489410 B2 JP 3489410B2 JP 26984997 A JP26984997 A JP 26984997A JP 26984997 A JP26984997 A JP 26984997A JP 3489410 B2 JP3489410 B2 JP 3489410B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
storage catalyst
output
nox storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26984997A
Other languages
Japanese (ja)
Other versions
JPH11107808A (en
Inventor
隆之 戸城
太郎 横井
一雄 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26984997A priority Critical patent/JP3489410B2/en
Publication of JPH11107808A publication Critical patent/JPH11107808A/en
Application granted granted Critical
Publication of JP3489410B2 publication Critical patent/JP3489410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、所要の運転条件
下では理論空燃比よりも希薄側のリーン空燃比運転を行
う内燃機関の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine that performs lean air-fuel ratio operation leaner than the stoichiometric air-fuel ratio under required operating conditions.

【0002】[0002]

【従来の技術】従来、リーン空燃比で運転される内燃機
関の排気浄化装置として、排気管にNOx吸蔵触媒を配
置して、NOx吸蔵触媒により、リーン空燃比での運転
時に機関から排出されるNOxを吸収すると共に、NO
xの吸収後、リッチ空燃比で運転して、NOx吸蔵触媒
が吸収していたNOxを脱離し、これを排気中に含まれ
るHC,COにより還元する技術が知られている。
2. Description of the Related Art Conventionally, as an exhaust gas purifying apparatus for an internal combustion engine operated with a lean air-fuel ratio, a NOx storage catalyst is arranged in an exhaust pipe, and the NOx storage catalyst discharges the engine from the engine during operation with a lean air-fuel ratio. Absorbs NOx and NO
A technique is known in which, after absorbing x, the NOx storage catalyst is operated at a rich air-fuel ratio to desorb NOx absorbed by the NOx storage catalyst, and the NOx is reduced by HC and CO contained in the exhaust gas.

【0003】このNOx吸蔵触媒のNOxの最大吸収量
は、NOx吸蔵触媒が劣化してくると、低下するように
なる。
The maximum amount of NOx absorbed by the NOx storage catalyst decreases as the NOx storage catalyst deteriorates.

【0004】そのため、NOx吸蔵触媒の劣化の度合を
判定する判定手段を設け、その判定に応じてNOx吸蔵
触媒のNOxの許容吸収レベルを変更して、リーン空燃
比からリッチ空燃比への運転の切換時期等を制御するも
のが提案されている。
Therefore, a determination means for determining the degree of deterioration of the NOx storage catalyst is provided, and the allowable absorption level of NOx of the NOx storage catalyst is changed according to the determination, and the lean air-fuel ratio is changed to the rich air-fuel ratio. What controls the switching timing etc. is proposed.

【0005】この判定手段としては、空燃比をリーンか
らリッチに切換えると、NOx吸蔵触媒の下流の排気が
一時的に理論空燃比になった後、リッチになり、NOx
吸蔵触媒の劣化に応じてその理論空燃比の状態が変わる
ことから、NOx吸蔵触媒の下流に排気中の空燃比に比
例した出力を発生する空燃比センサを設け、リーンから
リッチに切換えた際に、空燃比センサが発生する出力の
ピークあるいはその出力の変化過程の差異に基づいてN
Ox吸蔵触媒の劣化の度合が判定される。
As the determination means, when the air-fuel ratio is switched from lean to rich, the exhaust gas downstream of the NOx storage catalyst temporarily becomes the stoichiometric air-fuel ratio and then becomes rich, and NOx
Since the state of the stoichiometric air-fuel ratio changes according to the deterioration of the storage catalyst, an air-fuel ratio sensor that generates an output proportional to the air-fuel ratio in the exhaust gas is provided downstream of the NOx storage catalyst, and when switching from lean to rich. , N based on the difference in the output peak generated by the air-fuel ratio sensor or the changing process of the output.
The degree of deterioration of the Ox storage catalyst is determined.

【0006】したがって、リーン空燃比での運転時に、
機関の負荷と回転数等から機関のNOxの排出量を演算
してNOx吸蔵触媒に吸収されるNOxの吸収量を推定
し、推定したNOx吸収量が許容吸収レベルに達する
と、空燃比を一時的にリッチにするように制御すると共
に、NOx吸蔵触媒の劣化の度合の判定に応じて、NO
xの許容吸収レベルを変更することにより、NOx吸蔵
触媒のNOxの吸収量に合ったNOxの浄化が行われ
る。
Therefore, during operation with a lean air-fuel ratio,
The NOx emission amount of the engine is calculated from the engine load and engine speed, etc. to estimate the NOx absorption amount absorbed by the NOx storage catalyst. When the estimated NOx absorption amount reaches the allowable absorption level, the air-fuel ratio is temporarily changed. Control so that the NOx storage catalyst becomes rich, and, in accordance with the determination of the degree of deterioration of the NOx storage catalyst, NO
By changing the allowable absorption level of x, NOx is purified according to the amount of NOx absorbed by the NOx storage catalyst.

【0007】なお、NOx吸蔵触媒の劣化の度合が大き
くなった場合は、リッチ空燃比での運転時にリッチ度を
小さくしながら運転時間が長くされ、これによって再生
される(特開平8ー014030号、232644号公
報等参照)。
When the degree of deterioration of the NOx storage catalyst becomes large, the operating time is lengthened while the rich degree is being reduced during operation at a rich air-fuel ratio, and is thereby regenerated (JP-A-8-014030). , 232644, etc.).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来装置にあって、機関のNOxの排出量は大気
圧、乾湿温度、EGR量(排気還流量)、暖機状態等に
よっても変動するので、機関の負荷、回転数等からNO
xの排出量を求めてNOx吸蔵触媒のNOxの吸収量を
推定していても、正確な値は得にくい。
However, in such a conventional device, the NOx emission amount of the engine varies depending on the atmospheric pressure, the dry and wet temperature, the EGR amount (exhaust gas recirculation amount), the warm-up state, and the like. NO from engine load, engine speed, etc.
Even if the NOx absorption amount of the NOx storage catalyst is estimated by calculating the x emission amount, it is difficult to obtain an accurate value.

