JP3488118B2 - Electrolyte circulation device for electrolyte circulation type battery - Google Patents

Electrolyte circulation device for electrolyte circulation type battery

Info

Publication number
JP3488118B2
JP3488118B2 JP04459999A JP4459999A JP3488118B2 JP 3488118 B2 JP3488118 B2 JP 3488118B2 JP 04459999 A JP04459999 A JP 04459999A JP 4459999 A JP4459999 A JP 4459999A JP 3488118 B2 JP3488118 B2 JP 3488118B2
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic solution
battery
solution circulating
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04459999A
Other languages
Japanese (ja)
Other versions
JP2000243415A (en
Inventor
洋成 出口
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP04459999A priority Critical patent/JP3488118B2/en
Publication of JP2000243415A publication Critical patent/JP2000243415A/en
Application granted granted Critical
Publication of JP3488118B2 publication Critical patent/JP3488118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電解液循環型電池の
電解液循環装置に関し、なかでも、絶縁不良に伴うトラ
ブルを回避し漏電の持続を防止した、レドックスフロー
型2次電池の電解液循環装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution circulating device for an electrolytic solution circulating type battery, and more particularly, to an electrolytic solution circulating system for a redox flow type secondary battery, which avoids troubles caused by poor insulation and prevents leakage from continuing. Regarding the device.

【0002】[0002]

【従来の技術】近年、燃料電池やレドックスフロー型2
次電池等の電解液循環型電池に対して、大容量化、高効
率化の要求が増える傾向にある。この傾向は、電力ロー
ドレベリング用の電力貯蔵技術の中核装置として、電解
液循環型電池が多くの好ましい特性を備えていることに
起因する。なかでも、レドックスフロー型2次電池は、
(イ)原理が単純で長寿命である、(ロ)待機中の電力
損がなく、しかも起動が早い、(ハ)設置場所の制約が
小さく、かつレイアウトの設計が容易である、(ニ)保
守管理が容易である、(ホ)防災性に優れる、(ヘ)リ
サイクル性に優れる、等の多くの長所を備えている。こ
のため、従来からロードレベリング用に建設されてきた
揚水発電に代わる技術として実用化の期待が高まってい
る。
2. Description of the Related Art In recent years, fuel cells and redox flow type 2
There is an increasing demand for higher capacity and higher efficiency for electrolyte circulating batteries such as secondary batteries. This tendency is due to the fact that the electrolyte circulating battery has many desirable characteristics as the core device of the power storage technology for power load leveling. Among them, the redox flow type secondary battery is
(A) The principle is simple and has a long life, (b) there is no power loss during standby, and the startup is fast, (c) there are few restrictions on the installation location, and layout design is easy. (D) It has many advantages such as easy maintenance, (e) excellent disaster prevention, and (f) excellent recyclability. For this reason, there are increasing expectations for its practical application as a technology that will replace pumped-storage power generation, which has been conventionally constructed for load leveling.

【0003】また、小型のレドックスフロー型2次電池
については、都市の電力需要家に近接して、例えばオフ
ィスビル等の地下に設置して、安価な夜間電力により充
電し、昼間にこれを放電して使用し電力料金の節減を図
ることが可能である。さらに、病院やホテル用には瞬停
防止機能を付加して、非常用電源として使用することも
可能である。
A small redox flow secondary battery is installed in the basement of an office building, for example, close to a power consumer in a city, charged with inexpensive night power, and discharged in the daytime. It can be used to save electricity charges. Furthermore, for hospitals and hotels, it is possible to add an instantaneous power failure prevention function and use it as an emergency power source.

【0004】図5にレドックスフロー型2次電池の原理
を模式的に示す。正負極の電解液としては、バナジウム
等の金属イオンを溶解させた酸性水溶液が用いられる。
正極液タンク502に貯蔵された正極液は、正極液ポン
プ508に循環流通を促進され、正極液流路507を経
て電池セル501の中の正極室501aに送り込まれ
る。正極液ポンプ508は電動機509によって駆動さ
れる。正極液は、正極室501aに備えられた正極電極
505を経て出入りする電子と後記する電気化学反応を
して、正極液中に含まれる金属イオンの価数を変化させ
る。
FIG. 5 schematically shows the principle of a redox flow type secondary battery. As the electrolytic solution for the positive and negative electrodes, an acidic aqueous solution in which metal ions such as vanadium are dissolved is used.
The positive electrode liquid stored in the positive electrode liquid tank 502 is promoted to circulate and flow by the positive electrode liquid pump 508, and is sent to the positive electrode chamber 501a in the battery cell 501 through the positive electrode liquid flow path 507. The positive electrode liquid pump 508 is driven by an electric motor 509. The positive electrode liquid undergoes an electrochemical reaction, which will be described later, with electrons that go in and out through the positive electrode 505 provided in the positive electrode chamber 501a, and changes the valence of metal ions contained in the positive electrode liquid.

【0005】負極液タンク503に貯蔵された負極液も
正極液と同様に、負極液流路510を経て正極での反応
と同期して電気化学反応を行う。負極液ポンプ511、
電動機512、負極室501b、負極電極506は、正
極液の場合の対応する部材と同様の働きをする。
Similarly to the positive electrode liquid, the negative electrode liquid stored in the negative electrode liquid tank 503 also undergoes an electrochemical reaction in synchronization with the reaction in the positive electrode through the negative electrode liquid flow path 510. Negative electrode liquid pump 511,
The electric motor 512, the negative electrode chamber 501b, and the negative electrode 506 function similarly to the corresponding members in the case of the positive electrode liquid.

