JP3487357B2 - Supercharger for internal combustion engine - Google Patents

Supercharger for internal combustion engine

Info

Publication number
JP3487357B2
JP3487357B2 JP15158293A JP15158293A JP3487357B2 JP 3487357 B2 JP3487357 B2 JP 3487357B2 JP 15158293 A JP15158293 A JP 15158293A JP 15158293 A JP15158293 A JP 15158293A JP 3487357 B2 JP3487357 B2 JP 3487357B2
Authority
JP
Japan
Prior art keywords
turbine
valve
supercharging
supercharger
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15158293A
Other languages
Japanese (ja)
Other versions
JPH0666151A (en
Inventor
ブーヒアー ヤーコブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel GmbH
Original Assignee
MAN B&W Diesel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN B&W Diesel GmbH filed Critical MAN B&W Diesel GmbH
Publication of JPH0666151A publication Critical patent/JPH0666151A/en
Application granted granted Critical
Publication of JP3487357B2 publication Critical patent/JP3487357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/04Mechanical drives; Variable-gear-ratio drives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、排気ガス駆動式過給
機と、排気ガス側において過給機タービンに並列接続さ
れた別個の動力発生用タービンと、このタービンを運転
停止するための制御機構とを持った内燃機関の過給装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas driven supercharger, a separate power generating turbine connected in parallel to a turbocharger turbine on the exhaust gas side, and a control for shutting down the turbine. And a supercharging device for an internal combustion engine having a mechanism.

【0002】[0002]

【従来の技術】この形式の内燃機関の過給装置はヨーロ
ッパ特許第0091139号公報で公知である。過給機
タービンの横断面積は全負荷運転にとって必要であるよ
りも狭く決められている。これによって過給機タービン
はエンジン部分負荷において排気ガスを大きくせき止め
るので、過給機は下部負荷範囲運転において比較的高い
過給空気圧を供給する。動力発生用タービンは所定のエ
ンジン部分負荷に到達した際に急激に投入ないし遮断さ
れる。排気ガス駆動式過給機および動力発生用タービン
は、このタービンが投入されている場合に全負荷点にお
いて所望の過給空気圧が達成されるように設計されてい
る。
2. Description of the Related Art A supercharging device for an internal combustion engine of this type is known from EP-A-0091139. The cross-sectional area of the turbocharger turbine is narrower than that required for full load operation. This causes the turbocharger turbine to largely block the exhaust gases at engine partial load, so that the supercharger supplies a relatively high supercharged air pressure in the lower load range operation. The power generation turbine is suddenly turned on or off when a predetermined engine partial load is reached. Exhaust gas driven turbochargers and power generating turbines are designed to achieve the desired boost air pressure at full load when the turbine is turned on.

【0003】動力発生用タービンを上部負荷範囲におい
て故障のために遮断しなければならないときには、過給
空気圧は許容できない値に上昇する。その際排気ガス駆
動式過給機の許容最大回転数および許容シリンダ圧を超
過するおそれがある。
When the power generating turbine must be shut off in the upper load range due to a fault, the boost air pressure rises to an unacceptable value. At that time, the maximum allowable engine speed and the allowable cylinder pressure of the exhaust gas driven supercharger may be exceeded.

【0004】更に動力発生用タービンの急激な投入は、
このタービンの出力を負荷に伝達する手段が同様に急激
に荷重されるという結果を生ずる。例えば歯車伝動装置
および特に自動過走(オーバーラン)クラッチにおいて
はかなりの損傷を生じるおそれがある。更に動力発生用
タービンの急激な投入は過給空気圧を急激に低下してし
まい、これは空気の不足を生じ、燃焼室の構造部品に大
きな熱負荷を生じるおそれがある。
Further, the rapid introduction of the turbine for power generation
The result is that the means for transmitting the power of the turbine to the load is also suddenly loaded. Significant damage can occur, for example, in gear transmissions and especially in automatic overrun clutches. Further, the rapid injection of the power generation turbine causes a rapid decrease in the supercharging air pressure, which causes a shortage of air, which may cause a large heat load on the structural parts of the combustion chamber.