【0009】このため、NOxの排出量つまりNOx吸
蔵触媒が吸収すべきNOxの量が許容吸収レベルを越え
ても、リーン運転を継続することがあり、NOxを大気
へ放出してしまう可能性がある。
Therefore, even if the amount of NOx discharged, that is, the amount of NOx to be absorbed by the NOx storage catalyst, exceeds the allowable absorption level, lean operation may be continued and NOx may be released to the atmosphere. is there.

【0010】この場合、NOx吸蔵触媒の劣化の度合に
応じて許容吸収レベルを変更しても、推定したNOxの
吸収量に基づきリッチ運転を行うのでは、やはりNOx
を大気へ放出してしまう可能性がある。
In this case, even if the allowable absorption level is changed according to the degree of deterioration of the NOx storage catalyst, if rich operation is performed based on the estimated NOx absorption amount, NOx will still occur.
May be released to the atmosphere.

【0011】また、許容吸収レベルを下げてリッチ運転
の時期を早めるのでは、リーン空燃比での運転期間が短
くなり、燃費効果を損なうことになってしまう。
Further, if the permissible absorption level is lowered to advance the rich operation time, the operation period at the lean air-fuel ratio is shortened and the fuel consumption effect is impaired.

【0012】この発明は、NOx吸蔵触媒のNOxの吸
収レベルを的確に把握でき、リーン空燃比からリッチ空
燃比への運転の切換えを適正に制御できる排気浄化装置
を提供することを目的としている。
An object of the present invention is to provide an exhaust gas purification device which can accurately grasp the NOx absorption level of a NOx storage catalyst and can appropriately control the switching of operation from a lean air-fuel ratio to a rich air-fuel ratio.

【0013】[0013]

【課題を解決するための手段】第1の発明は、排気管に
NOx吸蔵触媒を配置すると共に、所要の運転条件下で
は理論空燃比よりも希薄側のリーン空燃比運転を行う内
燃機関において、前記NOx吸蔵触媒の前後の排気管に
それぞれ排気ガス中の酸素濃度に比例した出力を発生す
る空燃比センサを設置し、リーン空燃比運転中にこれら
の空燃比センサの出力に基づいてNOx吸蔵触媒のNO
xの吸収レベルを判定するNOx吸収レベル判定手段を
設けると共に、このNOxの吸収レベルの判定に際し
て、NOx吸蔵触媒の前方の空燃比センサの出力につい
てのみ、今回の出力値と前回の出力値とを平均化した値
を用いる
According to a first aspect of the present invention, an NOx storage catalyst is arranged in an exhaust pipe, and a lean air-fuel ratio operation that is leaner than a theoretical air-fuel ratio is performed under required operating conditions. Air-fuel ratio sensors that generate outputs proportional to the oxygen concentration in the exhaust gas are installed in the exhaust pipes before and after the NOx storage catalyst, and the NOx storage catalyst is output based on the outputs of these air-fuel ratio sensors during lean air-fuel ratio operation. NO
A NOx absorption level determination means for determining the absorption level of x is provided , and at the time of determining the absorption level of NOx
The output of the air-fuel ratio sensor in front of the NOx storage catalyst.
The average value of the current output value and the previous output value
To use .

【0014】第2の発明は、排気管にNOx吸蔵触媒を
配置すると共に、所要の運転条件下では理論空燃比より
も希薄側のリーン空燃比運転を行う内燃機関において、
前記NOx吸蔵触媒の前後の排気管にそれぞれ排気ガス
中の酸素濃度に比例した出力を発生する空燃比センサを
設置し、リーン空燃比運転中にこれらの空燃比センサの
出力がほぼ等しくなったときに一時的に空燃比を理論空
燃比以上のリッチ空燃比に切換える空燃比切換手段を設
けると共に、この空燃比センサの出力の比較に際して、
NOx吸蔵触媒の前方の空燃比センサの出力についての
み、今回の出力値と前回の出力値とを平均化した値を用
いる
A second aspect of the present invention is an internal combustion engine in which a NOx storage catalyst is arranged in an exhaust pipe and a lean air-fuel ratio operation leaner than a stoichiometric air-fuel ratio is performed under required operating conditions.
When an air-fuel ratio sensor that produces an output proportional to the oxygen concentration in the exhaust gas is installed in each of the exhaust pipes before and after the NOx storage catalyst, and when the outputs of these air-fuel ratio sensors become substantially equal during lean air-fuel ratio operation In addition to the provision of air-fuel ratio switching means for temporarily switching the air-fuel ratio to a rich air-fuel ratio equal to or higher than the stoichiometric air-fuel ratio, when comparing the outputs of this air-fuel ratio sensor,
The output of the air-fuel ratio sensor in front of the NOx storage catalyst
The average value of the current output value and the previous output value.
There is .

【0015】第3の発明は、第1、第2の発明におい
て、NOx吸蔵触媒の前後の空燃比センサの出力レベル
を調整する出力レベル調整手段を備える。
A third aspect of the present invention is the fuel cell system according to the first or second aspect, further comprising output level adjusting means for adjusting the output levels of the air-fuel ratio sensors before and after the NOx storage catalyst.

【0016】第4の発明は、第3の発明において、出力
レベル調整手段は、燃料カット運転時と理論空燃比運転
時の空燃比センサの出力に基づき空燃比センサの出力レ
ベルを調整する。
In a fourth aspect based on the third aspect, the output level adjusting means adjusts the output level of the air-fuel ratio sensor based on the output of the air-fuel ratio sensor during the fuel cut operation and the stoichiometric air-fuel ratio operation.

【0017】[0017]

【発明の効果】リーン空燃比運転中、NOx吸蔵触媒が
NOxを吸収している間は、NOx吸蔵触媒の前後の排
気ガス中の酸素濃度が異なり、NOx吸蔵触媒のNOx
の吸収量が最大(飽和状態)になると、NOx吸蔵触媒
の前後の排気ガス中の酸素濃度がほぼ等しくなる。
[Effects of the Invention] During lean air-fuel ratio operation, while the NOx storage catalyst is absorbing NOx, the oxygen concentration in the exhaust gas before and after the NOx storage catalyst is different, and NOx of the NOx storage catalyst is different.
When the absorption amount of is maximum (saturated state), the oxygen concentrations in the exhaust gas before and after the NOx storage catalyst become substantially equal.