【0006】バナジウム系電解液を使用する場合、充電
時には、正極電極では、V4+→V5++ e- (酸化反
応)、負極電極では、V3++ e- →V2+(還元反応)の
電気化学反応が生じる。一方、放電時には、各電極にお
いて逆方向の反応、すなわち、正極電極では、V5++ e
- →V4+(還元反応)、負極電極では、V2+→V3++ e
-(酸化反応)が進行する。正極での反応と負極での反
応とは、外部回路を移動する電子と、隔膜504を通過
する電解液中のプロトンとによって電荷を平衡させて同
期が確保される。充電および放電の効果は、電解液中の
全金属イオン数が一定に保たれる場合、上記の充放電反
応で相互に変化する相異なる価数の金属イオンの全金属
イオンに対する比率として保有される。すなわち、充電
および放電の効果は電解液タンクを含む電解液流路中の
電解液によって保持される。
When a vanadium-based electrolyte is used, during charging, V 4+ → V 5+ + e (oxidation reaction) at the positive electrode and V 3+ + e → V 2+ (reduction at the negative electrode) Reaction) electrochemical reaction occurs. On the other hand, during discharge, the reaction in the opposite direction occurs at each electrode, that is, at the positive electrode, V 5+ + e
- → V 4+ (reduction reaction), V 2+ → V 3+ + e at the negative electrode
- (Oxidation reaction) progresses. Synchronization between the reaction at the positive electrode and the reaction at the negative electrode is ensured by balancing the charges by the electrons moving in the external circuit and the protons in the electrolytic solution passing through the diaphragm 504. The effect of charging and discharging is retained as the ratio of metal ions of different valences that change mutually in the above charge / discharge reaction to the total metal ions when the total number of metal ions in the electrolytic solution is kept constant. . That is, the effects of charging and discharging are retained by the electrolytic solution in the electrolytic solution flow path including the electrolytic solution tank.

【0007】図5は、単一の電池セルを用いた場合を示
すものであるが、通常のレドックスフロー型2次電池は
単一の電池セルで使用されることはない。バナジウム系
電解液を用いた場合、単一電池セルの反応で生じる電圧
(起電力)は約1.33Vであるが、実用化のために
は、数十〜数百Vの電圧を発生させる必要がある。この
ため、図6に模式的に示すように、単一電池セル501
を電気的に直列に接続させた積層構造、すなわち電池セ
ルスタック601が用いられる。実用化の規模にもよる
が、直流電圧で約500V程度必要とされる場合には、
単一電池セル380枚程度を電気的に直列接続した積層
構造が必要とされる。しかしながら、あまり1個の電池
セルスタックの積層数を多くすると、締め付けが十分行
われず、所定の電圧を確保することができない。また、
電解液内漏洩電流を抑制する必要もあり、積層数を60
枚程度以下に制限した電池セルスタックを用いるのが普
通である。例えば、出力450kWの規模の場合、60
枚程度の積層数の電池セルスタックを4個並列接続した
ものを2個直列に接続した単位を1モジュールとして、
3モジュールを直列に接続した電池が用いられる。この
場合、両端の電池セルの間の電圧は約480Vに達す
る。
FIG. 5 shows the case where a single battery cell is used, but a normal redox flow secondary battery is not used in a single battery cell. When a vanadium-based electrolytic solution is used, the voltage (electromotive force) generated by the reaction of a single battery cell is about 1.33V, but it is necessary to generate a voltage of several tens to several hundreds of V for practical use. There is. Therefore, as shown schematically in FIG. 6, the single battery cell 501
A battery cell stack 601 is used in which a battery cell stack 601 is electrically connected in series. Depending on the scale of practical application, if a DC voltage of about 500 V is required,
A laminated structure in which about 380 single battery cells are electrically connected in series is required. However, if the number of stacked battery cell stacks is too large, the tightening will not be sufficiently performed and a predetermined voltage cannot be secured. Also,
It is necessary to suppress the leakage current in the electrolytic solution, and the number of stacked layers is 60
It is usual to use a battery cell stack limited to a number of sheets or less. For example, if the output is 450 kW, 60
One module is a unit in which two battery cell stacks each having a stack number of about four are connected in parallel and two are connected in series.
A battery in which three modules are connected in series is used. In this case, the voltage between the battery cells at both ends reaches about 480V.

【0008】図6は正極液タンク602から正極液が正
極液流路623を経て、電池セルに供給される場合のみ
を示すが、図示されていない負極液についても同様に負
極液タンクから負極液流路を経て電池セルに供給され
る。
Although FIG. 6 shows only the case where the positive electrode liquid is supplied from the positive electrode liquid tank 602 to the battery cell through the positive electrode liquid flow path 623, the same applies to the negative electrode liquid (not shown) from the negative electrode liquid tank. It is supplied to the battery cell through the flow path.

【0009】[0009]

【発明が解決しようとする課題】電解液の循環流通を促
進させるポンプや電磁弁等の補機は、接液部はすべてフ
ッ素樹脂等の耐酸、耐食性材料で形成されているが、一
体構造で作製することはできず、複数個の部材を組み合
わせて完成される。これら組み合わせ構造には必ず接合
部があり、その接合部にはパッキングやOリング等が用
いられる。接合部の一部分であるOリングやパッキング
では、電解液が接合界面に浸透する等の理由により電気
的絶縁を完全にすることは困難である。
In an auxiliary machine such as a pump or a solenoid valve that promotes circulation of an electrolytic solution, all of the wetted parts are made of an acid-resistant and corrosion-resistant material such as fluororesin. It cannot be manufactured, and it is completed by combining a plurality of members. These combined structures always have a joint, and a packing, an O-ring, or the like is used for the joint. With an O-ring or packing, which is a part of the joint, it is difficult to achieve complete electrical insulation because the electrolyte penetrates into the joint interface.

【0010】このため、図6に示すように、電解液流通
制御手段608の接合部に絶縁不良個所700を生じ、
電解液からの電気機器609への漏電が発生する。漏電
した電荷は電動機等が直流絶縁されていなければ、地面
に漏洩する。また、対地絶縁が施された場合は、漏洩電
荷はポンプを駆動する電動機や電磁弁等の筐体(シャー
シ)に留まり、それら部位が帯電して高電位になる。電
解液流通制御手段である電動機や電磁弁等には、起磁力
発生のために巻線が施されているのが普通であり、これ
ら巻線はエナメル被覆等、低電圧の範囲内で絶縁を維持
しうる対策が施されている。しかし、対地絶縁手段付き
の電動機の筐体に高電圧化された電解液から漏電があ
り、その筐体が高電圧になると絶縁性を維持することが
困難になる。その結果、上記筐体から巻線にスパークが
生じ補機の正常運転が不可能となったり、電源側の直流
絶縁がなされていないと電源側への漏洩電流が発生して
電池効率を低下させる等の問題が生じていた。
Therefore, as shown in FIG. 6, a defective insulation portion 700 is generated at the joint portion of the electrolyte flow control means 608,
Electric leakage from the electrolytic solution to the electric device 609 occurs. The leaked electric charge leaks to the ground unless the electric motor or the like is DC-insulated. Further, when ground insulation is applied, the leakage charge remains in a casing (chassis) such as an electric motor or a solenoid valve that drives a pump, and those portions are charged to a high potential. The electric motor, solenoid valve, etc., which is the means for controlling electrolyte flow, are usually provided with windings for generating magnetomotive force, and these windings should be insulated within a low voltage range such as enamel coating. Sustainable measures are in place. However, when the housing of the electric motor with the ground insulating means is leaked from the electrolytic solution having a high voltage, it becomes difficult to maintain the insulating property when the housing has a high voltage. As a result, sparks are generated from the casing to the windings, and normal operation of the auxiliary equipment becomes impossible.If the DC insulation on the power supply side is not made, leakage current to the power supply side occurs and battery efficiency decreases. There were problems such as.