【0005】排気ガス駆動式過給機および動力発生用タ
ービンを全負荷において所望の過給空気圧に設定するこ
とは、主に利用される出力範囲においてエンジンに対し
て最良の過給空気圧が形成されないことを意味する。
Setting the exhaust gas driven turbocharger and the turbine for power generation to the desired supercharging air pressure at full load does not produce the best supercharging air pressure for the engine in the power range mainly utilized. Means that.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、冒頭
に述べた形式の内燃機関の過給装置を、動力発生用ター
ビンの投入および遮断が急激に行われず、過給空気の不
足が避けられ、上部負荷範囲において故障が生じた際に
動力発生用タービンが内燃機関の運転に支障を与えるこ
となしに遮断され、主な運転出力において最良の過給空
気圧が達成されるように改良することにある。
SUMMARY OF THE INVENTION An object of the present invention is to prevent a turbocharger of an internal combustion engine of the type described at the beginning from shorting the supercharging air because the turbine for power generation is not rapidly turned on and off. In the case of a failure in the upper load range, the turbine for power generation is shut off without impairing the operation of the internal combustion engine, and improvement is performed so that the best boost air pressure is achieved at the main operation output. It is in.

【0007】[0007]

【課題を解決するための手段】本発明によればこの課題
は、冒頭に述べた形式の内燃機関の過給装置において、
動力発生用タービンに対して並列にバイパス配管が設け
られ、このバイパス配管がそれを開閉するための制御機
構を有し、バイパス配管がその貫流断面積が開いている
場合に動力発生用タービンとほぼ同じ排気ガス流量の貫
流を可能にするように寸法づけられ、動力発生用タービ
ンを投入および遮断するための制御量が過給空気圧であ
り、制御機構が、貫流断面積の開閉速度が個々に調整で
きるように設計され、制御機構に対して、投入および遮
断過程中において過給空気圧を極めて僅かしか変動させ
ない制御装置が設けられ、この制御装置によって動力発
生用タービンが遮断でき、排気ガス駆動式過給機および
動力発生用タービンが、75〜90%のエンジン出力に
おいて最良の過給空気圧が達成されるように設計される
ことによって解決される。
According to the invention, the object is to provide a supercharger for an internal combustion engine of the type mentioned at the outset.
A bypass pipe is provided in parallel with the power generation turbine, and this bypass pipe has a control mechanism for opening and closing it, and when the bypass pipe has an open cross-sectional area, it is almost the same as the power generation turbine. Sized to allow the same exhaust gas flow through, the controlled variable for turning on and off the turbine for power generation is supercharged air pressure, and the control mechanism adjusts the opening and closing speed of the through-flow cross-section individually The control mechanism is equipped with a control device that allows the supercharging air pressure to fluctuate very little during the making and shutting-off process. Solved by designing the turbocharger and power generation turbine to achieve the best boost air pressure at 75-90% engine power It is.

【0008】[0008]

【実施例】以下図面に示した実施例を参照して本発明を
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0009】図1において内燃機関1は排気ガス駆動式
過給機3の圧縮機2を介して圧縮空気を供給される。内
燃機関1の排気ガスが供給される過給機タービン4は圧
縮機2を駆動する。排気ガス側において過給機タービン
4および動力発生用タービン5が並列接続されている。
タービン5への供給配管6に方向切換弁の形をした遮断
弁7が配置されている。この遮断弁7は排気ガス駆動式
過給機の所定の過給空気圧において自動的に開閉され
る。
In FIG. 1, an internal combustion engine 1 is supplied with compressed air via a compressor 2 of an exhaust gas drive type supercharger 3. The supercharger turbine 4 to which the exhaust gas of the internal combustion engine 1 is supplied drives the compressor 2. The turbocharger turbine 4 and the power generation turbine 5 are connected in parallel on the exhaust gas side.
A shut-off valve 7 in the form of a directional control valve is arranged in the supply line 6 to the turbine 5. The shutoff valve 7 is automatically opened and closed at a predetermined supercharging air pressure of the exhaust gas driven supercharger.