【0018】したがって、第1の発明によれば、NOx
吸蔵触媒の前後に設けた空燃比センサの出力に基づい
て、NOx吸蔵触媒のNOxの吸収レベル、即ち機関の
運転条件、NOx吸蔵触媒の劣化等を含めたそのときの
NOx吸蔵触媒の飽和状態を判定できる。
Therefore, according to the first invention, NOx
Based on the output of the air-fuel ratio sensor provided before and after the storage catalyst, the NOx absorption level of the NOx storage catalyst, that is, the engine operating conditions, the saturation state of the NOx storage catalyst at that time including the deterioration of the NOx storage catalyst, etc. You can judge.

【0019】第2の発明によれば、リーン空燃比運転中
に、機関の運転条件、NOx吸蔵触媒の劣化等を含め、
NOx吸蔵触媒がそのときの飽和状態に近付いたとき
に、理論空燃比以上のリッチ空燃比運転を行って、NO
xの外部への放出を十分に低減できると共に、NOx吸
蔵触媒の飽和状態近くまでリーン空燃比運転を行えるの
で、燃費を十分に向上できる。
According to the second aspect of the present invention, during the lean air-fuel ratio operation, the operating conditions of the engine, the deterioration of the NOx storage catalyst, etc. are included.
When the NOx storage catalyst approaches the saturation state at that time, the rich air-fuel ratio operation above the stoichiometric air-fuel ratio is performed to
Since the release of x to the outside can be sufficiently reduced and the lean air-fuel ratio operation can be performed near the saturation state of the NOx storage catalyst, fuel efficiency can be sufficiently improved.

【0020】第3の発明によれば、空燃比センサの固体
差等を解消でき、リーン空燃比運転からリッチ運転への
切換えを的確に制御できる。
According to the third aspect of the present invention, it is possible to eliminate the individual difference of the air-fuel ratio sensor and to accurately control the switching from the lean air-fuel ratio operation to the rich operation.

【0021】第4の発明によれば、空燃比センサの出力
レベルを適正に調整できる。
According to the fourth invention, the output level of the air-fuel ratio sensor can be adjusted appropriately.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1において、10はエンジン本体、11
は吸気通路(吸気管)、12は排気通路(排気管)を示
し、エンジン本体10には燃焼室内に直接的に燃料を噴
射する燃料噴射弁13が設けられる。
In FIG. 1, 10 is an engine main body, and 11
Indicates an intake passage (intake pipe), 12 indicates an exhaust passage (exhaust pipe), and the engine body 10 is provided with a fuel injection valve 13 for injecting fuel directly into the combustion chamber.

【0024】燃料噴射弁13からは、機関低負荷域等、
燃料が圧縮行程の後半に噴射され、圧縮上死点で点火栓
14の近傍にのみ可燃混合気層を形成し、全体の空燃比
がA/F=40を越える超リーン空燃比の混合気の成層
燃焼を行い、機関中負荷域および高負荷域等では燃料が
吸気行程で噴射され、燃焼室全体で燃料と空気を予混合
し、理論空燃比および理論空燃比よりもリッチ空燃比の
混合気での均質燃焼を行うようになっている。
From the fuel injection valve 13,
The fuel is injected in the latter half of the compression stroke to form a combustible air-fuel mixture layer only near the spark plug 14 at the compression top dead center, so that the overall air-fuel ratio exceeds A / F = 40. Stratified combustion is performed, and fuel is injected in the intake stroke in the medium load region and high load region of the engine, and the fuel and air are premixed in the entire combustion chamber, and the stoichiometric air-fuel ratio and the air-fuel mixture richer than the stoichiometric air-fuel ratio are mixed. It is designed to perform homogeneous combustion in.

【0025】排気通路12にはNOx吸蔵触媒15が配
置される。NOx吸蔵触媒15は、アルミナ等に担体上
に、白金Ptのような貴金属と、カリウムK、ナトリウ
ムNa、リチウムLi、セシウムCsのようなアルカリ
金属、バリウムBa、カルシウムCaのようなアルカリ
土類、ランタンLa、イットリウムYのような希土類の
少なくとも1つとが担持される。
A NOx storage catalyst 15 is arranged in the exhaust passage 12. The NOx storage catalyst 15 is made of alumina or the like on a carrier, a noble metal such as platinum Pt, an alkali metal such as potassium K, sodium Na, lithium Li, or cesium Cs, an alkaline earth such as barium Ba or calcium Ca, At least one of rare earth elements such as lanthanum La and yttrium Y is carried.

【0026】このNOx吸蔵触媒15として、白金P
t、バリウムBaを用いたものを例に述べると、リーン
空燃比での運転時に機関から排出されるNOxは、白金
Pt上で酸素O2と結びつき、バリウムBaによって硝
酸バリウムの形態をもって吸収される。この状態にて、
理論空燃比以上のリッチ空燃比で運転すると、吸収した
NOxが脱離され、排気ガス中に含まれるHC,COの
働きによって還元される。
As the NOx storage catalyst 15, platinum P
For example, when using t and barium Ba, NOx discharged from the engine during operation at a lean air-fuel ratio is bound to oxygen O 2 on platinum Pt and is absorbed by barium Ba in the form of barium nitrate. . In this state,
When operating at a rich air-fuel ratio equal to or higher than the stoichiometric air-fuel ratio, the absorbed NOx is desorbed and reduced by the action of HC and CO contained in the exhaust gas.

【0027】NOx吸蔵触媒15の排気通路12の上流
側と下流側には、それぞれ排気ガス中の酸素濃度に比例
した出力を発生する第1、第2の空燃比センサ16,1
7が設置され、これらの出力はコントロールユニット1
8に入力される。
On the upstream side and the downstream side of the exhaust passage 12 of the NOx storage catalyst 15, first and second air-fuel ratio sensors 16 and 1 which generate outputs proportional to the oxygen concentration in the exhaust gas, respectively.
7 are installed and these outputs are control unit 1
8 is input.

【0028】また、機関の運転条件を検出する手段とし
て、機関の回転数、クランク角を検出する回転数センサ
(クランク角センサ)20、機関の吸入空気量(負荷)
を検出する吸気センサ21、アクセル開度を検出するア
クセル開度センサ22、機関の冷却水温を検出する水温
センサ23等が設けられ、これらの信号もコントロール
ユニット18に入力される。
As means for detecting the operating conditions of the engine, a rotation speed sensor (crank angle sensor) 20 for detecting the rotation speed and crank angle of the engine, and an intake air amount (load) of the engine.
An intake sensor 21 for detecting the intake air, an accelerator opening sensor 22 for detecting the accelerator opening, a water temperature sensor 23 for detecting the cooling water temperature of the engine, etc. are provided, and these signals are also input to the control unit 18.