【0011】そこで、本発明の目的は、電解液循環型電
池を高電圧化しても直流絶縁が確実になされ、補機内で
スパークを発生させず、高電池効率を維持させうる電解
液循環型電池の電解液循環装置、なかでもレドックスフ
ロー2次電池の電解液循環装置を提供することにある。
Therefore, an object of the present invention is to ensure that direct current insulation is ensured even if the voltage of the electrolytic solution circulation type battery is raised, sparks are not generated in the auxiliary equipment, and high battery efficiency can be maintained. In particular, it is to provide an electrolytic solution circulating device for redox flow secondary batteries.

【0012】[0012]

【課題を解決するための手段】本発明の電解液循環型電
池の電解液循環装置は、交流直流変換器を含む電気系統
内に配置された複数の電池セルと電解液タンクとを通る
電解液流路を流通循環する電解液に接触して電解液の流
通循環を制御する電解液流通制御手段と、電解液流通制
御手段と導通する筐体に収納され、その電解液流通制御
手段を駆動させる、起磁力発生の巻線が設けられた電気
機器と、を備える。そして、電気機器の巻線への電源か
らの電力の投入は電源から絶縁用変圧器を介して行わ
れ、電気的に接続された複数の電池セルのいずれかの位
置の端子と、絶縁用変圧器における電気機器の側の端子
とが電気的に結線されている。
An electrolytic solution circulating apparatus for an electrolytic solution circulating type battery according to the present invention is an electric system including an AC / DC converter.
An electrolyte flow control means for controlling the flow circulation of the electrolyte by contacting with the electrolyte circulating through the electrolyte flow path passing through the plurality of battery cells and the electrolyte tank It is housed in a case that is in communication with the liquid flow control means and controls the flow of the electrolytic solution.
Driving means, and the electric device which windings are provided in the magnetomotive force, Ru comprising a. Then, the power supply from the power supply to the winding of the electric device is performed from the power supply through the insulating transformer, and any one of the plurality of battery cells electrically connected is connected.
The terminal of the storage device is electrically connected to the terminal of the insulating transformer on the side of the electric device.

【0013】電動機や電磁弁等への電気機器への電力投
入が、絶縁用変圧器を介して行われるので、上記電気機
器の電源側における直流絶縁が完全になされる。その結
果、電気機器内の巻線のエナメル絶縁皮膜が損傷された
場合でも、その絶縁不良個所を通じて電解液から電源が
わに漏電が生じることはない。さらに、絶縁用変圧器を
介することにより、後記するような巻線の絶縁皮膜の耐
圧を超える電圧が巻線とその電気機器の筐体との間にか
からないように電気的結線による電位差低減という手段
をとることができるようになる。
Since the electric power is supplied to the electric device such as the electric motor and the solenoid valve through the insulating transformer, the direct current insulation on the power source side of the electric device is completed. As a result, even if the enamel insulating film of the winding in the electric device is damaged, the electrolytic solution does not cause leakage of power from the electrolytic solution through the defective portion. Further, by means of an insulating transformer, a means for reducing the potential difference by electrical connection so that a voltage exceeding the withstand voltage of the insulating film of the winding as described later does not occur between the winding and the casing of the electric device. Will be able to take.

【0014】すなわち、電池セルにおける端子と、絶縁
用変圧器における電気機器の側の端子と、が電気的に結
線されることにより、絶縁用変圧器の出力端子に接続し
ている電気機器の巻線の電位を、電解液の電位に近づけ
ることができる。その結果、パッキング等から漏電があ
って、対地絶縁がなされた電動機の筐体が帯電して電解
液と同等の高電位になっても、巻線も同様の電位になっ
ているので、筐体と巻線との間の電位差が巻線の絶縁皮
膜の耐圧を超えることはない。その結果、筐体と巻線と
の間にスパークを生じることはなく、電動機の動作の異
常発生を防止することが可能となる。また、上記の電気
機器の電源側には絶縁用変圧器が配されているので、上
記のスパーク以外の他の何らかの原因により生じた絶縁
不良部からの電源側への漏電を防止することが可能とな
る。また、上記の電池セルスタック端子と絶縁用変圧器
の出力側端子との間の電気的結線においては、帯電個所
が筐体でなく、他の帯電個所であっても、電解液からの
漏電が原因である限り、その帯電個所から巻線へのスパ
ーク発生を防止することが可能である。
That is, the terminals of the battery cell and the terminals of the insulating transformer on the side of the electric device are electrically connected to each other, so that the winding of the electric device connected to the output terminal of the insulating transformer is wound. The potential of the line can be brought close to that of the electrolyte. As a result, even if there is a leakage from the packing, etc., and the casing of the motor, which is insulated from the ground, is charged to a high potential equivalent to that of the electrolytic solution, the winding has the same potential. The potential difference between the winding and the winding does not exceed the withstand voltage of the insulating film of the winding. As a result, no spark is generated between the housing and the winding, and it becomes possible to prevent an abnormal operation of the electric motor. In addition, since an insulating transformer is arranged on the power supply side of the above electrical equipment, it is possible to prevent leakage of power to the power supply side from a defective insulation part caused by some cause other than the above spark. Becomes Further, in the electrical connection between the battery cell stack terminal and the output side terminal of the insulating transformer, even if the electrified place is not the casing but other electrified place, leakage from the electrolytic solution may occur. As long as it is the cause, it is possible to prevent the occurrence of sparks from the charged part on the winding.

【0015】なお、上記の電気機器には、各種電動機、
電磁弁の弁駆動部、等が該当し、直流機の場合には交流
直流変換機も含まれる。また、電解液タンクにおいて電
解液を攪拌するための駆動手段であるポンプ等も含まれ
る。
The above electric equipment includes various electric motors,
The valve drive part of a solenoid valve, etc. correspond, and in the case of a DC machine, an AC / DC converter is also included. It also includes a pump or the like that is a driving means for stirring the electrolytic solution in the electrolytic solution tank.