【0010】特に高い効率の過給機を持った上述の過給
装置において、排気ガス駆動式過給機の過給機タービン
4の出力は必要な過給機動力よりも大きく、余分な出力
はエンジンの有効出力を増大するために利用される。排
気ガス駆動式過給機タービン4に導かれる排気ガスの一
部は供給配管6を通って動力発生用タービン5に導かれ
る。そこでこの排気ガスエネルギーの過剰出力はタービ
ン5で吸収され、伝動装置9を介して内燃機関1のクラ
ンク軸10に与えられる。タービン5の排気ガス配管1
1および排気ガス駆動式過給機3の排気ガス配管12は
共通の排気ガス集合配管13に開口している。動力発生
用タービン5と並列に絞り15と遮断弁16とを持った
バイパス配管14が配置されている。このバイパス配管
14は、遮断弁16が開放され遮断弁7が閉じられてい
る場合タービン5とほぼ同じ排気ガス流量の貫流が可能
であるように設定されている。絞り15は、タービン5
が運転されてない場合にタービン5に相応した圧力勾配
を発生させる目的を有している。これによってタービン
5はそれに前置されている遮断弁7によって内燃機関の
過給に影響を与えることなしに遮断される。
In the above-mentioned supercharger having a particularly high efficiency supercharger, the output of the supercharger turbine 4 of the exhaust gas driven supercharger is larger than the required supercharger power, and the extra output is It is used to increase the effective output of the engine. Part of the exhaust gas guided to the exhaust gas driven supercharger turbine 4 is guided to the power generation turbine 5 through the supply pipe 6. Therefore, the excessive output of the exhaust gas energy is absorbed by the turbine 5 and given to the crankshaft 10 of the internal combustion engine 1 via the transmission 9. Exhaust gas pipe 1 of turbine 5
1 and the exhaust gas pipe 12 of the exhaust gas driven supercharger 3 are open to a common exhaust gas collecting pipe 13. A bypass pipe 14 having a throttle 15 and a shutoff valve 16 is arranged in parallel with the power generation turbine 5. The bypass pipe 14 is set so that when the shutoff valve 16 is open and the shutoff valve 7 is closed, the exhaust gas flow rate can be almost the same as that of the turbine 5. The throttle 15 is the turbine 5
Has the purpose of producing a pressure gradient corresponding to the turbine 5 when the engine is not operating. As a result, the turbine 5 is shut off by the shut-off valve 7 in front of it without affecting the supercharging of the internal combustion engine.

【0011】過給装置はたいていのエンジン運転回転数
に通用する流量に対して設計されている。即ち排気ガス
駆動式過給機3および動力発生用タービン5は、最大エ
ンジン負荷の約75〜90%の主要運転出力において最
良の過給空気圧が達成されるように設計されている。勿
論過給空気圧は小さな部分負荷および全負荷において最
良の値からずれる。しかしこれは、内燃機関1がこの範
囲では運転時間のごく一部でしか運転されないので欠点
とはならない。
The supercharger is designed for a flow rate which is compatible with most engine operating speeds. That is, the exhaust gas driven supercharger 3 and the power generation turbine 5 are designed so that the best supercharged air pressure is achieved at the main operation output of about 75 to 90% of the maximum engine load. Of course, the boost air pressure deviates from the best value at small partial loads and full loads. However, this is not a disadvantage, since the internal combustion engine 1 is operated only for a small part of the operating time in this range.

【0012】過給空気圧は過給装置の熱負荷に大きな影
響を与えるので、動力発生用タービン5の投入信号は過
給空気圧から導き出される。この過給空気圧の値はエン
ジン負荷に関係して選択される。実験の結果、タービン
5の投入および遮断がエンジン負荷の中央範囲でしか有
効でないことが分かった。
Since the supercharging air pressure has a great influence on the heat load of the supercharging device, the signal for turning on the power generation turbine 5 is derived from the supercharging air pressure. The value of this supercharged air pressure is selected in relation to the engine load. As a result of experiments, it was found that turning on and off the turbine 5 was effective only in the middle range of the engine load.