【0029】これらのセンサ出力、信号に基づき、コン
トロールユニット18によって、運転条件に応じて成層
燃焼と均質燃焼を行うように燃料噴射量、噴射時期が制
御されると共に、空燃比センサ16,17の出力からN
Ox吸蔵触媒15のNOx吸収レベルが判定され、リー
ン運転時(成層燃焼運転時)にその判定に応じて一時的
に理論空燃比以上のリッチ運転に切換えるように制御さ
れる。
Based on these sensor outputs and signals, the control unit 18 controls the fuel injection amount and injection timing so that stratified charge combustion and homogeneous combustion are performed in accordance with the operating conditions, and the air-fuel ratio sensors 16 and 17 are controlled. From output to N
The NOx absorption level of the Ox storage catalyst 15 is determined, and during lean operation (during stratified charge combustion operation), control is performed so as to temporarily switch to rich operation at or above the stoichiometric air-fuel ratio according to the determination.

【0030】次に、制御内容を図2〜図4のフローチャ
ートに基づいて説明する。なお、これらのフローは所定
の制御周期で実行する。
Next, the control contents will be described based on the flowcharts of FIGS. It should be noted that these flows are executed at a predetermined control cycle.

【0031】図2に示すように、ステップ1では機関の
回転数と吸入空気量等から基本燃料噴射量(または噴射
時間)Tpを算出する。
As shown in FIG. 2, in step 1, the basic fuel injection amount (or injection time) Tp is calculated from the engine speed, the intake air amount, and the like.

【0032】ステップ2では、機関の回転数と目標トル
ク(基本燃料噴射量Tp等)を基に定めた目標空燃比マ
ップから目標空燃比KMAPを求める。機関の低速低負
荷域ではKMAP<1.0(理論空燃比よりもリー
ン)、中速中負荷域ではKMAP=1.0(理論空燃
比)、高速高負荷域ではKMAP>1.0(理論空燃比
よりもリッチ)に設定している。
In step 2, the target air-fuel ratio KMAP is obtained from the target air-fuel ratio map determined based on the engine speed and the target torque (basic fuel injection amount Tp, etc.). KMAP <1.0 (lean than theoretical air-fuel ratio) in the low speed and low load range of the engine, KMAP = 1.0 (theoretical air-fuel ratio) in the medium and medium speed load range, and KMAP> 1.0 (theoretical) in the high speed and high load range. Richer than the air-fuel ratio).

【0033】ステップ3では、目標空燃比KMAP≧
1.0かどうかを判定する。
At step 3, the target air-fuel ratio KMAP ≧
Determine whether it is 1.0.

【0034】目標空燃比KMAP≧1.0のときは、ス
テップ4にてKMAPの値を空燃比補正係数Kにセット
すると共に、ステップ5〜7にてλコントロール収束
(KMAP=1.0の運転中、空燃比センサ16の出力
に基づく空燃比のフィードバック制御によって、実空燃
比が理論空燃比を中心にした所定の範囲内に収束)のと
きはλコントロール収束フラグFLGLMDに1をセッ
ト、λコントロールにないときおよびλコントロール非
収束のときはλコントロール収束フラグFLGLMDを
クリアする。
When the target air-fuel ratio KMAP ≧ 1.0, the value of KMAP is set to the air-fuel ratio correction coefficient K in step 4, and the λ control convergence (operation of KMAP = 1.0 is executed in steps 5 to 7). When the actual air-fuel ratio converges within a predetermined range around the theoretical air-fuel ratio by feedback control of the air-fuel ratio based on the output of the air-fuel ratio sensor 16, λ control convergence flag FLGLMD is set to 1 and λ control is performed. If not, or if the λ control is not converged, the λ control convergence flag FLGLMD is cleared.

【0035】目標空燃比KMAP<1.0のときつまり
リーン空燃比域のときは、ステップ8,9にてλコント
ロール収束フラグFLGLMDをクリアして、リッチ要
求フラグFLGRICHが有る(=1)かどうかを確認
する。
When the target air-fuel ratio KMAP <1.0, that is, in the lean air-fuel ratio range, the λ control convergence flag FLGLMD is cleared in steps 8 and 9 and whether the rich request flag FLGRICH is present (= 1). To confirm.

【0036】リッチ要求フラグFLGRICHが無いと
きは、ステップ10,11にてKMAPの値を空燃比補
正係数Kにセットして、NOx吸蔵触媒15の前後の第
1、第2の空燃比センサ16,17の出力の差DLTA
F(デルタA/F)を設定値RICH1と比較する。
When the rich request flag FLGRICH is not present, the value of KMAP is set to the air-fuel ratio correction coefficient K in steps 10 and 11, and the first and second air-fuel ratio sensors 16 before and after the NOx storage catalyst 15 are set. Difference of outputs of 17 DLTA
F (delta A / F) is compared with the set value RICH1.