【0016】上記の本発明の電解液循環型電池の電解液
循環装置では、交流直流変換器を含む電気系統内に配置
された複数の電池セルと電解液タンクとを通る電解液流
路を流通循環する電解液に接触して電解液の流通循環を
制御する電解液流通制御手段と、電解液流通制御手段
導通する筐体に収納され、その電解液流通制御手段を
動させる、起磁力発生の巻線が設けられた電気機器と
を備える。そして、電気機器の巻線への電源からの電力
の投入は電源から絶縁用変圧器を介して行われ、絶縁用
変圧器における電気機器の側の端子と電気機器の筐体
とが電気的に結線されている。
In the electrolytic solution circulating device for the electrolytic solution circulating type battery according to the present invention, the electrolytic solution circulating device is arranged in an electric system including an AC / DC converter.
And electrolyte communication control means in contact with the electrolyte solution to control the flow circulation of the electrolyte flowing circulating electrolyte flow path through the plurality of battery cells and an electrolyte tank, and electrolyte communication control means
An electric device that is housed in a casing that conducts electricity and that has a winding for generating a magnetomotive force that drives the electrolyte flow control means ;
Ru equipped with. Then, the power supply from the power source to the winding of the electric device is performed from the power source through the insulating transformer, and the terminal on the electric device side in the insulating transformer and the casing of the electric device are electrically connected. Is connected to.

【0017】上記のように、絶縁用変圧器の出力側端子
と上記筐体とが電気的に結線されることにより、筐体と
巻線との間の電位差を巻線の絶縁皮膜の耐圧以下に収め
ることが確実に可能となる。その結果、筐体と巻線との
間のスパーク発生を防止することが可能となる。上記の
筐体と絶縁用変圧器の出力側端子との電気的結線は、原
因が何によるかを問わず、筐体から上記巻線へのスパー
ク発生を防止するという観点からは最も直接的な結線と
なっている。
By electrically connecting the output side terminal of the insulating transformer and the casing as described above, the potential difference between the casing and the winding is less than the withstand voltage of the insulating film of the winding. It is certainly possible to fit in. As a result, it becomes possible to prevent the occurrence of sparks between the housing and the winding. Regardless of the cause, the electrical connection between the case and the output side terminal of the insulating transformer is the most direct from the viewpoint of preventing sparks from the case to the winding. It is connected.

【0018】上記の本発明の電解液循環型電池の電解液
循環装置の電気的な結線においては、いずれの結線にお
いても、電流を抑制するための電気抵抗が挿入されてい
ることが望ましい。
In the electrical connection of the electrolytic solution circulating apparatus for the electrolytic solution circulating type battery of the present invention described above, it is desirable that an electric resistance for suppressing a current is inserted in any connection.

【0019】上記の結線に漏洩電流抑制用の電気抵抗を
挿入することにより、万一、電動機筐体の対地絶縁が劣
化した個所が発生し、漏電が持続的に起きる場合にも、
上記の電気的な結線を通じた大きな漏洩電流の発生を防
止できる。その結果、例えば対地絶縁の劣化にともなう
急激な電力損失を生じないようにすることが可能とな
る。また、その他の結線においても電位差が何らかの理
由で定常的または周期的に生じて電流が流れた場合で
も、その電流値を小さくすることが可能となり、電池効
率の急激な劣化を防止することが可能となる。さらに、
これらの電流に起因する上記電池の構成材料の腐食の進
行を非常に小さく抑制することが可能となる。
By inserting an electric resistance for suppressing a leakage current in the above connection, even if a location where the insulation of the electric motor housing from ground is deteriorated and a leakage occurs continuously,
It is possible to prevent the generation of a large leakage current through the above electrical connection. As a result, it becomes possible to prevent abrupt power loss due to deterioration of ground insulation, for example. In addition, even in the case of other wiring, even if the electric potential difference is generated steadily or periodically for some reason and a current flows, it is possible to reduce the current value and prevent rapid deterioration of battery efficiency. Becomes further,
It is possible to suppress the progress of corrosion of the constituent materials of the battery due to these currents to a very small level.

【0020】上記の本発明の電解液循環型電池の電解液
循環装置には、上記の電気的な結線に、電池セルにおけ
る端子からの漏洩電流を測定するための電流計がさらに
備えられることが望ましい。
The electrolytic solution circulating apparatus for an electrolytic solution circulating type battery according to the present invention may further include an ammeter for measuring the leakage current from the terminals of the battery cells, in addition to the electrical connection. desirable.

【0021】上記の電流計により漏洩電流をモニタする
ことにより、絶縁特性の良不良を知ることができ、絶縁
特性が不良の場合には直ちに対策をとることが可能とな
る。
By monitoring the leakage current with the ammeter described above, it is possible to know whether the insulation characteristic is good or bad, and if the insulation characteristic is bad, it is possible to immediately take measures.

【0022】上記の本発明の電解液循環型電池の電解液
循環装置の電気機器の筐体には、対地絶縁手段が備えら
れることが望ましい。
It is desirable that the casing of the electric equipment of the electrolytic solution circulating apparatus for the electrolytic solution circulating type battery of the present invention is provided with a ground insulating means.

【0023】上記のように筐体に対地絶縁手段を設ける
ことにより、電解液から電解液流通制御手段および電気
機器を経た対地への漏電を防止することができる。この
結果、上記電解液循環型電池の電池効率を高く維持する
ことが可能となる。
By providing the housing with the ground insulating means as described above, it is possible to prevent leakage of the electrolyte from the electrolytic solution to the ground through the electrolytic solution flow control means and the electric equipment. As a result, it becomes possible to maintain high battery efficiency of the electrolyte circulation battery.