【0013】図2は、横軸にエンジン負荷が%で記入さ
れ、縦軸に過給空気圧PL がバールで記入されている線
図を示している。曲線Aはタービン5が遮断されている
場合の過給空気圧PL とエンジン負荷との関係を示して
おり、曲線Bはタービン5が投入されている場合の同じ
関係を示している。内燃機関1の高速回転中においてタ
ービン5の前の遮断弁7は、過給空気圧が所定の値Cに
到達した際に開き始める。これによって過給空気圧が低
下する。過給空気圧が所定の下側値Dを下回ったとき、
タービン5の前の遮断弁7の開放過程は中断される。そ
れから過給空気圧はエンジン負荷が増大する場合に再び
増加する。この過程は、遮断弁7が完全に開かれるまで
繰り返される。この特性は線図のジグザグの部分曲線E
で示されている。従って過給空気圧は遮断弁7の切換過
程中において所定の値CとDで規定された狭い範囲にと
どまり、これによって空気不足状態およびそれにより生
ずる欠点は避けられる。
FIG. 2 shows a diagram in which the abscissa represents the engine load in%, and the ordinate represents the supercharging air pressure P L in bars. The curve A shows the relationship between the supercharging air pressure P L and the engine load when the turbine 5 is shut off, and the curve B shows the same relationship when the turbine 5 is turned on. When the internal combustion engine 1 is rotating at high speed, the shutoff valve 7 in front of the turbine 5 starts to open when the supercharging air pressure reaches a predetermined value C. This reduces the supercharged air pressure. When the supercharging air pressure falls below a predetermined lower value D,
The opening process of the shut-off valve 7 in front of the turbine 5 is interrupted. The supercharged air pressure then increases again as the engine load increases. This process is repeated until the shutoff valve 7 is fully opened. This characteristic is the zigzag partial curve E of the diagram.
Indicated by. The supercharged air pressure therefore remains in the narrow range defined by the predetermined values C and D during the switching process of the shut-off valve 7, whereby an air-deficient condition and the disadvantages which result therefrom are avoided.

【0014】図3における第1の実施例では、この特性
は制御機構7、19、16、21の空気式制御によって
実現される。方向切換弁の形をした動力発生用タービン
5の遮断弁7は入力側に圧力配管17を介して圧縮空気
が供給される。この圧力配管17には制御機構即ち絞り
19の前および方向切換弁7の前に方向切換弁の形をし
た別の遮断弁18が配置されている。制御量として作用
する過給空気圧に関係して方向切換弁18が操作され
る。この方向切換弁18は放圧された基本位置において
閉じられ、過給空気圧が増大した際にばねの復帰力に抗
して開かれる。バイパス配管14の制御機構即ち絞り要
素21および遮断弁16の制御は、方向切換弁の形をし
た遮断弁16の入力側に、圧縮空気源(図示せず)に接
続され圧縮空気を案内する圧力配管20を接続すること
によって行われる。公知のように絞り弁22、23、2
4、25と逆止弁26、27、28、29とから構成さ
れている絞り要素19、21は、その都度の圧力上昇あ
るいは圧力降下をゆっくりさせる目的を有する。バイパ
ス配管14は動力発生用タービン5が遮断されていると
きだけ開放すればよいので、圧力配管20は電磁式方向
切換弁30を介して放圧される。タービン5を運転する
際、方向切換弁31が開かれ、方向切換弁30は閉じら
れる。しかしタービン5に故障が生じたとき、方向切換
弁30が投入され、方向切換弁31は閉じられ、これに
よってバイパス配管14の遮断弁16が圧縮空気によっ
て開かれ、圧力配管17の方向切換弁18がばね力によ
って閉じられる。電磁式方向切換弁30、31の作動は
非常に迅速に行われる。
In the first embodiment shown in FIG. 3, this characteristic is realized by pneumatic control of the control mechanisms 7, 19, 16, 21. The shut-off valve 7 of the power generating turbine 5 in the form of a directional control valve is supplied with compressed air via a pressure pipe 17 on the input side. A further shut-off valve 18 in the form of a directional control valve is arranged in this pressure line 17 in front of the control mechanism or throttle 19 and in front of the directional control valve 7. The directional control valve 18 is operated in relation to the supercharged air pressure, which acts as a controlled variable. The directional control valve 18 is closed in the released basic position and is opened against the restoring force of the spring when the supercharged air pressure increases. The control mechanism of the bypass line 14, i.e. the control of the throttle element 21 and the shut-off valve 16, controls the pressure on the input side of the shut-off valve 16 in the form of a directional control valve, which is connected to a source of compressed air (not shown) and which guides the compressed air. This is done by connecting the pipe 20. As is known, throttle valves 22, 23, 2
The throttle elements 19, 21 consisting of 4, 25 and check valves 26, 27, 28, 29 have the purpose of slowing the respective pressure increase or pressure drop. Since the bypass pipe 14 may be opened only when the power generating turbine 5 is shut off, the pressure pipe 20 is released through the electromagnetic directional control valve 30. When operating the turbine 5, the directional control valve 31 is opened and the directional control valve 30 is closed. However, when a failure occurs in the turbine 5, the directional control valve 30 is turned on and the directional control valve 31 is closed, whereby the shutoff valve 16 of the bypass pipe 14 is opened by compressed air and the directional control valve 18 of the pressure pipe 17 is opened. Is closed by the spring force. The operation of the electromagnetic directional control valves 30, 31 is very quick.