【0037】リーン空燃比の運転中(燃料カット時を除
く)、NOx吸蔵触媒15がNOxを吸収している間
は、NOx吸蔵触媒15の前後の排気ガス中の酸素濃度
が異なり、NOx吸蔵触媒15のNOxの吸収量が最大
(飽和状態)になると、NOx吸蔵触媒15の前後の排
気ガス中の酸素濃度がほぼ等しくなる。即ち、リーン空
燃比の運転中、NOx吸蔵触媒15がNOxを吸収する
際、排気ガス中の酸素を消費する(前述したようにNO
xと酸素O2が触媒15の白金Pt上で結びつき、バリ
ウムBaによって硝酸バリウムの形態をもってNOxを
吸収する)一方、NOx吸蔵触媒15がNOxを吸収し
なくなると、排気ガス中の酸素を消費しなくなることか
ら、その前後の第1、第2の空燃比センサ16,17の
出力が異なれば、NOx吸蔵触媒15のNOxの吸収量
は非飽和レベルを表し、第1、第2の空燃比センサ1
6,17の出力がほぼ同じになれば、NOx吸蔵触媒1
5のNOxの吸収量は飽和レベルを表す。
During operation of the lean air-fuel ratio (except during fuel cut), while the NOx storage catalyst 15 is absorbing NOx, the oxygen concentration in the exhaust gas before and after the NOx storage catalyst 15 is different, and the NOx storage catalyst 15 is different. When the NOx absorption amount of 15 becomes maximum (saturated state), the oxygen concentrations in the exhaust gas before and after the NOx storage catalyst 15 become substantially equal. That is, during operation of the lean air-fuel ratio, when the NOx storage catalyst 15 absorbs NOx, oxygen in the exhaust gas is consumed (as described above, NO
x and oxygen O 2 are bound to each other on platinum Pt of the catalyst 15 and barium Ba absorbs NOx in the form of barium nitrate. On the other hand, when the NOx storage catalyst 15 stops absorbing NOx, oxygen in the exhaust gas is consumed. Therefore, if the outputs of the first and second air-fuel ratio sensors 16 and 17 before and after that are different, the NOx absorption amount of the NOx storage catalyst 15 represents a non-saturation level, and the first and second air-fuel ratio sensors. 1
If the outputs of 6 and 17 are almost the same, the NOx storage catalyst 1
The NOx absorption amount of 5 represents the saturation level.

【0038】したがって、ステップ11にてDLTAF
が設定値RICH1以上であれば、NOx吸蔵触媒15
のNOxの吸収量は非飽和レベルにあると判定でき、D
LTAFが設定値RICH1以内であれば、NOx吸蔵
触媒15のNOxの吸収量は飽和レベルに近いと判定で
きる。
Therefore, in step 11, DLTAF
Is the set value RICH1 or more, the NOx storage catalyst 15
It can be determined that the NOx absorption amount of the
If LTAF is within the set value RICH1, it can be determined that the NOx absorption amount of the NOx storage catalyst 15 is close to the saturation level.

【0039】非飽和レベルにある場合、リーン運転を継
続する。
If it is at the unsaturated level, the lean operation is continued.

【0040】飽和レベルに近い場合、NOx吸蔵触媒1
5のNOxを脱離、還元するために、ステップ12,1
3にてリッチ要求フラグFLGRICHに1を、リッチ
運転時間CHARGEに所定の時間データMAXNOを
セットする。
When it is close to the saturation level, the NOx storage catalyst 1
In order to desorb and reduce NOx in step 5, steps 12, 1
At 3, the rich request flag FLGRICH is set to 1, and the rich operation time CHARGE is set to the predetermined time data MAXNO.

【0041】この時間データMAXNOは、NOx吸蔵
触媒15が劣化の無い状態にて吸収できるNOxの最大
量を脱離する時間に設定している。なお、NOx吸蔵触
媒15の温度状態によってNOxの脱離速度が変わるた
め(温度が高いほど速い)、NOx吸蔵触媒15の温度
あるいはその前後の排気ガスの温度を検出して、その温
度に応じて時間データMAXNOを変更するようにして
良い。
The time data MAXNO is set to a time for desorbing the maximum amount of NOx that can be absorbed by the NOx storage catalyst 15 without deterioration. Since the desorption rate of NOx changes depending on the temperature state of the NOx storage catalyst 15 (the higher the temperature, the faster), the temperature of the NOx storage catalyst 15 or the temperature of the exhaust gas before and after that is detected and the temperature is detected according to the temperature. The time data MAXNO may be changed.

【0042】ステップ14〜16では、燃料カット要求
があれば(例えば減速時等)燃料カットフラグFLGF
CTに1をセット、燃料カット要求がなければ燃料カッ
トフラグFLGFCTをクリアする。
In steps 14 to 16, if there is a fuel cut request (for example, during deceleration), the fuel cut flag FLGF.
If CT is set to 1 and there is no fuel cut request, the fuel cut flag FLGFCT is cleared.

【0043】一方、ステップ9にてリッチ要求フラグF
LGRICHが有る(=1)と、ステップ17にて所定
の空燃比値KRICHを空燃比補正係数Kにセットし
て、ステップ18,19にてリッチ運転時間CHARG
Eをカウントすると共に、ステップ16にて燃料カット
フラグFLGFCTをクリアする。
On the other hand, in step 9, the rich request flag F
If LGRICH is present (= 1), a predetermined air-fuel ratio value KRICH is set to the air-fuel ratio correction coefficient K in step 17, and rich operating time CHARG is set in steps 18 and 19.
At the same time as counting E, the fuel cut flag FLGFCT is cleared in step 16.

【0044】この空燃比値KRICHは、理論空燃比以
上のリッチ空燃比に設定している。なお、NOx吸蔵触
媒15の温度状態によってNOxの脱離速度が変わるた
め、NOx吸蔵触媒15の温度あるいはその前後の排気
ガスの温度を検出して、その温度に応じて空燃比値KR
ICHを変更するようにして良い。
The air-fuel ratio value KRICH is set to a rich air-fuel ratio which is equal to or higher than the stoichiometric air-fuel ratio. Since the desorption rate of NOx changes depending on the temperature state of the NOx storage catalyst 15, the temperature of the NOx storage catalyst 15 or the temperature of exhaust gas before and after that is detected, and the air-fuel ratio value KR is detected according to the temperature.
The ICH may be changed.

【0045】リッチ運転時間CHARGEが経過する
と、ステップ20にてリッチ要求フラグFLGRICH
をクリアする。
When the rich operation time CHARGE has elapsed, the rich request flag FLGRICH is determined in step 20.
To clear.

【0046】ステップ21では、セットした空燃比補正
係数Kを基本燃料噴射量Tpに乗算して、燃料噴射量
(または噴射時間)TMINJを決定する。なお、目標
空燃比KMAP=1.0の運転中は、空燃比センサ16
の出力に基づく空燃比のフィードバック係数を設定す
る。
In step 21, the set air-fuel ratio correction coefficient K is multiplied by the basic fuel injection amount Tp to determine the fuel injection amount (or injection time) TMINJ. During operation of the target air-fuel ratio KMAP = 1.0, the air-fuel ratio sensor 16
The feedback coefficient of the air-fuel ratio based on the output of is set.