【0024】[0024]

【発明の実施の形態】(実施の形態1)図1に、本発明
の実施の形態1の電解液循環装置を示す。この電解液循
環装置は、電解液の流通制御手段であるポンプ10と、
ポンプの駆動手段である3相誘導電動機1と、電源であ
る汎用インバータ5と、電源から3相誘導電動機に至る
間に介在する絶縁用変圧器4とを備える。3相誘導電動
機1は起磁力発生のための巻線2および収納用の筐体3
を備える。絶縁用変圧器4は、3相誘導電動機の稼動に
合わせて、中性点oを中心にu、v、wの3端子を有す
る3相変圧器である。
(Embodiment 1) FIG. 1 shows an electrolytic solution circulating apparatus according to Embodiment 1 of the present invention. This electrolytic solution circulation device includes a pump 10 which is a flow control means for the electrolytic solution,
A three-phase induction motor 1 that is a driving means of a pump, a general-purpose inverter 5 that is a power supply, and an insulating transformer 4 that is interposed between the power supply and the three-phase induction motor. The three-phase induction motor 1 includes a winding 2 for generating a magnetomotive force and a housing 3 for storage.
Equipped with. The insulating transformer 4 is a three-phase transformer having three terminals u, v, and w centered on the neutral point o in accordance with the operation of the three-phase induction motor.

【0025】一方、電解液循環型電池としてはレドック
スフロー型2次電池が使用され、電池部分では、レドッ
クスフロー型2次電池の電池セルスタック11が2個直
列に結線されている。図1では、左側の電池セルスタッ
クの正極液を送液する構成のみを示すが、負極液も正極
液と同様な構成により同じ電池セルスタックの負極室に
送液される。図1において、正極液タンク22に貯蔵さ
れた正極液はポンプ10に循環流通を促進されて、正極
液流通路23を経て正極室に送液される。
On the other hand, a redox flow type secondary battery is used as the electrolytic solution circulation type battery, and two battery cell stacks 11 of the redox flow type secondary battery are connected in series in the battery portion. In FIG. 1, only the configuration for feeding the positive electrode liquid of the left battery cell stack is shown, but the negative electrode liquid is also fed to the negative electrode chamber of the same battery cell stack with the same configuration as the positive electrode liquid. In FIG. 1, the positive electrode liquid stored in the positive electrode liquid tank 22 is promoted to circulate and flow by the pump 10, and is sent to the positive electrode chamber through the positive electrode liquid flow passage 23.

【0026】正極液の流通制御手段であるポンプ10
は、3相誘導電動機1によって駆動されるが、図1にお
いて、その駆動力付与機構15(例えば回転軸)を模式
的に示す。
A pump 10 which is a means for controlling the flow of the positive electrode liquid.
Is driven by the three-phase induction motor 1, and in FIG. 1, a driving force applying mechanism 15 (for example, a rotating shaft) thereof is schematically shown.

【0027】本発明の電解液循環装置では、(a)電解
液の流通制御手段であるポンプ10を駆動する3相誘導
電動機1に電力が直接電源から投入されず、絶縁用変圧
器4を経て投入される。また、(b)電池セルスタック
間の端子と、絶縁用変圧器4の電動機側端子の中性点o
と、が結線6により導通されている。絶縁用変圧器の電
動機側端子は中性点oでなく、端子u、v、wのいずれ
でもよいが、平均的な電位という意味で中性点oと接続
することが好ましい。また、上記のように接続する電池
セルスタックの端子位置は、電解液の平均電位を取り出
すために、電池セルスタック全体のなかで中間電位とな
る位置が望ましい。また、図1において、(c)電動機
の筐体3には対地絶縁手段9が設けられている。
In the electrolytic solution circulating apparatus of the present invention, (a) electric power is not directly supplied from the power source to the three-phase induction motor 1 for driving the pump 10 which is the flow control means of the electrolytic solution, and the electric power is passed through the insulating transformer 4. It is thrown in. Further, (b) the neutral point o between the terminals between the battery cell stacks and the motor side terminal of the insulating transformer 4.
And are connected by a connection 6. The motor side terminal of the insulating transformer may be any of the terminals u, v and w instead of the neutral point o, but is preferably connected to the neutral point o in the sense of an average potential. Further, the terminal positions of the battery cell stacks connected as described above are preferably positions at an intermediate potential in the entire battery cell stack in order to take out the average potential of the electrolytic solution. Further, in FIG. 1, (c) the housing 3 of the electric motor is provided with a ground insulating means 9.

【0028】電解液とポンプ10との間の電気絶縁が劣
化した場合、電解液の電位は上記機械エネルギ付与機構
15を経由して3相誘導電動機の筐体3の電位を高め
る。すなわち、電解液の電荷が機械エネルギ付与機構を
経由して筐体に流れ込みその筐体を帯電させる。上記の
(a)と(b)とを備えず、(c)のみを備えた従来の
装置においては、上記3相誘導電動機の筐体が高電位に
なり、周囲の部材、例えば3相誘導電動機の巻線との電
位差が耐圧を超え、漏電やスパークを生じ、補機の正常
な運転が不可能となる。また、その他に生じる問題とし
て、上記スパーク等による巻線の絶縁不良個所から電源
を経由する漏電が生じ、上記電池の電池効率を低下させ
る。
When the electrical insulation between the electrolytic solution and the pump 10 deteriorates, the potential of the electrolytic solution increases the potential of the housing 3 of the three-phase induction motor via the mechanical energy applying mechanism 15. That is, the electric charge of the electrolytic solution flows into the housing via the mechanical energy applying mechanism to charge the housing. In the conventional device that does not include (a) and (b) but includes only (c), the casing of the three-phase induction motor has a high potential, and a surrounding member such as a three-phase induction motor is used. The potential difference with the winding wire exceeds the withstand voltage, which causes electric leakage and sparks, making it impossible to operate the auxiliary machine normally. In addition, as another problem that occurs, leakage of electric current from the location of the winding insulation failure due to the spark or the like via the power source occurs, and the battery efficiency of the battery is reduced.

【0029】しかしながら、本発明の上記実施の形態に
おいては、上記の(a)、(b)および(c)を備え
る。したがって、電源と電気機器との間の直流絶縁およ
び筐体の対地絶縁ができ、さらに、電池セルスタック端
子と絶縁用変圧器の出力端子との間に電位差を生じな
い。その結果、上記筐体と巻線との間の電位差を電気機
器の巻線の耐圧範囲内に収めることが可能となり、スパ
ークの発生やその他絶縁不良にともなう漏電等のトラブ
ルを回避することが可能となる。
However, the above embodiment of the present invention includes the above (a), (b) and (c). Therefore, direct current insulation between the power source and the electric device and ground insulation of the housing can be performed, and further, no potential difference is generated between the battery cell stack terminal and the output terminal of the insulating transformer. As a result, the potential difference between the case and the winding can be kept within the withstand voltage range of the winding of the electric device, and it is possible to avoid problems such as sparks and other leakage caused by insulation failure. Becomes

【0030】上記の絶縁用変圧器は、通常に市販されて
いる変圧器を使用することができ、特に限定されない。
また、3相誘導電動機の筐体が備える対地絶縁手段もと
くに特別な手段は必要ではなく、絶縁材料の上に3相誘
導電動機を搭載する等、通常この分野で用いられる対地
絶縁手段を用いることが望ましい。
As the above-mentioned insulating transformer, a commercially available transformer can be used and is not particularly limited.
Further, the ground insulating means provided in the housing of the three-phase induction motor does not require any special means, and the ground insulating means usually used in this field such as mounting the three-phase induction motor on the insulating material is used. Is desirable.