【0015】エンジン負荷が低下する場合、タービン5
の遮断はその投入と類似して逆向きに行われる。タービ
ン5の制御機構7、19およびバイパス配管14の制御
機構16、21は、それらが20〜120秒の操作時間
で開閉できるように設計されている。
When the engine load decreases, the turbine 5
The shutoff of is done in the opposite direction, similar to its turn. The control mechanisms 7, 19 of the turbine 5 and the control mechanisms 16, 21 of the bypass pipe 14 are designed such that they can be opened and closed with an operating time of 20 to 120 seconds.

【0016】図4は図3の実施例の電気式制御方式を示
している。圧力配管17は電流導線に、方向切換弁3
0、31はスイッチに置き換えられる。過給空気圧は電
気入力信号として図示しない上位制御装置即ち計算機に
導かれる。この計算機は、記憶された目標値をもとにタ
ービン5およびバイパス配管14の方向切換弁として形
成された遮断弁7、16の位置を調節する電動式サーボ
モータ32、33を制御するためのデジタル出力パルス
を発する。投入過程および遮断過程は図3の空気式の場
合に類似して進行し、その場合押釦スイッチ34が図3
における方向切換弁18の機能を果たす。
FIG. 4 shows the electric control system of the embodiment of FIG. The pressure pipe 17 is connected to the current conductor, and the directional control valve 3
Switches 0 and 31 are replaced with switches. The supercharged air pressure is introduced as an electric input signal to a host controller (computer) not shown. This computer is a digital control unit for controlling electric servomotors 32 and 33 for adjusting the positions of the shutoff valves 7 and 16 formed as directional control valves of the turbine 5 and the bypass pipe 14 on the basis of stored target values. Issue an output pulse. The closing process and the closing process proceed similarly to the pneumatic type of FIG. 3, in which case the push button switch 34 is moved to the position shown in FIG.
The function of the directional control valve 18 in FIG.

【0017】図5における制御機構7、19、16、2
1の空気式制御方式においては、バイパス配管14の遮
断弁16は遮断弁18を介して入力側に過給空気が供給
され、図3における実施例と同じように動力発生用ター
ビン5の投入が行われる。切換過程が終了しバイパス配
管14が完全に開かれ、更にタービン5の運転に対する
他のすべての条件が満たされたとき、バイパス配管14
の遮断弁16が閉鎖し、同時にタービン5の遮断弁7が
上述の操作時間で開かれる。図3における実施例との相
違点は、方向切換弁18を通る過給空気がバイパス配管
14の遮断弁16に対する圧縮空気を制御し、圧縮空気
が入力側においてタービン5の遮断弁7にかかることに
ある。同様に電磁式に切換可能な方向切換弁30、31
を介して切り換えが行われる。即ち圧力配管ないし導線
17、20には制御機構が設けられ、排気ガス流量はこ
の制御機構によって絞られるか、遮断弁7、16によっ
て中断される。従って制御機構7、16、19、21
は、貫流横断面積の開閉速度が個々に調整できるように
設計されている。
The control mechanisms 7, 19, 16, 2 in FIG.
In the pneumatic control method of No. 1, supercharging air is supplied to the input side of the cutoff valve 16 of the bypass pipe 14 through the cutoff valve 18, and the power generation turbine 5 is turned on as in the embodiment of FIG. Done. When the switching process is complete, the bypass pipe 14 is completely opened, and all other conditions for the operation of the turbine 5 are fulfilled, the bypass pipe 14
Shut-off valve 16 is closed, and at the same time shut-off valve 7 of turbine 5 is opened for the above-mentioned operating time. The difference from the embodiment in FIG. 3 is that the supercharged air passing through the directional control valve 18 controls the compressed air for the shutoff valve 16 of the bypass pipe 14, and the compressed air is applied to the shutoff valve 7 of the turbine 5 on the input side. It is in. Similarly, directional switching valves 30, 31 that can be switched electromagnetically
Switching is performed via. That is, a control mechanism is provided in the pressure pipes or the lead wires 17 and 20, and the exhaust gas flow rate is throttled by this control mechanism or interrupted by the shutoff valves 7 and 16. Therefore, the control mechanisms 7, 16, 19, 21
Is designed such that the opening and closing speed of the cross-flow area can be adjusted individually.