【0047】図3は第1、第2の空燃比センサ16,1
7の出力の差DLTAFを演算するためのフロー、図4
は第1、第2の空燃比センサ16,17の出力レベルを
調整するためのフローである。
FIG. 3 shows the first and second air-fuel ratio sensors 16, 1.
7, a flow for calculating the difference DLTAF of the outputs of FIG.
Is a flow for adjusting the output levels of the first and second air-fuel ratio sensors 16, 17.

【0048】図3にて、ステップ31ではリッチ要求フ
ラグFLGRICHが有る(=1)かどうかを確認す
る。
In FIG. 3, in step 31, it is confirmed whether or not the rich request flag FLGRICH is present (= 1).

【0049】リッチ要求フラグFLGRICHが有ると
きは、リーン運転中にないため、以下の処理は行わず、
リッチ要求フラグFLGRICHが無い場合、実行す
る。
When the rich request flag FLGRICH is present, the lean operation is not being performed, and therefore the following processing is not performed,
If there is no rich request flag FLGRICH, execute.

【0050】ステップ32では、第1の空燃比センサ1
6の出力AF1を読み込み、その今回の値AF1NEW
前回読み込んだ値AF1OLDとの平均値を第1の空燃比
センサ16の出力値AF1とする。この平均化処理は、
NOx吸蔵触媒15の上流の排気ガスの空燃比が機関の
運転状態で刻々変化するので行う。なお、前述したNO
x吸蔵触媒15の酸素消費特性によって、NOx吸蔵触
媒15の下流の排気ガスの空燃比は上流ほど変化しな
い。
In step 32, the first air-fuel ratio sensor 1
The output AF1 of 6 is read, and the average value of the current value AF1 NEW and the previously read value AF1 OLD is set as the output value AF1 of the first air-fuel ratio sensor 16. This averaging process is
This is performed because the air-fuel ratio of the exhaust gas upstream of the NOx storage catalyst 15 changes every moment in the operating state of the engine. Note that the above-mentioned NO
Due to the oxygen consumption characteristic of the x storage catalyst 15, the air-fuel ratio of the exhaust gas downstream of the NOx storage catalyst 15 does not change as much as upstream.

【0051】ステップ33では、その第1の空燃比セン
サ16の出力値AF1と、図4の処理により出力レベル
を修正後の第2の空燃比センサ17の修正出力値RRA
F2との差から、DLTAFを求める。
In step 33, the output value AF1 of the first air-fuel ratio sensor 16 and the corrected output value RRA of the second air-fuel ratio sensor 17 whose output level has been corrected by the processing of FIG.
DLTAF is calculated from the difference from F2.

【0052】図4にて、ステップ41,42ではλコン
トロール収束フラグFLGLMDが1、即ち理論空燃比
(理論空燃比を中心にした所定の範囲内)で運転を行っ
ているときに第1、第2の空燃比センサ16,17の出
力AF1、AF2を読み込み、その第1の空燃比センサ
16の出力AF1をメモリY2に、第2の空燃比センサ
17の出力AF2をメモリX2に記憶しておく。
In FIG. 4, in steps 41 and 42, the λ control convergence flag FLGLMD is 1, that is, the first and the second when the operation is performed at the stoichiometric air-fuel ratio (within a predetermined range around the stoichiometric air-fuel ratio). The outputs AF1 and AF2 of the two air-fuel ratio sensors 16 and 17 are read, the output AF1 of the first air-fuel ratio sensor 16 is stored in the memory Y2, and the output AF2 of the second air-fuel ratio sensor 17 is stored in the memory X2. .

【0053】ステップ43,44では、燃料カットフラ
グFLGFCTが1、即ち燃料噴射量が0のときに第
1、第2の空燃比センサ16,17の出力AF1、AF
2を読み込み、その第1の空燃比センサ16の出力AF
1をメモリY1に、第2の空燃比センサ17の出力AF
2をメモリX1に記憶しておく。
In steps 43 and 44, the outputs AF1 and AF of the first and second air-fuel ratio sensors 16 and 17 are set when the fuel cut flag FLGFCT is 1, that is, when the fuel injection amount is 0.
2 is read, and the output AF of the first air-fuel ratio sensor 16
1 in the memory Y1 and the output AF of the second air-fuel ratio sensor 17
2 is stored in the memory X1.

【0054】なお、燃料カットを実施しないことがある
ので、この場合ステップ45,46にてメモリY1、X
1にそれぞれ所定の値AFFCTをセットする。
Since the fuel cut may not be performed, in this case, in steps 45 and 46, the memories Y1 and X
A predetermined value AFFCT is set to 1.

【0055】ステップ47では、メモリY2、X2、Y
1、X1の値と現在読み込んだ第2の空燃比センサ17
の出力AF2とから、式RRAF2=(Y2−Y1)/
(X2−X1)×(AF2−X1)+Y1により、第2
の空燃比センサ17の修正出力値RRAF2を求める。
In step 47, memories Y2, X2, Y
The values of 1, X1 and the second air-fuel ratio sensor 17 currently read
From the output AF2 of RRAF2 = (Y2-Y1) /
(X2-X1) x (AF2-X1) + Y1 gives the second
The corrected output value RRAF2 of the air-fuel ratio sensor 17 is calculated.

【0056】即ち、酸素濃度が最大となる燃料カット時
と理論空燃比時の第1、第2の空燃比センサ16,17
の出力を基準に第2の空燃比センサ17の出力を修正す
るので、センサの固体差等に拘わらず第1、第2の空燃
比センサ16,17の出力レベルを適正に調整すること
ができる。そのため、第1、第2の空燃比センサ16,
17の出力を基に、NOx吸蔵触媒15の前後の空燃比
の差DLTAFを精度良く検出できる。
That is, the first and second air-fuel ratio sensors 16 and 17 at the time of fuel cut when the oxygen concentration is maximum and at the stoichiometric air-fuel ratio.
Since the output of the second air-fuel ratio sensor 17 is corrected on the basis of the output of, the output levels of the first and second air-fuel ratio sensors 16 and 17 can be appropriately adjusted regardless of the individual difference of the sensors. . Therefore, the first and second air-fuel ratio sensors 16,
Based on the output of 17, it is possible to accurately detect the difference DLTAF between the air-fuel ratios before and after the NOx storage catalyst 15.

【0057】このように構成したため、リーン運転中に
機関から排出されるNOxがNOx吸蔵触媒15に吸収
されると共に、NOx吸蔵触媒15のNOxの吸収量が
飽和レベル(許容吸収レベル)に近付くと、NOx吸蔵
触媒15の前後の排気ガスの空燃比(酸素濃度)がほぼ
等しくなって、これが第1、第2の空燃比センサ16,
17により検出されて、所定時間、理論空燃比以上のリ
ッチ運転が行われ、そのリッチ運転によってNOx吸蔵
触媒15が吸収していたNOxが脱離され、排気ガス中
のHC,COにより還元される。
With this configuration, when NOx exhausted from the engine during lean operation is absorbed by the NOx storage catalyst 15, and the amount of NOx absorbed by the NOx storage catalyst 15 approaches the saturation level (allowable absorption level). , The air-fuel ratio (oxygen concentration) of the exhaust gas before and after the NOx storage catalyst 15 becomes substantially equal, and this is the first and second air-fuel ratio sensors 16,
17, the rich operation above the stoichiometric air-fuel ratio is performed for a predetermined time, the NOx absorbed by the NOx storage catalyst 15 is desorbed by the rich operation, and is reduced by HC and CO in the exhaust gas. .

【0058】この場合、機関の負荷、回転数等から機関
のNOxの排出量を求めてNOx吸蔵触媒のNOxの吸
収量を推定するのでは、機関のNOxの排出量が大気
圧、乾湿温度、EGR量(排気還流量)、暖機状態等に
よっても変動するので、NOx吸蔵触媒の飽和レベルが
正確には把握されないが、NOx吸蔵触媒15の前後の
排気ガスの空燃比がほぼ等しくなることを利用して、N
Ox吸蔵触媒15が飽和レベルに近付くと、第1、第2
の空燃比センサ16,17により的確に把握される。
In this case, in order to estimate the NOx absorption amount of the NOx storage catalyst by obtaining the NOx emission amount of the engine from the engine load, the rotational speed, etc., the NOx emission amount of the engine is at atmospheric pressure, dry and wet temperature, The saturation level of the NOx storage catalyst cannot be accurately grasped because it varies depending on the EGR amount (exhaust gas recirculation amount), the warm-up state, and the like, but it is possible that the air-fuel ratios of the exhaust gas before and after the NOx storage catalyst 15 become substantially equal. Use, N
When the Ox storage catalyst 15 approaches the saturation level, the first and second
The air-fuel ratio sensors 16 and 17 of FIG.

【0059】また、NOx吸蔵触媒15に劣化があって
も、劣化判定手段を設けることなく、NOx吸蔵触媒1
5がそのときの状態における飽和レベルに近付くと、即
ち機関の運転条件、NOx吸蔵触媒15の劣化等にかか
わらず、そのときの状態にてNOx吸蔵触媒15が吸収
できるNOx量に近付くと、第1、第2の空燃比センサ
16,17により的確に把握される。
Further, even if the NOx storage catalyst 15 is deteriorated, the NOx storage catalyst 1 is not provided with the deterioration determining means.
When 5 approaches the saturation level in the state at that time, that is, when the NOx amount that the NOx storage catalyst 15 can absorb in the state at that time approaches regardless of the engine operating conditions, the deterioration of the NOx storage catalyst 15, and the like, It is accurately grasped by the first and second air-fuel ratio sensors 16 and 17.

【0060】このため、リッチ運転への切換えを的確に
行え、従来例のようにNOx吸蔵触媒のNOxの吸収量
が飽和レベルおよびNOx吸蔵触媒に劣化がある場合に
そのときの飽和レベルを越えたことが分からずリーン運
転が継続されるといったことはない。
Therefore, the switching to the rich operation can be performed accurately, and the NOx absorption amount of the NOx storage catalyst exceeds the saturation level and the saturation level at that time when the NOx storage catalyst deteriorates as in the conventional example. There is no chance that lean operation will be continued without knowing this.

【0061】したがって、NOxの外部への放出を十分
に低減できる。また、常にNOx吸蔵触媒15の吸収で
きる飽和レベル近くまでリーン運転を行えるため、リー
ン運転期間が長くなり、燃費を向上することができる。
Therefore, the release of NOx to the outside can be sufficiently reduced. Further, since the lean operation can always be performed up to a saturation level which can be absorbed by the NOx storage catalyst 15, the lean operation period is extended and the fuel consumption can be improved.

【0062】なお、既述したが、酸素濃度が最大となる
燃料カット時と理論空燃比時を基準に空燃比センサ1
6,17の出力レベルを調整するので、NOx吸蔵触媒
15の前後の空燃比の差DLTAFを精度良く検出で
き、したがってリーン運転からリッチ運転への切換制御
を一層的確に行える。
As described above, the air-fuel ratio sensor 1 is based on the fuel cut time when the oxygen concentration is maximum and the stoichiometric air fuel ratio.
Since the output levels of 6 and 17 are adjusted, the difference DLTAF between the air-fuel ratios before and after the NOx storage catalyst 15 can be accurately detected, and therefore the switching control from lean operation to rich operation can be performed more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment.

【図2】制御内容を示すフローチャートである。FIG. 2 is a flowchart showing control contents.

【図3】制御内容を示すフローチャートである。FIG. 3 is a flowchart showing control contents.

【図4】制御内容を示すフローチャートである。FIG. 4 is a flowchart showing control contents.

【符号の説明】[Explanation of symbols]