【0031】本実施の形態における電解液循環装置によ
れば、上記したようにレドックスフロー型2次電池の大
容量化のために高電圧化しても、絶縁用変圧器により電
源側と直流絶縁がなされ、さらに上記筐体が対地絶縁手
段を備え、電池セルスタックと絶縁用変圧器の出力端子
との間が短絡されているので、漏電に起因する電池効率
の低下を防止することが可能となる。また、たとえポン
プ等に漏電可能個所があっても電解液と巻線との間の電
位差を低減しているので、巻線の耐圧を超えた絶縁破壊
を防止することが可能となる。この電池セルスタックと
絶縁用変圧器の出力端子との間が短絡は、漏電した先の
部位が何であれ、その漏電先の部位の電位が高まっても
その部位からの巻線へのスパークの発生を防止する。し
たがって、電解液からの漏電に起因する巻線へのスパー
クである限り、スパークの高電位側は上記筐体に限定さ
れず、その帯電個所から巻線へのスパーク防止という観
点から見て、上記の電気的結線は基本的な電気的結線で
ある。
According to the electrolytic solution circulating apparatus of the present embodiment, even if the redox flow type secondary battery has a high voltage for increasing the capacity as described above, the insulating transformer can provide DC insulation with the power source side. Further, since the housing is provided with the ground insulating means and the battery cell stack and the output terminal of the insulating transformer are short-circuited, it is possible to prevent the decrease in the battery efficiency due to the electric leakage. . Further, even if there is a leakable place in the pump or the like, the potential difference between the electrolytic solution and the winding is reduced, so that it is possible to prevent dielectric breakdown exceeding the withstand voltage of the winding. This short circuit between the battery cell stack and the output terminal of the insulation transformer will cause sparks from that part to the winding, regardless of the part where the leakage occurs. Prevent. Therefore, the high potential side of the spark is not limited to the above-mentioned housing as long as it is the spark to the winding due to the leakage from the electrolytic solution, and from the viewpoint of preventing the spark from the charging point to the winding, The electrical connection of is a basic electrical connection.

【0032】(実施の形態2)図2に、実施の形態2に
おける電解液循環型電池の電解液循環装置の構成を示
す。図1と図2とを比較して、実施の形態2において
は、実施の形態1における電気的結線6を除き、電気的
結線36を設けている。図2において、図1と同じ符号
は図1と同じ装置を示す。したがって、実施の形態2に
おいても、絶縁用変圧器5および3相誘導電動機1の筐
体3における対地絶縁手段9が備えられている。しか
し、実施の形態2では、電気的結線36が設けられ、絶
縁用変圧器の出力端子と3相誘導電動機の筐体とが短絡
されている。
(Embodiment 2) FIG. 2 shows the configuration of an electrolyte circulating device for an electrolyte circulating battery according to a second embodiment. Comparing FIG. 1 and FIG. 2, in the second embodiment, the electrical connection 36 is provided except for the electrical connection 6 in the first embodiment. 2, the same reference numerals as those in FIG. 1 denote the same devices as those in FIG. Therefore, also in the second embodiment, the insulating transformer 5 and the ground insulating means 9 in the housing 3 of the three-phase induction motor 1 are provided. However, in the second embodiment, the electrical connection 36 is provided, and the output terminal of the insulating transformer and the housing of the three-phase induction motor are short-circuited.

【0033】この結果、ポンプ10の接合部の絶縁不良
個所から漏電し上記電動機1の筐体が帯電しても、上記
巻線の電位が高められているので、上記筐体と巻線との
間の電位差は巻線の絶縁皮膜の耐圧を超えることはな
い。したがって、上記筐体と巻線との間にスパークが発
生することもなく、電源を経由する漏電の発生を防止す
ることが可能となる。本実施の形態2は、帯電原因が何
であれ、上記筐体と巻線との間のスパーク発生を防止す
るという観点から、最も直接的な結線となっている。
As a result, even if the casing of the electric motor 1 is charged due to leakage of electricity from a defective insulation portion of the joint portion of the pump 10, the potential of the winding is increased, so that the casing and the winding are separated from each other. The potential difference between them does not exceed the withstand voltage of the insulating film of the winding. Therefore, no spark is generated between the casing and the winding, and it is possible to prevent the occurrence of electric leakage via the power source. The second embodiment has the most direct connection from the viewpoint of preventing the occurrence of sparks between the casing and the windings, regardless of the cause of charging.

【0034】(実施の形態3)図3を参照して、実施の
形態3における電解液循環装置は、電動機の筐体3と、
電池セルスタック11の間の端子と、絶縁用変圧器4の
電動機側端子の中性点oとが電気的に結ばれ、その結線
に電流抑制用の電気抵抗67が挿入されている点に特徴
がある。図3において図1および図2と同符号は、図1
および図2と同じ装置を表す。上記の電気抵抗として
は、数千Ω以上の電気抵抗を使用することが好ましい。
(Embodiment 3) Referring to FIG. 3, an electrolytic solution circulating apparatus according to Embodiment 3 includes a casing 3 of an electric motor,
Characteristically, the terminals between the battery cell stacks 11 and the neutral point o of the electric motor side terminal of the insulating transformer 4 are electrically connected, and an electric resistance 67 for suppressing current is inserted in the connection. There is. In FIG. 3, the same reference numerals as those in FIGS.
And the same device as in FIG. As the electric resistance, it is preferable to use an electric resistance of several thousand Ω or more.