【0018】図6に示すように、排気ガス供給配管6に
はタービン5の前に1秒以下の時間で切り換え可能即ち
閉鎖する補助遮断弁35が配置されていると有利であ
る。同様に迅速に開放する遮断弁36がバイパス配管1
4の遮断弁16に並列に流れ配管37の中に配置されて
いる。これら両補助遮断弁35、36はタービン5の非
常停止を可能にする。
As shown in FIG. 6, it is advantageous to arrange an auxiliary shut-off valve 35 in the exhaust gas supply pipe 6 in front of the turbine 5 which can be switched or closed in a time of less than 1 second. Similarly, the shutoff valve 36 that opens quickly is the bypass pipe 1
4 is arranged in the flow pipe 37 in parallel with the shut-off valve 16. Both of these auxiliary shutoff valves 35, 36 enable the turbine 5 to be stopped in an emergency.

【0019】例えば油の不足、超過速度、振動警報など
のような動力発生用タービンの遮断のための条件が発生
すると、タービン5は内燃機関の運転に影響を与えるこ
となしに運転停止される。バイパス配管14における遮
断弁16がタービン5の非常停止の際に十分速く開放さ
れるように形成されていると、迅速に開放する別個の遮
断弁36は省略できる。
When a condition for shutting off the turbine for power generation occurs, such as an oil shortage, an overspeed, a vibration alarm, etc., the turbine 5 is shut down without affecting the operation of the internal combustion engine. If the shutoff valve 16 in the bypass pipe 14 is designed to open sufficiently quickly in case of an emergency stop of the turbine 5, a separate shutoff valve 36 that opens quickly can be omitted.

【0020】[0020]

【発明の効果】本発明によれば、動力発生用タービンの
投入および遮断は急激には行われず、過給空気が不足す
ることはなく、上部負荷範囲において故障が生じた際に
タービンは内燃機関の運転に支障を与えることなしに遮
断され、主要運転出力において最良の過給空気圧が達成
される。
According to the present invention, the power generation turbine is not rapidly turned on and off, the supercharged air is not insufficient, and the turbine is the internal combustion engine when a failure occurs in the upper load range. It is shut off without disturbing the operation of the vehicle and the best boost air pressure is achieved at the main operating power.

【図面の簡単な説明】[Brief description of drawings]

【図1】排気ガス駆動式過給機とこれに対して並列接続
された動力発生用タービンとを備えた内燃機関の過給装
置の原理系統図。
FIG. 1 is a principle system diagram of a supercharging device for an internal combustion engine including an exhaust gas drive type supercharger and a power generation turbine connected in parallel to the supercharger.

【図2】過給空気圧とエンジン負荷との関係を示す線
図。
FIG. 2 is a diagram showing a relationship between supercharged air pressure and engine load.

【図3】この発明による制御機構の空気式制御方式の原
理系統図。
FIG. 3 is a principle system diagram of a pneumatic control system of a control mechanism according to the present invention.

【図4】制御機構の電気式制御方式の原理系統図。FIG. 4 is a principle system diagram of an electric control system of a control mechanism.

【図5】制御機構の異なった空気式制御方式の原理系統
図。
FIG. 5 is a principle system diagram of a pneumatic control system having different control mechanisms.

【図6】動力発生用タービンの非常停止方式の原理系統
図。
FIG. 6 is a principle system diagram of an emergency stop system of a power generation turbine.

【符号の説明】[Explanation of symbols]

1 内燃機関 3 排気ガス駆動式過給機 4 過給機タービン 5 動力発生用タービン 7 遮断弁 14 バイパス配管 16 遮断弁 18 遮断弁 19 絞り要素 21 絞り要素 30 遮断弁 31 遮断弁 1 Internal combustion engine 3 Exhaust gas driven supercharger 4 supercharger turbine 5 Power generation turbine 7 Shut-off valve 14 Bypass piping 16 shut-off valve 18 Shut-off valve 19 Aperture element 21 Aperture element 30 shut-off valve 31 shut-off valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−60720(JP,A) 実開 昭64−36624(JP,U) 実開 昭63−200633(JP,U) (58)調査した分野(Int.Cl.7,DB名) F02B 41/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A 64-60720 (JP, A) Actually opened 64-36624 (JP, U) Actually opened 63-200633 (JP, U) (58) Field (Int.Cl. 7 , DB name) F02B 41/10

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排気ガス駆動式過給機(3)と、排気ガ
ス側において過給機タービン(4)に並列接続され、か
つ伝導装置を介して内燃機関(1)に動力を供給する別
個の動力発生用タービン(5)と、このタービンを運転
停止するための制御機構(7、19)とを持ち、過給機
タービン(4)の出力が所定の部分負荷領域に関し設定
されており、かつ動力発生用タービン(5)が部分負荷
時に遮断される内燃機関の過給装置において、動力発生
用タービン(5)に並列に、制御機構(16、21)を
備えたバイパス配管(14)が設けられ、このバイパス
配管(14)がそれを開閉するための制御機構(16、
21)を有し、バイパス配管(14)がその貫流断面積
が開いている場合にタービン(5)とほぼ同じ排気ガス
流量の貫流を可能にするように寸法づけられ、動力発生
用タービン(5)の制御機構(7、19)を投入および
遮断するための制御量が排気ガス駆動式過給機(3)の
過給空気圧であり、制御機構(7、19)が、制御装置
(18、31;31、34)を用いて予め設定した過給
空気圧の下限値(D)で開き、上限値(C)で閉じ、排
気ガス駆動式過給機(3)および動力発生用タービン
(5)が、75〜90%のエンジン出力において最良の
過給空気圧を発生することを特徴とする内燃機関の過給
装置。
1. An exhaust gas driven turbocharger (3) and a separate turbocharger turbine (4) connected in parallel on the exhaust gas side and supplying power to the internal combustion engine (1) via a transmission device. Has a power generation turbine (5) and a control mechanism (7 , 19 ) for stopping the operation of the turbine, and the output of the supercharger turbine (4) is set for a predetermined partial load region, In the supercharger for an internal combustion engine, in which the power generation turbine (5) is shut off during partial load, a bypass pipe (14) provided with a control mechanism (16, 21 ) in parallel with the power generation turbine (5) is provided. This bypass pipe (14) is provided and a control mechanism (16,
21) and the bypass pipe (14) is dimensioned to allow a flow-through of about the same exhaust gas flow as the turbine (5) when the cross-flow cross-section is open, and the turbine for power generation (5) The control amount for turning on and off the control mechanism (7 , 19 ) of (1) is the supercharging air pressure of the exhaust gas drive type supercharger (3), and the control mechanism (7 , 19 ) controls the control device (18, 31; 31, 34) is opened at a lower limit value (D) of the supercharging air pressure set in advance and is closed at an upper limit value (C), and an exhaust gas driven supercharger (3) and a power generation turbine (5) Generate the best supercharging air pressure at an engine output of 75 to 90%.
【請求項2】 制御機構が遮断弁(7、16)と絞り要
素(19、21)とから成り、制御装置が方向切換弁
(18)と電磁作動式方向切換弁(30、31)とから
成り、これら装置と機構とが上位の計算機に接続される
ことを特徴とする請求項1記載の過給装置。
Wherein become since control Organization has shutoff valve (7, 16) and aperture element (19, 21), the control equipment is directional control valve (18) and electromagnetically actuated directional control valve (30, 31) 2. The supercharger according to claim 1, wherein the supercharger and the mechanism are connected to a host computer.
【請求項3】 タービン(5)の前の遮断弁(7)の入
力側が過給空気圧に関係して付勢されることを特徴とす
る請求項2記載の内燃機関の過給装置。
3. Supercharging device for an internal combustion engine according to claim 2, characterized in that the input side of the shut-off valve (7) in front of the turbine (5) is energized in relation to the supercharging air pressure.
【請求項4】 バイパス配管(14)の遮断弁(16)
の入力側が過給空気圧に関係して付勢されることを特徴
とする請求項2記載の過給装置。
4. Shut-off valve (16) for bypass piping (14)
3. The supercharging device according to claim 2, wherein the input side of the is charged in relation to the supercharging air pressure.
【請求項5】 タービン(5)の前の1秒以下で閉鎖で
きる補助遮断機構(35)と、バイパス配管(14)の
第1の遮断弁(16)に並列接続された1秒以下で投入
できる遮断弁(36)とが設けられることを特徴とする
請求項1ないし4のいずれか1つに記載の過給装置。
5. The auxiliary shut-off mechanism (35) which can be closed in less than 1 second before the turbine (5) and the closing in less than 1 second connected in parallel to the first shut-off valve (16) of the bypass pipe (14). Supercharging device according to one of the preceding claims, characterized in that a shut-off valve (36) is provided.
【請求項6】 過給空気圧特性が空気式制御装置によっ
て実現されることを特徴とする請求項1ないし5のいず
れか1つに記載の過給装置。
6. The supercharging device according to claim 1, wherein the supercharging pneumatic pressure characteristic is realized by a pneumatic control device.
【請求項7】 過給空気圧特性が電気式制御装置によっ
て実現されることを特徴とする請求項1ないし5のいず
れか1つに記載の過給装置。
7. The supercharging device according to claim 1, wherein the supercharging pneumatic pressure characteristic is realized by an electric control device.
JP15158293A 1992-07-02 1993-05-28 Supercharger for internal combustion engine Expired - Lifetime JP3487357B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4221734.2 1992-07-02
DE4221734A DE4221734C2 (en) 1992-07-02 1992-07-02 Charging system for internal combustion engines

Publications (2)

Publication Number Publication Date
JPH0666151A JPH0666151A (en) 1994-03-08
JP3487357B2 true JP3487357B2 (en) 2004-01-19

Family

ID=6462332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15158293A Expired - Lifetime JP3487357B2 (en) 1992-07-02 1993-05-28 Supercharger for internal combustion engine

Country Status (2)

Country Link
JP (1) JP3487357B2 (en)
DE (1) DE4221734C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284681A (en) * 1998-03-31 1999-10-15 Tamura Electric Works Ltd Information equipment
JP3797166B2 (en) 2001-09-18 2006-07-12 株式会社デンソー Network system
KR101831285B1 (en) * 2011-04-21 2018-02-22 맥 트럭스 인코포레이팃드 Power system with turbine bypass and method of operating a power system
US8813494B2 (en) * 2011-09-07 2014-08-26 General Electric Company Method and system for a turbocharged engine
JP6518702B2 (en) 2014-06-10 2019-05-22 ボルボトラックコーポレーション Turbine system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091139B2 (en) * 1982-04-05 1993-01-27 BBC Brown Boveri AG Exhaust turbocharger on a supercharged diesel engine
DE3729117C1 (en) * 1987-09-01 1988-11-03 Man B & W Diesel Gmbh Internal combustion engine system
DE3916242C1 (en) * 1989-05-18 1990-06-13 Man B & W Diesel Ag, 8900 Augsburg, De

Also Published As

Publication number Publication date
DE4221734C2 (en) 1996-01-04
JPH0666151A (en) 1994-03-08
DE4221734A1 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US6311494B2 (en) Exhaust gas recirculation system for a turbocharged internal combustion engine
JPH0343449B2 (en)
JPH07500394A (en) Supply pressure control
JPH0192525A (en) Composite supercharger for engine
JP2008528860A (en) Twin charger combustion engine and its operation method
JPH07293262A (en) Sequential supercharger for diesel engine
JPS5982526A (en) Supercharger for internal-combustion engine
JP3487357B2 (en) Supercharger for internal combustion engine
KR100292418B1 (en) Apparatus for compression control of exhaust gas refiller
US4598549A (en) Turbocharger manifold pressure control system
JP3483898B2 (en) Control device for supercharger
JPS6278432A (en) Control device for turbosupercharger
JP3468989B2 (en) Exhaust brake system for turbocharged diesel engine
JPH02112618A (en) Supercharge pressure control device for twin turbo engine
JP3105402B2 (en) Supercharging pressure control method
JP2513496B2 (en) Control device for turbocharger
JPS6287615A (en) Multistage type turbosupercharged engine
JP3073401B2 (en) Highest speed control method for supercharged engine
JPH03275937A (en) Supercharge controller for series two-stage supercharge internal combustion engine
JPH0861104A (en) Excessive supercharging preventing method in supercharging pressure control
JPS6013924A (en) Supercharging pressure controlling apparatus for engine with supercharger
JP2605053B2 (en) Engine boost pressure control device
JPS63984Y2 (en)
GB2172657A (en) Turbochargers
JPH0352986Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030918

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term