10 エンジン本体 11 吸気管 12 排気管 13 燃料噴射弁 14 点火栓 15 NOx吸蔵触媒 16,17 空燃比センサ 18 コントロールユニット 20 回転数センサ(クランク角センサ) 21 吸気センサ 22 アクセル開度センサ 23 冷却水温センサ 10 engine body 11 Intake pipe 12 Exhaust pipe 13 Fuel injection valve 14 Spark plug 15 NOx storage catalyst 16,17 Air-fuel ratio sensor 18 control unit 20 Revolution sensor (crank angle sensor) 21 Intake sensor 22 Accelerator position sensor 23 Cooling water temperature sensor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−177571(JP,A) 特開 平11−93744(JP,A) 特開 平11−93743(JP,A) 特開 平11−107741(JP,A) 特開 昭61−286549(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 41/40 F01N 3/08,3/20 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-8-177571 (JP, A) JP-A-11-93744 (JP, A) JP-A-11-93743 (JP, A) JP-A-11- 107741 (JP, A) JP-A-61-286549 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F02D 41/00-41/40 F01N 3 / 08,3 / 20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排気管にNOx吸蔵触媒を配置すると共
に、所要の運転条件下では理論空燃比よりも希薄側のリ
ーン空燃比運転を行う内燃機関において、 前記NOx吸蔵触媒の前後の排気管にそれぞれ排気ガス
中の酸素濃度に比例した出力を発生する空燃比センサを
設置し、 リーン空燃比運転中にこれらの空燃比センサの出力に基
づいてNOx吸蔵触媒のNOxの吸収レベルを判定する
NOx吸収レベル判定手段を設けると共に、 このNOxの吸収レベルの判定に際して、NOx吸蔵触
媒の前方の空燃比センサの出力についてのみ、今回の出
力値と前回の出力値とを平均化した値を用いる ことを特
徴とする内燃機関の排気浄化装置。
1. An internal combustion engine in which a NOx storage catalyst is arranged in an exhaust pipe and which performs lean air-fuel ratio operation leaner than a theoretical air-fuel ratio under required operating conditions, in exhaust pipes before and after the NOx storage catalyst. An air-fuel ratio sensor that generates an output that is proportional to the oxygen concentration in the exhaust gas is installed, and the NOx absorption level of the NOx storage catalyst is determined based on the output of these air-fuel ratio sensors during lean air-fuel ratio operation. Rutotomoni provided level determining means, upon determination of the absorption level of the NOx, catalyst NOx storage
Only the output of the air-fuel ratio sensor in front of the medium
An exhaust emission control device for an internal combustion engine, which uses an average value of a force value and a previous output value .
【請求項2】 排気管にNOx吸蔵触媒を配置すると共
に、所要の運転条件下では理論空燃比よりも希薄側のリ
ーン空燃比運転を行う内燃機関において、 前記NOx吸蔵触媒の前後の排気管にそれぞれ排気ガス
中の酸素濃度に比例した出力を発生する空燃比センサを
設置し、 リーン空燃比運転中にこれらの空燃比センサの出力がほ
ぼ等しくなったときに一時的に空燃比を理論空燃比以上
のリッチ空燃比に切換える空燃比切換手段を設けると共
に、 この空燃比センサの出力の比較に際して、NOx吸蔵触
媒の前方の空燃比センサの出力についてのみ、今回の出
力値と前回の出力値とを平均化した値を用いる ことを特
徴とする内燃機関の排気浄化装置。
2. In an internal combustion engine in which a NOx storage catalyst is arranged in the exhaust pipe and which performs lean air-fuel ratio operation leaner than the stoichiometric air-fuel ratio under required operating conditions, the exhaust pipe before and after the NOx storage catalyst is provided. An air-fuel ratio sensor that generates an output proportional to the oxygen concentration in the exhaust gas is installed, and the air-fuel ratio is temporarily changed to the theoretical air-fuel ratio when the outputs of these air-fuel ratio sensors become almost equal during lean air-fuel ratio operation. co When Ru is provided an air-fuel ratio switching means for switching to a rich air-fuel ratio of the above
In comparing the output of this air-fuel ratio sensor,
Only the output of the air-fuel ratio sensor in front of the medium
An exhaust emission control device for an internal combustion engine, which uses an average value of a force value and a previous output value .
【請求項3】 前記NOx吸蔵触媒の前後の空燃比セン
サの出力レベルを調整する出力レベル調整手段を備える
請求項1または2に記載の内燃機関の排気浄化装置。
3. The exhaust emission control device for an internal combustion engine according to claim 1, further comprising output level adjusting means for adjusting an output level of the air-fuel ratio sensor before and after the NOx storage catalyst.
【請求項4】 前記出力レベル調整手段は、燃料カット
運転時と理論空燃比運転時の空燃比センサの出力に基づ
き空燃比センサの出力レベルを調整する請求項3に記載
の内燃機関の排気浄化装置。
4. The exhaust gas purification of an internal combustion engine according to claim 3, wherein the output level adjusting means adjusts the output level of the air-fuel ratio sensor based on the output of the air-fuel ratio sensor during fuel cut operation and stoichiometric air-fuel ratio operation. apparatus.
JP26984997A 1997-10-02 1997-10-02 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3489410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26984997A JP3489410B2 (en) 1997-10-02 1997-10-02 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26984997A JP3489410B2 (en) 1997-10-02 1997-10-02 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11107808A JPH11107808A (en) 1999-04-20
JP3489410B2 true JP3489410B2 (en) 2004-01-19

Family

ID=17478060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26984997A Expired - Lifetime JP3489410B2 (en) 1997-10-02 1997-10-02 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3489410B2 (en)

Also Published As

Publication number Publication date
JPH11107808A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP3873904B2 (en) Exhaust gas purification device for internal combustion engine
JPH0814030A (en) Exhaust emission control element deterioration detector for internal combustion engine
JP4208012B2 (en) Exhaust gas purification device for internal combustion engine
KR20010053518A (en) evaporated fuel processing device of internal combustion engine
JPH0988691A (en) Compression ignition internal combustion engine
JP3775229B2 (en) Exhaust gas purification device for internal combustion engine
JP3828425B2 (en) Exhaust gas purification method for internal combustion engine
JP3489410B2 (en) Exhaust gas purification device for internal combustion engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP3591320B2 (en) Exhaust gas purification device for internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
JP3937487B2 (en) Exhaust gas purification device for internal combustion engine
JP3843847B2 (en) Air-fuel ratio control device for internal combustion engine
JP3478135B2 (en) Exhaust gas purification device for internal combustion engine
JP3823756B2 (en) Engine exhaust purification system
JP3509502B2 (en) Exhaust gas purification control device for internal combustion engine
JP4144405B2 (en) Deterioration judgment device for exhaust aftertreatment device
JP2000337130A (en) Exhaust emission control system for internal combustion engine
JP3829422B2 (en) Exhaust gas purification device for internal combustion engine
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
JP3671647B2 (en) Exhaust gas purification device for internal combustion engine
JP4666542B2 (en) Exhaust gas purification control device for internal combustion engine
JP3520731B2 (en) Engine exhaust purification device
JP3744373B2 (en) Exhaust gas purification device for internal combustion engine
JP3610893B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

EXPY Cancellation because of completion of term