【0035】この結果、上記実施の形態1において得ら
れた効果に加えて、万一、上記筐体の対地絶縁手段が劣
化して漏洩電流が発生しても、電気抵抗の作用により漏
電可能個所からの電流がきわめて小さな値となる。この
結果、上記の対地絶縁手段の絶縁性能の劣化に伴う急激
な電力損失を防止することが可能となる。また、何らか
の原因によって、電池セルスタック端子と、上記筐体
と、絶縁用変圧器の出力側端子とのいずれかの端子間に
電位差を生じても、その端子間を過渡的に流れる電流を
抑制することが可能となる。この電流値の抑制は、一時
的に電位差が発生する場合のみならず、漏電が定常的ま
たは周期的に生じる場合にも有効に働く。したがって、
不測の事態が生じても電池効率の低下を防止することが
できる。また、電流に起因する電池構成材料の腐食も上
記の電気抵抗挿入により抑制することが可能である。
As a result, in addition to the effect obtained in the first embodiment, even if the earth insulating means of the housing is deteriorated and a leakage current is generated, it is possible to cause a leakage by the action of the electric resistance. The current from is very small. As a result, it becomes possible to prevent a sudden power loss due to the deterioration of the insulation performance of the ground insulation means. In addition, even if for some reason there is a potential difference between the battery cell stack terminal, the housing, and the output side terminal of the insulating transformer, the current that transiently flows between the terminals is suppressed. It becomes possible to do. This suppression of the current value works effectively not only when a potential difference temporarily occurs, but also when electric leakage occurs steadily or periodically. Therefore,
Even if an unexpected situation occurs, it is possible to prevent a decrease in battery efficiency. Further, the corrosion of the battery constituent material caused by the electric current can be suppressed by inserting the electric resistance.

【0036】(実施の形態4)図4を参照して、実施の
形態4における電解液循環装置は、実施の形態1に比較
して、電池セルスタック11の端子と、絶縁用変圧器4
の電動機側端子の中性点oとを導通する結線に電流計9
8と電気抵抗67が挿入されている点に特徴がある。図
4において図1〜3と同符号は、図1〜3と同じ装置を
表す。
(Embodiment 4) Referring to FIG. 4, as compared with Embodiment 1, the electrolytic solution circulating apparatus according to Embodiment 4 has terminals of battery cell stack 11 and insulating transformer 4.
Ammeter 9 is connected to the neutral point o of the motor side terminal
8 and the electric resistance 67 are inserted. 4, the same reference numerals as those in FIGS. 1 to 3 represent the same devices as those in FIGS.

【0037】したがって、本装置は実施の形態1に挙げ
られた効果を全て備えたうえで、上記結線に流れる電流
をモニタすることにより、漏洩電流抑制用の電気抵抗を
オンラインで監視することが可能となる。この結果、漏
電を検知した後、直ちに対策をとることが可能になり、
電池効率の低下を最小限に食い止めることが可能にな
る。また、電気抵抗67により、いかなる事態かを問わ
ず結線を通る電流値が抑制される。
Therefore, this device has all the effects described in the first embodiment, and further, by monitoring the current flowing through the above-mentioned connection, it is possible to monitor the electrical resistance for suppressing the leakage current online. Becomes As a result, it becomes possible to take measures immediately after detecting the leakage,
It is possible to minimize the decrease in battery efficiency. Further, the electric resistance 67 suppresses the current value passing through the connection regardless of any situation.

【0038】上記において、本発明の実施の形態につい
て説明を行ったが、上記に開示された本発明の実施の形
態は、あくまで例示であって、本発明の範囲はこれら発
明の実施の形態に限定されるものではない。本発明の範
囲は、特許請求の範囲の記載によって示され、さらに特
許請求の範囲の記載と均等の意味およびその範囲内での
すべての変更を含むことが意図されている。
Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is not limited to these embodiments. It is not limited. The scope of the present invention is shown by the description of the claims, and is intended to include the meaning equivalent to the description of the claims and all modifications within the scope.

【0039】[0039]

【発明の効果】本発明の電解液循環型電池の電解液循環
装置によれば、電解液循環型電池の高電圧化をはかって
も、補機の筐体等から補機の起磁力発生のための巻線へ
のスパークを発生しにくく、かつ直流絶縁が完全に保た
れるので電解液からの漏電は遮断される。
According to the electrolytic solution circulating device for an electrolytic solution circulating type battery of the present invention, even when the voltage of the electrolytic solution circulating type battery is increased, the magnetomotive force of the auxiliary device is generated from the casing of the auxiliary device. Therefore, it is difficult to generate a spark in the winding and the DC insulation is completely maintained, so that the leakage of current from the electrolytic solution is cut off.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1の電解液循環装置を示
す図である。
FIG. 1 is a diagram showing an electrolytic solution circulating device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態2の電解液循環装置を示
す図である。
FIG. 2 is a diagram showing an electrolytic solution circulating device according to a second embodiment of the present invention.

【図3】 本発明の実施の形態3の電解液循環装置を示
す図である。
FIG. 3 is a diagram showing an electrolytic solution circulating device according to a third embodiment of the present invention.

【図4】 本発明の実施の形態4の電解液循環装置を示
す図である。
FIG. 4 is a diagram showing an electrolytic solution circulating device according to a fourth embodiment of the present invention.

【図5】 一般的なレドックスフロー型2次電池の構成
を示す模式図である。
FIG. 5 is a schematic diagram showing a configuration of a general redox flow secondary battery.

【図6】 従来のレドックスフロー型2次電池の電解液
循環装置の問題点を示す模式図である。
FIG. 6 is a schematic view showing a problem of an electrolytic solution circulating device for a conventional redox flow secondary battery.

【符号の説明】[Explanation of symbols]

1 3相誘導電動機(電気機器) 2 3相誘導電動機の巻線 3 電動機の筐体 4 絶縁用変圧器 5 汎用インバータ(電源) 6 電気的結線 9 対地絶縁手段 10 ポンプ 11 電池セルスタック 15 電解液の流通促進手段の駆動機構 22 正極液タンク 23 正極液流路 67 漏洩電流抑制用の電気抵抗 98 電流計 1 3-phase induction motor (electrical equipment) 2 3-phase induction motor winding 3 Motor housing 4 Insulation transformer 5 General-purpose inverter (power supply) 6 electrical connection 9 Ground insulation means 10 pumps 11 Battery cell stack 15 Drive mechanism for electrolyte flow promoting means 22 Positive electrode liquid tank 23 Positive electrode liquid flow path 67 Electrical resistance for suppressing leakage current 98 ammeter

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/04,8/18 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 8 / 04,8 / 18

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 交流直流変換器を含む電気系統内に配置
された複数の電池セルと電解液タンクとを通る電解液
流路を流通循環する電解液に接触して電解液の流通循環
を制御する電解液流通制御手段と、 前記電解液流通制御手段に導通する筐体に収納され、そ
の電解液流通制御手段を駆動、起磁力発生の巻線を
有する電気機器と、を備えた電解液循環型電池の電解液
循環装置であって、 前記電気機器の巻線への電源からの電力の投入は電源か
ら絶縁用変圧器を介して行われ、電気的に接続された 前記複数の電池セルのいずれかの位
置の端子と、前記絶縁用変圧器における前記電気機器の
側の端子とが電気的に結線されている電解液循環型電池
の電解液循環装置。
1. Arrangement in an electrical system including an AC / DC converter
A plurality of battery cells, the electrolyte communication control means in contact with the electrolyte solution to control the flow circulation of the electrolyte flowing circulating electrolyte flow path through the electrolyte tank, the electrolyte communication control means It is stored in a conductive case and
The electrolyte that drive the flow control unit, the windings of the magnetomotive force
And the electric device having, a flowing electrolyte electrolyte circulating device of a battery having a charged power from the power supply to the winding of the electrical device is performed from the power supply via an insulation transformer, electrical Of any of the plurality of battery cells that are electrically connected
Solution circulating device for an electrolytic solution circulating type battery, in which a terminal of a storage device and a terminal of the insulating transformer on the side of the electric device are electrically connected.
【請求項2】 交流直流変換器を含む電気系統内に配置
された複数の電池セルと電解液タンクとを通る電解液
流路を流通循環する電解液に接触して電解液の流通循環
を制御する電解液流通制御手段と、 前記電解液流通制御手段に導通する筐体に収納され、そ
の電解液流通制御手段を駆動、起磁力発生の巻線を
有する電気機器と、を備えた電解液循環型電池の電解液
循環装置であって、 前記電気機器の巻線への電源からの電力の投入は電源か
ら絶縁用変圧器を介して行われ、 前記絶縁用変圧器における前記電気機器の側の端子と、
前記電気機器の筐体とが電気的に結線されている電解液
循環型電池の電解液循環装置。
2. Arrangement in an electrical system including an AC / DC converter.
A plurality of battery cells, the electrolyte communication control means in contact with the electrolyte solution to control the flow circulation of the electrolyte flowing circulating electrolyte flow path through the electrolyte tank, the electrolyte communication control means It is stored in a conductive case and
The electrolyte that drive the flow control unit, the windings of the magnetomotive force
An electric device having , and an electrolytic solution circulating device for an electrolytic solution circulation type battery, comprising: the power supply from the power source to the winding of the electric device is performed from the power source through an insulating transformer, A terminal on the side of the electric device in the insulating transformer,
An electrolytic solution circulating device for an electrolytic solution circulating type battery, which is electrically connected to a casing of the electric device.
【請求項3】 前記電気的な結線には、電流を抑制する
ための電気抵抗が挿入されている、請求項1または2に
記載の電解液循環型電池の電解液循環装置。
3. The electrolytic solution circulating device for an electrolytic solution circulating battery according to claim 1, wherein an electric resistance for suppressing a current is inserted in the electrical connection.
【請求項4】 前記電気的な結線には、前記電池セルに
おける端子からの漏洩電流を測定するための電流計がさ
らに備えられている、請求項1に記載の電解液循環型電
池の電解液循環装置。
4. The electrolytic solution of the electrolytic solution circulating battery according to claim 1, wherein the electrical connection is further provided with an ammeter for measuring a leakage current from a terminal in the battery cell. Circulator.
【請求項5】 前記電気機器の筐体には対地絶縁手段が
さらに備えられている、請求項1〜4のいずれかに記載
の電解液循環型電池の電解液循環装置。
5. The electrolytic solution circulating apparatus for an electrolytic solution circulating type battery according to claim 1, wherein a ground insulating means is further provided in a housing of the electric device.
JP04459999A 1999-02-23 1999-02-23 Electrolyte circulation device for electrolyte circulation type battery Expired - Fee Related JP3488118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04459999A JP3488118B2 (en) 1999-02-23 1999-02-23 Electrolyte circulation device for electrolyte circulation type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04459999A JP3488118B2 (en) 1999-02-23 1999-02-23 Electrolyte circulation device for electrolyte circulation type battery

Publications (2)

Publication Number Publication Date
JP2000243415A JP2000243415A (en) 2000-09-08
JP3488118B2 true JP3488118B2 (en) 2004-01-19

Family

ID=12695932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04459999A Expired - Fee Related JP3488118B2 (en) 1999-02-23 1999-02-23 Electrolyte circulation device for electrolyte circulation type battery

Country Status (1)

Country Link
JP (1) JP3488118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633271B1 (en) 2016-01-04 2024-02-05 삼성에스디아이 주식회사 Secondary battery

Also Published As

Publication number Publication date
JP2000243415A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
CN109562698B (en) Vehicle system
US8221911B2 (en) Method for operating redox flow battery and redox flow battery cell stack
JP4746673B2 (en) Electric vehicle drive system and drive system control method
US8154242B2 (en) Method of fully charging an electrical energy storage device using a lower voltage fuel cell system
US4066936A (en) Hybrid battery electric drive
CN101488580B (en) System and method for short circuit of fuel cell stack
JP2008077920A (en) Fuel cell system
CN111032417B (en) Power supply system and control method thereof
US9853454B2 (en) Vanadium redox battery energy storage system
JP5580991B2 (en) Humidification of fuel cells
JP2015089152A (en) Power storage system
US20210066737A1 (en) Redox flow battery and method for operating redox flow battery
JP3488118B2 (en) Electrolyte circulation device for electrolyte circulation type battery
JPWO2008041755A1 (en) AC / DC converter
CN112564508A (en) Power module online replacement control device and method for power electronic transformer system
JP2007066643A (en) Voltage detection device
JPS61193375A (en) Secondary cell device
JPH1131522A (en) Redox flow battery and its operation method
KR102520568B1 (en) Fuel cell stack for enhanced hybrid power systems
JP2009027888A (en) Vehicle
CN111497645A (en) Fuel cell vehicle and control method thereof
JP2021007066A (en) Redox flow battery system
US20240072312A1 (en) Battery Management System Control Circuitry
JP2000188123A (en) Redox flow type secondary battery
JP2020021621A (en) Redox flow battery system, initial charging method for redox flow battery, and charging system for redox flow battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees