JP3486673B2 - Active vibration damping electromagnetic exciter and active vibration damping control method - Google Patents

Active vibration damping electromagnetic exciter and active vibration damping control method

Info

Publication number
JP3486673B2
JP3486673B2 JP2000273626A JP2000273626A JP3486673B2 JP 3486673 B2 JP3486673 B2 JP 3486673B2 JP 2000273626 A JP2000273626 A JP 2000273626A JP 2000273626 A JP2000273626 A JP 2000273626A JP 3486673 B2 JP3486673 B2 JP 3486673B2
Authority
JP
Japan
Prior art keywords
elastic body
supporting
vibration damping
force
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000273626A
Other languages
Japanese (ja)
Other versions
JP2002079178A (en
Inventor
厚博 堤
将人 鎌形
慶雄 岡本
Original Assignee
防衛庁技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛庁技術研究本部長 filed Critical 防衛庁技術研究本部長
Priority to JP2000273626A priority Critical patent/JP3486673B2/en
Publication of JP2002079178A publication Critical patent/JP2002079178A/en
Application granted granted Critical
Publication of JP3486673B2 publication Critical patent/JP3486673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、能動振動減衰装置
とその制御方法に係り、より詳しくは、機械・防振支持
系の共振周波数帯域にある振動成分の防振効果を向上さ
せる能動振動減衰用電磁加振機とその制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active vibration damping device and its control method, and more particularly to active vibration damping for improving the vibration damping effect of vibration components in the resonance frequency band of a mechanical / vibration supporting system. Electromagnetic exciter and its control method.

【0002】[0002]

【従来の技術】建物や船などの構造部材の機械的振動は
起振源である機械の振動の伝搬によって生じる。このた
め、構造部材の振動の低減には、起振源からの振動の伝
搬を遮断することが大きな効果を持つ。従来こうした起
振源からの振動を抑制する方法としては、起振源の支持
部に防振ゴム等の防振用弾性体を挿入する受動的な方法
が一般的に用いられてきた。防振ゴム等の防振用弾性体
による支持は広い周波数帯にわたって振動遮断効果をも
つが、防振用弾性体と起振源で構成される機械・防振支
持系に共振が起こり、この共振周波数付近では振動が増
幅される欠陥があった。このため、加振機で振動を与え
て制振する能動振動減衰制御が考えられるようになっ
た。
2. Description of the Related Art Mechanical vibration of a structural member such as a building or a ship is caused by propagation of vibration of a machine which is a vibration source. Therefore, in order to reduce the vibration of the structural member, blocking the propagation of the vibration from the vibration source has a great effect. Conventionally, as a method of suppressing the vibration from such a vibration source, a passive method in which a vibration-proof elastic body such as a vibration-proof rubber is inserted into a support portion of the vibration source is generally used. Support by vibration-proof rubber or other vibration-proof elastic body has a vibration isolation effect over a wide frequency band, but resonance occurs in the machine / vibration support system composed of the vibration-proof elastic body and vibration source. There was a defect that vibration was amplified near the frequency. Therefore, active vibration damping control in which vibration is applied by a vibration exciter to suppress the vibration has come to be considered.

【0003】[0003]

【発明が解決しようとする課題】共振時の能動防振とし
て、振動を低減する部分の速度に比例する力をその速度
検出部に加えることによって制振する直接速度フィード
バック法が知られている。この方法を起振源である機械
を防振用弾性体により支持して振動遮断する方法に適用
する場合に、機械と建物や船などの構造部材の間に加振
機を挿入して制振用の力を作用させると、この制振用の
力が支持構造材に伝達され制振効果を発生できない。そ
のため、慣性質量を加振機で動かし、その反力で制振用
の力を発生させる必要がある。このような慣性質量をも
つ構造の加振機は市販されている。しかし、慣性質量を
もつ構造の加振機は、慣性質量を重力に抗して支える支
持用弾性体が必要であるため、慣性質量を動かす加振機
の力以外に慣性質量を支える支持用弾性体より伝わる力
があり、加振機の電磁コイルに入力する電圧を前記の速
度に比例させても計画の振動減衰効果が得られない。
As active vibration isolation during resonance, a direct velocity feedback method is known in which a force proportional to the velocity of a portion for reducing vibration is applied to the velocity detecting portion to suppress the vibration. When applying this method to the method of isolating the vibration by supporting the machine that is the vibration source by the vibration-proof elastic body, insert a vibration exciter between the machine and the structural member such as the building or ship to suppress the vibration. When the force for vibration is applied, the force for vibration is transmitted to the support structure material and the vibration damping effect cannot be generated. Therefore, it is necessary to move the inertial mass with a vibration exciter and generate a vibration damping force by its reaction force. A vibrator having a structure having such an inertial mass is commercially available. However, a shaker with a structure having an inertial mass requires an elastic body for support that supports the inertial mass against gravity, so in addition to the force of the exciter that moves the inertial mass, the supporting elastic body that supports the inertial mass. There is a force transmitted from the body, and the planned vibration damping effect cannot be obtained even if the voltage input to the electromagnetic coil of the exciter is made proportional to the speed.

【0004】本発明は、上記課題を解決するためになさ
れたもので、その目的は機械・防振支持系の共振周波数
帯における防振効果を向上させる能動振動減衰電磁加振
機と能動振動減衰制御方法を提供することにある。
The present invention has been made to solve the above problems, and its purpose is to provide an active vibration damping electromagnetic vibration exciter and an active vibration damping for improving the vibration damping effect in the resonance frequency band of a mechanical / vibration supporting system. It is to provide a control method.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
め、本発明の能動振動減衰用電磁加振機7は、構造部材
10上の防振用弾性体9に支持される架台上に振動源で
ある機械8が載置され、前記架台上に複数設けられる電
磁加振機であって、前記架台上に固定される支持部4
と、該支持部4上に支持用弾性体2にて支持される慣性
質量である永久磁石1と、該永久磁石1と前記支持部4
との間に設けられ、該支持部4に固定され電磁力を発生
する電磁コイル3と、支持用弾性体2と支持部4との間
に配設され、前記永久磁石1から前記支持用弾性体2を
通して前記支持部4に伝達される力を検出する検出手段
5と、前記支持部4上に設けられ、該支持部4の変位,
速度を検出する検出手段6と、を備え、検出した支持部
4の速度に能動減衰係数を掛け、これと検出した支持用
弾性体2を伝わる伝達力を加えた信号を増幅し、前記支
持用弾性体2より伝わる力と前記電磁コイル3による電
磁力の合計の力を前記支持部4の変位,速度に比例さ
せ、機械・防振支持系の固有振動数を変化させることな
く直接速度フィードバック制御を行い、防振ゴム等によ
る弾性支持方式における共振による振動伝搬の増大を押
さえることを特徴とする。
In order to achieve the above-mentioned object, the electromagnetic vibration exciter for active vibration damping 7 of the present invention vibrates on a frame supported by a vibration-proof elastic body 9 on a structural member 10. A supporter 4 is an electromagnetic exciter on which a machine 8 as a source is placed and which is provided on the gantry, and which is fixed on the gantry.
A permanent magnet 1 which is an inertial mass supported on the supporting portion 4 by a supporting elastic body 2, the permanent magnet 1 and the supporting portion 4
Between the permanent magnet 1 and the supporting elastic member, and the electromagnetic coil 3 fixed between the supporting member 4 and the electromagnetic coil 3 for generating an electromagnetic force, and disposed between the supporting elastic body 2 and the supporting member 4. A detection means 5 for detecting the force transmitted to the support portion 4 through the body 2, and a displacement of the support portion 4 provided on the support portion 4,
A detecting means 6 for detecting a speed, and multiplying the detected speed of the supporting portion 4 by an active damping coefficient, and amplifying a signal obtained by adding a transmission force transmitted to the detected supporting elastic body 2 to the supporting elastic body 2. The total force of the force transmitted from the elastic body 2 and the electromagnetic force generated by the electromagnetic coil 3 is proportional to the displacement and speed of the support portion 4, and direct speed feedback control is performed without changing the natural frequency of the mechanical / vibration support system. And suppresses an increase in vibration propagation due to resonance in an elastic support system using a vibration proof rubber or the like.

【0006】また、本発明の能動振動減衰制御方法は、
前記能動振動減衰電磁加振機7における前記支持部4の
速度の検出手段において、前記支持部4の加速度を加速
度センサ14により検出し、これを積分して速度に変換
する速度検出方法を具備することを特徴とする。
Further, the active vibration damping control method of the present invention is
The means for detecting the velocity of the support portion 4 in the active vibration damping electromagnetic exciter 7 is provided with a velocity detection method in which the acceleration of the support portion 4 is detected by the acceleration sensor 14, and the acceleration is integrated and converted into a velocity. It is characterized by

【0007】さらに、本発明の能動振動減衰制御方法
は、前記能動振動減衰電磁加振機7において、前記支持
用弾性体2を通して伝達される力の検出手段5にかわ
り、支持部4と永久磁石1の相対変位を変位センサ16
により検出し、これに支持用弾性体2のばね定数を掛け
て伝達力に変換する伝達力検出方法を具備することを特
徴とする。
Further, in the active vibration damping control method of the present invention, in the active vibration damping electromagnetic exciter 7, instead of the detecting means 5 for the force transmitted through the supporting elastic body 2, the supporting portion 4 and the permanent magnet are replaced. Displacement sensor 16
It is characterized by including a transmission force detecting method for detecting the transmission force by converting the transmission force into a transmission force by multiplying it by the spring constant of the supporting elastic body 2.

【0008】また、本発明の能動振動減衰制御方法は、
前記能動振動減衰電磁加振機7において、前記支持用弾
性体2を通して伝達される力の検出手段5にかわり、支
持部4と永久磁石1の相対速度を速度センサ18により
検出し、これを積分し、支持用弾性体2のばね定数を掛
けて伝達力に変換する伝達力検出方法を具備することを
特徴とする。
Further, the active vibration damping control method of the present invention is
In the active vibration damping electromagnetic exciter 7, instead of the detecting means 5 of the force transmitted through the supporting elastic body 2, the relative speed between the supporting portion 4 and the permanent magnet 1 is detected by a speed sensor 18, and this is integrated. However, the present invention is characterized by comprising a transmission force detecting method for converting the transmission elastic force by multiplying it by the spring constant of the supporting elastic body 2.

【0009】さらに、本発明の能動振動減衰制御方法
は、前記能動振動減衰電磁加振機7において、前記支持
用弾性体2を通して伝達される力の検出手段5にかわ
り、支持部4の加速度と永久磁石1の加速度を加速度セ
ンサ19により検出し、これを2回積分し、これらの差
に支持用弾性体2のばね定数を掛けて伝達力に変換する
伝達力検出方法を具備することを特徴とする。
Further, in the active vibration damping control method of the present invention, in the active vibration damping electromagnetic exciter 7, the acceleration of the supporting portion 4 is replaced by the detecting means 5 for the force transmitted through the supporting elastic body 2. An acceleration sensor 19 detects the acceleration of the permanent magnet 1, integrates the acceleration twice, and multiplies the difference by the spring constant of the supporting elastic body 2 to convert it into a transmission force. And

【0010】[0010]

【作 用】上記の方法によると、電磁加振機の慣性質量
を支える支持用弾性体より伝わる伝達力と支持部の速度
を検出し、これを加えた信号を電磁加振機に増幅して入
力しているので、電磁加振機の慣性質量を支える支持用
弾性体を伝わる力と電磁コイルによる電磁力の合計の力
を支持部の速度に比例させ、機械・防振支持系の固有振
動数を変化させることなく直接速度フィードバック制御
を実現でき、防振ゴム等による弾性支持方式の共振によ
る振動伝搬の増大を押さえることができる。
[Operation] According to the above method, the transmission force transmitted from the supporting elastic body that supports the inertial mass of the electromagnetic exciter and the speed of the support part are detected, and the signal added to this is amplified to the electromagnetic exciter. Since it is input, the total force of the force transmitted through the supporting elastic body that supports the inertial mass of the electromagnetic exciter and the electromagnetic force of the electromagnetic coil is proportional to the speed of the support part, and the natural vibration of the mechanical / vibration support system is The velocity feedback control can be directly realized without changing the number, and the increase of vibration propagation due to the resonance of the elastic support system such as the vibration proof rubber can be suppressed.

【0011】[0011]

【発明の実施の形態】発明の実施の形態を実施例にもと
づき図面を参照して説明する。第1図は本発明の伝達力
と速度の検出手段を取り付けた能動振動減衰電磁加振機
7である。支持用弾性体2によって支えられた永久磁石
1は慣性質量としても作用する。前記永久磁石1と支持
側に固定された電磁コイル3によって力を発生する。前
記支持用弾性体2を通して伝達される力の検出手段5
は、支持部4と支持用弾性体2の間の円周上に取り付け
られる。速度の検出手段6は支持部4に取り付けられ
る。この構造により、支持用弾性体からの伝達力と支持
部の速度が検出できるので、本発明の能動振動減衰制御
方法を用いて、直接速度フィードバックによる能動振動
減衰が実現できる。伝達力の検出手段5は市販の力セン
サを、速度の検出手段6は市販の速度センサをそのまま
使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described based on examples with reference to the drawings. FIG. 1 shows an active vibration damping electromagnetic exciter 7 equipped with a transmission force and speed detecting means of the present invention. The permanent magnet 1 supported by the supporting elastic body 2 also functions as an inertial mass. A force is generated by the permanent magnet 1 and the electromagnetic coil 3 fixed to the supporting side. A means 5 for detecting the force transmitted through the supporting elastic body 2.
Is attached on the circumference between the supporting portion 4 and the supporting elastic body 2. The speed detecting means 6 is attached to the support portion 4. With this structure, the transmission force from the supporting elastic body and the speed of the supporting portion can be detected, so that the active vibration damping by direct speed feedback can be realized by using the active vibration damping control method of the present invention. A commercially available force sensor can be used as the transmission force detecting means 5, and a commercially available speed sensor can be used as the speed detecting means 6.

【0012】第2図は本発明の能動振動減衰制御方法を
説明する図である。本発明の能動振動減衰電磁加振機7
が振動源である機械8に複数個取り付けられる。振動源
である機械8は防振用弾性体9によって支持され、建物
や船体などの構造部材10への振動を遮断している。ここ
で、振動源である機械8の質量をM、防振用弾性体9の
ばね定数をS、防振用弾性体9の減衰定数をG、機械内
部の起振力をF、能動振動減衰電磁加振機7から機械8
に伝達される力をFT 、機械8の変位をz とすると、機
械・防振支持系の運動方程式は、
FIG. 2 is a diagram for explaining the active vibration damping control method of the present invention. Active vibration damping electromagnetic exciter 7 of the present invention
Are attached to the machine 8 that is the vibration source. The machine 8 as a vibration source is supported by a vibration-proof elastic body 9 to block vibrations to a structural member 10 such as a building or a ship. Here, the mass of the machine 8 as a vibration source is M, the spring constant of the vibration-proof elastic body 9 is S, the damping constant of the vibration-proof elastic body 9 is G, the vibration force inside the machine is F, and the active vibration damping is Electromagnetic exciter 7 to machine 8
Where F T is the force transmitted to the machine and z is the displacement of the machine 8, the equation of motion of the machine / vibration support system is

【0013】[0013]

【数1】 [Equation 1]

【0014】となる。再び第1図において、支持部4は
機械に取り付けられているため変位はzである。永久磁
石1と支持部4の相対変位をy、永久磁石1の変位を
x、永久磁石1の質量をm 、支持用弾性体の減衰定数を
c 、支持用弾性体のばね定数をkとすると、能動振動減
衰電磁加振機7の運動方程式は、
[0014] Again in FIG. 1, the displacement is z since the support 4 is attached to the machine. The relative displacement between the permanent magnet 1 and the support portion 4 is y, the displacement of the permanent magnet 1 is x, the mass of the permanent magnet 1 is m, and the damping constant of the supporting elastic body is
c and the spring constant of the supporting elastic body are k, the equation of motion of the active vibration damping electromagnetic exciter 7 is

【0015】[0015]

【数2】 [Equation 2]

【0016】ここで、f は電磁コイル3に電気を流すこ
とによって生じる電磁コイルの電磁力である。能動振動
減衰用電磁加振機7から機械8に伝達される力FT は、
Here, f is an electromagnetic force of the electromagnetic coil generated by passing electricity through the electromagnetic coil 3. The force F T transmitted from the active vibration damping electromagnetic exciter 7 to the machine 8 is

【0017】[0017]

【数3】 [Equation 3]

【0018】式(3)のFT が、F T of equation (3) is

【0019】[0019]

【数4】 [Equation 4]

【0020】であるとき、これを式(1)に代入する
と、
Substituting this into equation (1),

【0021】[0021]

【数5】 [Equation 5]

【0022】となる。これは、機械の運動方程式の減衰
定数が防振用弾性体8の減衰定数Gに新たに能動減衰係
数bが加わり、共振時の振幅を低減できることを示して
いる。式(4)の制御を行うためには、これが式(3)
と等しいため、電磁コイル3の電磁力は
It becomes This shows that the damping constant of the equation of motion of the machine is newly added to the damping constant G of the vibration-proof elastic body 8 with the active damping coefficient b, and the amplitude at resonance can be reduced. In order to control the equation (4), this is the equation (3)
Therefore, the electromagnetic force of the electromagnetic coil 3 is

【0023】[0023]

【数6】 [Equation 6]

【0024】でなければならない。ここで、Fs は支持
用弾性体2を通して支持部4に伝わる伝達力で、式
(7)で現され、伝達力の検出手段5により検出し、制
御に利用される。
Must be Here, F s is a transmission force that is transmitted to the support portion 4 through the supporting elastic body 2, is represented by the equation (7), is detected by the transmission force detecting means 5, and is used for control.

【0025】[0025]

【数7】 [Equation 7]

【0026】式(6)におけるdz/dtは支持部の速
度の検出手段6によって検出される。式(6)の制御
は、検出した支持部の速度に能動減衰係数bを掛け、こ
れと検出した支持用弾性体を伝わる伝達力Fs を加えた
後、増幅した電圧を電磁加振機の電磁コイル3に入力す
ることにより実現される。従来方式では、支持用弾性体
を伝わる伝達力Fs を検出しない。仮に、式(6)のF
s =0で制御した場合には、機械・防振支持系の運動方
程式は、
Dz / dt in the equation (6) is detected by the speed detecting means 6 of the supporting portion. In the control of the equation (6), the detected velocity of the supporting portion is multiplied by the active damping coefficient b, and the detected transmission force F s transmitted through the supporting elastic body is added, and then the amplified voltage is applied to the electromagnetic exciter. It is realized by inputting to the electromagnetic coil 3. In the conventional method, the transmission force F s transmitted through the supporting elastic body is not detected. Assuming that F in equation (6)
When controlled with s = 0, the equation of motion of the mechanical / anti-vibration support system is

【0027】[0027]

【数8】 [Equation 8]

【0028】となるため、機械・防振支持系の固有振動
数を変化させ、設計の防振支持効果が得られない。第3
図は本発明の防振効果を表す。横軸は周波数、縦軸は機
械の振動振幅であり、Aは式(1)の能動防振をしてい
ない場合、Bは式(6)の本発明の制御法を用いた場
合、Cは従来手法の式(8)の場合である。Dは機関の
回転成分など防振したい基本の周波数を表している。式
(8)による従来の方法では、ある程度の減衰効果は得
られても固有振動数が変化して、本来振動を大きく低減
したい周波数に機械・防振支持系の固有振動数が移り、
この周波数で振動が増大する欠点が在る。これに比べ
て、本発明の方法は初期設計の固有振動数を変化させる
ことなく、共振振幅を大きく減衰させることができる。
第4図は能動振動減衰制御方法のブロック線図である。
係数器11によって式(6)の能動減衰係数bを、速度
の検出手段6で検出した支持台4の速度に掛ける。これ
と伝達力の検出手段5で検出した支持用弾性体2を伝わ
る力を加算器12で加え、この信号を増幅器13で増幅
して電磁コイル3に入力する。
Therefore, the natural frequency of the mechanical / anti-vibration support system is changed and the designed anti-vibration support effect cannot be obtained. Third
The figure shows the anti-vibration effect of the present invention. The horizontal axis is the frequency and the vertical axis is the vibration amplitude of the machine. A is the case where the active vibration isolation of the formula (1) is not performed, B is the case where the control method of the present invention of the formula (6) is used, and C is This is the case of Expression (8) of the conventional method. D represents the basic frequency, such as the rotational component of the engine, for which vibration isolation is desired. In the conventional method based on the equation (8), the natural frequency of the mechanical / vibration support system shifts to a frequency at which it is desired to greatly reduce the vibration, even though some damping effect can be obtained.
There is the drawback of increased vibration at this frequency. In comparison, the method of the present invention can significantly reduce the resonance amplitude without changing the natural frequency of the initial design.
FIG. 4 is a block diagram of the active vibration damping control method.
A coefficient multiplier 11 multiplies the active damping coefficient b of the equation (6) by the speed of the support base 4 detected by the speed detecting means 6. This and the force transmitted through the supporting elastic body 2 detected by the transmission force detecting means 5 are added by the adder 12, and this signal is amplified by the amplifier 13 and input to the electromagnetic coil 3.

【0029】第5図は支持部の速度の検出手段にかわ
り、支持部の加速度を加速度センサにより検出し、これ
を積分して速度に変換する速度検出方法における加速度
センサ14の取り付け状況を示す。第6図は加速度セン
サ14の信号を積分器15に入力し、これを積分して速
度信号変換する場合の制御ブロック線図である。
FIG. 5 shows the mounting condition of the acceleration sensor 14 in the speed detecting method in which the acceleration of the supporting portion is detected by an acceleration sensor instead of the means for detecting the velocity of the supporting portion, and the acceleration is integrated and converted into the velocity. FIG. 6 is a control block diagram in the case of inputting the signal of the acceleration sensor 14 to the integrator 15 and integrating the signal to convert the speed signal.

【0030】第7図は支持用弾性体を通して伝達される
伝達力の検出手段にかわり、支持部と永久磁石の相対変
位を変位センサにより検出し、これに支持部のばね定数
kを掛けて伝達力に変換する伝達力検出方法における変
位センサ16の取り付け状況図である。変位センサ16
はその一端を永久磁石1に他端を支持台4に取り付け、
これらの間の相対変位を検出する。
FIG. 7 shows, instead of means for detecting the transmission force transmitted through the supporting elastic body, the relative displacement between the supporting portion and the permanent magnet is detected by a displacement sensor, and this is multiplied by the spring constant k of the supporting portion and transmitted. FIG. 7 is a diagram illustrating a mounting state of a displacement sensor 16 in a transmission force detecting method for converting into a force. Displacement sensor 16
Attaches one end to the permanent magnet 1 and the other end to the support base 4,
The relative displacement between them is detected.

【0031】第8図は伝達力の検出手段にかわり、支持
部と永久磁石の相対変位を変位センサにより検出する場
合の制御ブロック線図である。変位センサ16によって
検出された信号は係数器17で支持用弾性体2のばね定
数kを掛けて、支持用弾性体2を伝わる力に変換する。
この場合、支持用弾性体2の減衰係数cより伝わる力
は、支持用弾性体2のばね定数kにより伝わる力に比べ
て小さく無視できると仮定する。無視できない場合は変
位を微分し、これに支持用弾性体2の減衰係数cを掛け
たものを加える演算を追加する。第1図のように、伝達
力の検出手段5が力センサの場合は、弾性体の下部全て
に複数個または、弾性体が円周状である場合にも3個以
上の複数個を円周上に取り付け、これらの和を伝達力と
する計算が必要である。さらに、弾性体2と支持部4を
力センサで結合することになり、複雑な取り付け手段が
必要である。
FIG. 8 is a control block diagram when the relative displacement between the support and the permanent magnet is detected by a displacement sensor instead of the transmission force detecting means. The signal detected by the displacement sensor 16 is multiplied by the spring constant k of the supporting elastic body 2 by the coefficient unit 17 and converted into a force transmitted through the supporting elastic body 2.
In this case, it is assumed that the force transmitted by the damping coefficient c of the supporting elastic body 2 is smaller than the force transmitted by the spring constant k of the supporting elastic body 2 and can be ignored. If it cannot be ignored, the displacement is differentiated, and an operation of adding the product to the product obtained by multiplying the displacement by the damping coefficient c of the supporting elastic body 2 is added. As shown in FIG. 1, when the transmitting force detecting means 5 is a force sensor, a plurality of elastic members are provided in the entire lower part of the elastic body, or even when the elastic body has a circular shape, three or more are included in the circumference. It needs to be mounted on the top and calculated with the sum of these as the transmission force. Further, the elastic body 2 and the support portion 4 are connected by the force sensor, and a complicated mounting means is required.

【0032】第9図は支持用弾性体を通して伝達される
伝達力の検出手段にかわり、支持部と永久磁石の相対速
度を速度センサにより検出し、これを積分し、支持部の
ばね定数を掛けて伝達力に変換する伝達力検出方法にお
ける速度センサ18の取り付け状況図である。速度セン
サ18はその一端を永久磁石1に他端を支持台4に取り
付け、これらの間の相対速度を検出する。第10図は伝
達力の検出手段にかわり、支持部と永久磁石の相対速度
を速度センサにより検出する場合の制御ブロック線図で
ある。速度センサ18によって検出された信号は積分器
15で積分して変位に変換し、その後、係数器17で支
持用弾性体2のばね定数kを掛けて、支持用弾性体2を
伝わる力に変換する。この場合、支持用弾性体2の減衰
係数cより伝わる力は、支持用弾性体2のばね定数kに
より伝わる力に比べて小さく無視できると仮定する。無
視できない場合は速度センサ18によって検出された速
度に支持用弾性体2の減衰係数cを掛けたものを、ばね
定数kによる伝達力に加える演算を追加する。
FIG. 9 shows a means for detecting the transmission force transmitted through the supporting elastic body, in which the relative velocity between the supporting portion and the permanent magnet is detected by a velocity sensor, which is integrated and multiplied by the spring constant of the supporting portion. FIG. 9 is a diagram illustrating an attachment state of the speed sensor 18 in the transmission force detecting method of converting the transmission force into transmission force. The speed sensor 18 has one end attached to the permanent magnet 1 and the other end attached to the support base 4 to detect the relative speed between them. FIG. 10 is a control block diagram in the case of detecting the relative speed between the support portion and the permanent magnet by a speed sensor instead of the transmission force detecting means. The signal detected by the speed sensor 18 is integrated by the integrator 15 to be converted into a displacement, and then the spring constant k of the supporting elastic body 2 is multiplied by the coefficient unit 17 to be converted into a force transmitted through the supporting elastic body 2. To do. In this case, it is assumed that the force transmitted by the damping coefficient c of the supporting elastic body 2 is smaller than the force transmitted by the spring constant k of the supporting elastic body 2 and can be ignored. If it cannot be ignored, a calculation is added to add the product of the speed detected by the speed sensor 18 and the damping coefficient c of the supporting elastic body 2 to the transmission force by the spring constant k.

【0033】第11図は支持用弾性体を通して伝達され
る伝達力の検出手段にかわり、支持部の加速度と永久磁
石部の加速度を加速度センサにより検出し、これを2回
積分し、これらの差に支持部のばね定数を掛けて伝達力
に変換する伝達力検出方法における加速度センサの取り
付け状況を示す。第11図の場合、支持部の速度検出を
第6図の加速度センサ14の信号を積分して速度に変換
する方法を採用し、加速度センサ14の信号を伝達力検
出用の支持部の加速度センサとして併用している。永久
磁石1の加速度を検出する加速度センサ19は永久磁石
1に取り付ける。第12図は伝達力の検出手段にかわ
り、支持部と永久磁石の相対加速度をそれぞれに取り付
けた加速度センサにより検出する場合の制御ブロック線
図である。加速度センサ19によって検出した信号と加
速度センサ14によって検出した信号の差を引き算器2
0によって計算する。これを積分器15で速度に、さら
にもう一台の積分器15で変位に変換し、その後、係数
器17で支持用弾性体2のばね定数kを掛けて、支持用
弾性体2を伝わる力に変換する。相対変位とするための
差を取る計算は積分の後でもよい。この場合、支持用弾
性体2の減衰係数cより伝わる力は、支持用弾性体2の
ばね定数kにより伝わる力に比べて小さく無視できると
仮定する。無視できない場合は第1回目の積分後の信号
である相対速度に支持用弾性体2の減衰係数cを掛けた
ものを、ばね定数kによる伝達力に加える演算を追加す
る。
FIG. 11 shows an alternative to the means for detecting the transmission force transmitted through the supporting elastic body. The acceleration of the supporting portion and the acceleration of the permanent magnet portion are detected by an acceleration sensor, which is integrated twice and the difference between them is detected. The mounting condition of the acceleration sensor in the transmission force detection method in which the spring constant of the support portion is multiplied to convert into the transmission force is shown. In the case of FIG. 11, a method of integrating the signal of the acceleration sensor 14 of FIG. 6 to convert the signal of the acceleration sensor 14 into a speed is used to detect the speed of the supporting portion, and the acceleration sensor of the supporting portion for detecting the transmission force of the signal of the acceleration sensor 14 is adopted. Are used together. An acceleration sensor 19 that detects the acceleration of the permanent magnet 1 is attached to the permanent magnet 1. FIG. 12 is a control block diagram when the relative accelerations of the support and the permanent magnet are detected by the acceleration sensors attached to each other, instead of the transmission force detecting means. The subtractor 2 subtracts the difference between the signal detected by the acceleration sensor 19 and the signal detected by the acceleration sensor 14.
Calculate by 0. This is converted into a velocity by the integrator 15 and a displacement by the other integrator 15, and then the coefficient constant 17 is multiplied by the spring constant k of the supporting elastic body 2 to transmit the force transmitted through the supporting elastic body 2. Convert to. The calculation for taking the difference to obtain the relative displacement may be performed after the integration. In this case, it is assumed that the force transmitted by the damping coefficient c of the supporting elastic body 2 is smaller than the force transmitted by the spring constant k of the supporting elastic body 2 and can be ignored. If it cannot be ignored, a calculation is added to add the product of the relative velocity, which is the signal after the first integration, multiplied by the damping coefficient c of the supporting elastic body 2, to the transmission force by the spring constant k.

【0034】第13図は従来技術による能動振動減衰制
御方法のブロック線図である。係数器11によって能動
減衰係数bを増幅器13で増幅して電磁コイル3に入力
する。制御回路は簡単であるが、上述のように精緻な制
御を行うことができないため、固有振動数を変化させ、
本来振動を低減したい周波数で振動が増大する欠点が在
る。
FIG. 13 is a block diagram of a conventional active vibration damping control method. The active damping coefficient b is amplified by the amplifier 13 by the coefficient unit 11 and input to the electromagnetic coil 3. Although the control circuit is simple, it is impossible to perform precise control as described above, so the natural frequency is changed,
There is a drawback that the vibration increases at the frequency where the vibration is originally desired to be reduced.

【0035】[0035]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0036】本発明の能動振動減衰電磁加振機によれ
ば、電磁加振機の慣性質量を支える弾性体より伝わる伝
達力と支持部の速度の検出手段を取り付けているので、
直接速度フィードバック制御が実現でき、防振ゴム等に
よる弾性支持法の共振による振動伝搬の増大を押さえる
ことができる。
According to the active vibration damping electromagnetic exciter of the present invention, the means for detecting the transmission force transmitted from the elastic body supporting the inertial mass of the electromagnetic exciter and the speed of the supporting portion are attached.
Direct velocity feedback control can be realized, and it is possible to suppress an increase in vibration propagation due to resonance of an elastic support method using a vibration-proof rubber or the like.

【0037】本発明の能動振動減衰制御方法によれば、
前記能動振動減衰電磁加振機において、検出した支持部
の速度に能動減衰係数を掛け、これと検出した支持用弾
性体を伝わる伝達力を加えた後、増幅した電圧を前記電
磁加振機の電磁コイルに入力するので、直接速度フィー
ドバック制御が実現でき、機械・防振支持系の固有振動
数を変化させることなく、防振ゴム等による弾性支持法
の共振による振動伝搬の増大を押さえることができる。
According to the active vibration damping control method of the present invention,
In the active vibration damping electromagnetic exciter, the detected velocity of the support portion is multiplied by the active damping coefficient, and a transmission force transmitted through this and the detected supporting elastic body is applied, and then an amplified voltage is applied to the electromagnetic exciter. Since it is input to the electromagnetic coil, direct velocity feedback control can be realized, and it is possible to suppress the increase in vibration propagation due to the resonance of the elastic support method such as the anti-vibration rubber without changing the natural frequency of the mechanical / anti-vibration support system. it can.

【0038】本発明の速度検出法によれば、前記能動振
動減衰電磁加振機において、支持部の速度の検出手段に
かわり、支持部の加速度を加速度センサにより検出し、
これを積分して速度に変換するので、大型・高価である
速度サンサに代わり小型・低価格の加速度センサが使用
でき、かつ、取り付けが簡便化される。
According to the velocity detecting method of the present invention, in the active vibration damping electromagnetic exciter, the acceleration of the supporting portion is detected by an acceleration sensor instead of the velocity detecting means of the supporting portion,
Since this is integrated and converted into speed, a small and low-priced acceleration sensor can be used in place of the large and expensive speed sensor, and mounting is simplified.

【0039】本発明の第1の伝達力検出方法によれは、
前記能動振動減衰電磁加振機において、支持用弾性体を
通して伝達される伝達力の検出手段にかわり、支持部と
永久磁石の相対変位を変位センサにより検出し、これに
支持部のばね定数を掛けて伝達力に変換するので、支持
用弾性体の下部に複数の力センサを取り付ける必要がな
く、構造が簡略化される。
According to the first transmission force detecting method of the present invention,
In the active vibration damping electromagnetic exciter, a displacement sensor is used to detect the relative displacement between the supporting portion and the permanent magnet instead of the detecting means for the transmission force transmitted through the supporting elastic body, and this is multiplied by the spring constant of the supporting portion. Since it is converted into a transmission force by using a plurality of force sensors, it is not necessary to attach a plurality of force sensors to the lower part of the supporting elastic body, and the structure is simplified.

【0040】本発明の第2の伝達力検出方法は、前記能
動振動減衰電磁加振機において支持用弾性体を通して伝
達される伝達力の検出手段にかわり、支持部と永久磁石
の相対変位を速度センサにより検出し、これを積分し、
支持部のばね定数を掛けて伝達力に変換するので、支持
用弾性体の下部に複数の力センサを取り付ける必要がな
く、構造が簡略化される。
The second transmission force detecting method of the present invention replaces the transmission force detecting means transmitted through the supporting elastic body in the active vibration damping electromagnetic exciter, and the relative displacement between the supporting portion and the permanent magnet is speeded. Detected by the sensor, integrated this,
Since the spring constant of the supporting portion is multiplied and converted into a transmission force, it is not necessary to attach a plurality of force sensors to the lower portion of the supporting elastic body, and the structure is simplified.

【0041】本発明の第3の伝達力検出方法によれば、
前記能動振動減衰電磁加振機において、支持用弾性体を
通して伝達される伝達力の検出手段にかわり、支持部の
加速度と永久磁石の加速度を加速度センサにより検出
し、これを2回積分し、これらの差に支持部のばね定数
を掛けて伝達力に変換するので、支持用弾性体の下部に
複数の力センサを取り付ける必要がなく、構造が簡略化
され、センサの取り付けも容易になる。
According to the third transmission force detecting method of the present invention,
In the active vibration damping electromagnetic exciter, the acceleration of the support and the acceleration of the permanent magnet are detected by an acceleration sensor instead of the means for detecting the transmission force transmitted through the supporting elastic body, and these are integrated twice. Since the difference is calculated by multiplying the spring constant of the supporting portion by the difference to convert it into a transmission force, it is not necessary to attach a plurality of force sensors to the lower portion of the supporting elastic body, the structure is simplified, and the sensor can be easily attached.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の能動振動減衰電磁加振機の断面図であ
る。
FIG. 1 is a sectional view of an active vibration damping electromagnetic exciter of the present invention.

【図2】本発明の能動振動減衰制御方法を説明する図で
ある。
FIG. 2 is a diagram illustrating an active vibration damping control method of the present invention.

【図3】本発明の防振効果を説明する図である。FIG. 3 is a diagram illustrating a vibration damping effect of the present invention.

【図4】本発明の能動振動減衰制御方法の制御ブロック
線図である。
FIG. 4 is a control block diagram of the active vibration damping control method of the present invention.

【図5】支持部の速度の検出手段にかわり、加速度を速
度に変換する場合の速度センサの取り付け状況図であ
る。
FIG. 5 is a view showing a situation in which a speed sensor is attached in the case of converting acceleration into speed, instead of the speed detecting means of the support portion.

【図6】加速度を速度信号変換する場合の制御のブロッ
ク線図である。
FIG. 6 is a block diagram of control when converting acceleration into a speed signal.

【図7】伝達力の検出手段にかわり、相対変位から伝達
力を求める場合の変位センサ取り付け状況図である。
FIG. 7 is a diagram showing a displacement sensor mounting state in the case of obtaining a transmission force from a relative displacement, instead of the transmission force detecting means.

【図8】相対変位から伝達力を求める場合の制御ブロッ
ク線図である。
FIG. 8 is a control block diagram when a transmission force is obtained from relative displacement.

【図9】伝達力の検出手段にかわり、相対速度から伝達
力を求める場合の速度センサの取り付け状況図である。
FIG. 9 is a diagram showing an installation state of a speed sensor in the case of obtaining a transmission force from a relative speed, instead of the transmission force detecting means.

【図10】相対速度から伝達力を求める場合の制御ブロ
ック線図である。
FIG. 10 is a control block diagram in the case of obtaining a transmission force from a relative speed.

【図11】伝達力の検出手段にかわり、支持部と永久磁
石の加速度から伝達力を求める場合の加速度センサの取
り付け状況図である。
FIG. 11 is a diagram showing how the acceleration sensor is attached in the case where the transmission force is obtained from the accelerations of the support and the permanent magnet, instead of the transmission force detecting means.

【図12】加速度から伝達力を求める場合の制御ブロッ
ク線図である。
FIG. 12 is a control block diagram when a transmission force is obtained from acceleration.

【図13】従来技術による能動振動減衰制御方法のブロ
ック線図である。
FIG. 13 is a block diagram of a conventional active vibration damping control method.

【符号の説明】[Explanation of symbols]

1……永久磁石 2……支持用弾性体 3……電磁コイル 4……支持部 5……伝達力の検出手段 6……速度の検出手段 7……能動振動減衰電磁加振機 8……機械 9……防振用弾性体 10……構造部材 11……係数器 12……加算器 13……増幅器 14……加速度センサ 15……積分器 16……変位センサ 17……係数器 18……速度センサ 19……加速度センサ 20……引き算器 A……能動防振をしていない場合 B……本発明の制御法の場合 C……従来手法の場合 D……機関の基本周波数 1 ... Permanent magnet 2 ... Supporting elastic body 3 ... Electromagnetic coil 4 ... Support section 5: Transmission force detection means 6 ... Speed detection means 7: Active vibration damping electromagnetic exciter 8: Machine 9 ... Elastic body for anti-vibration 10: Structural member 11 ... Coefficient device 12 ... Adder 13 ... Amplifier 14 ... Acceleration sensor 15 ... Integrator 16 ... Displacement sensor 17 ... Coefficient device 18 ... Speed sensor 19 ... Acceleration sensor 20 ... Subtractor A: When no active image stabilization is used B ... In the case of the control method of the present invention C: Conventional method D: Basic frequency of engine

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F16F 15/03 F16F 15/03 G H02K 33/06 H02K 33/06 33/16 33/16 A (58)調査した分野(Int.Cl.7,DB名) B06B 1/04 B06B 1/14 F16F 15/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI F16F 15/03 F16F 15/03 G H02K 33/06 H02K 33/06 33/16 33/16 A (58) Fields investigated (Int .Cl. 7 , DB name) B06B 1/04 B06B 1/14 F16F 15/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 構造部材上の防振用弾性体に支持される
架台上に振動源が載置され、前記架台上に複数設けられ
る電磁加振機であって、 前記架台上に固定される支持部と、 該支持部上に支持用弾性体にて支持される慣性質量であ
る永久磁石と、 該永久磁石と前記支持部との間に設けられ、該支持部に
固定され電磁力を発生する電磁コイルと、 支持用弾性体と支持部との間に配設され、前記永久磁石
から前記支持用弾性体を通して前記支持部に伝達される
力を検出する検出手段と、 前記支持部上に設けられ、該支持部の変位,速度を検出
する検出手段と、 を備え、検出した支持部の速度に能動減衰係数を掛け、これと検
出した支持用弾性体を伝わる伝達力を加えた 信号を増幅
し、前記支持用弾性体より伝わる力と前記電磁コイルに
よる電磁力の合計の力を前記支持部の変位,速度に比例
させ、機械・防振支持系の固有振動数を変化させること
なく直接速度フィードバック制御を行い、防振ゴム等に
よる弾性支持方式における共振による振動伝搬の増大を
押さえることを特徴とする能動振動減衰電磁加振機。
1. An electromagnetic exciter in which a vibration source is placed on a pedestal supported by a vibration-proof elastic body on a structural member, and a plurality of vibration sources are provided on the pedestal, which are fixed on the pedestal. A support part, a permanent magnet that is an inertial mass supported on the support part by a supporting elastic body, and is provided between the permanent magnet and the support part, and is fixed to the support part to generate an electromagnetic force. An electromagnetic coil, a detection unit disposed between the supporting elastic body and the supporting unit, for detecting a force transmitted from the permanent magnet to the supporting unit through the supporting elastic body, and on the supporting unit. A detection means provided for detecting the displacement and speed of the support part, and multiplying the detected speed of the support part by an active damping coefficient
A signal obtained by adding a transmission force transmitted through the supporting elastic body is amplified, and the total force of the force transmitted from the supporting elastic body and the electromagnetic force generated by the electromagnetic coil is proportional to the displacement and speed of the supporting unit.・ Active vibration damping electromagnetic exciter characterized by directly performing velocity feedback control without changing the natural frequency of the vibration isolation support system and suppressing the increase of vibration propagation due to resonance in the elastic support method using anti-vibration rubber etc. .
【請求項2】 請求項1記載の能動振動減衰電磁加振機
における前記支持部の速度の検出手段において、前記支
持部の加速度を加速度センサにより検出し、これを積分
して速度に変換する速度検出方法を具備することを特徴
とする能動振動減衰制御方法。
2. An active vibration damping electromagnetic exciter according to claim 1.
In the means for detecting the speed of the supporting part in
Acceleration sensor detects the acceleration of the holding part and integrates it
Is equipped with a speed detection method for converting to speed
Active vibration damping control method.
【請求項3】 請求項1記載の能動振動減衰電磁加振機
において、前記支持用弾性体を通して伝達される力の検
出手段にかわり、支持部と永久磁石の相対変位を変位セ
ンサにより検出し、これに支持用弾性体のばね定数を掛
けて伝達力に変換する伝達力検出方法を具備することを
特徴とする能動振動減衰制御方法。
3. An active vibration damping electromagnetic exciter according to claim 1.
The force transmitted through the supporting elastic body is detected.
Instead of the output means, the relative displacement between the support and permanent magnet
Sensor and apply the spring constant of the supporting elastic body to this.
And a transmission force detection method for converting the transmission force into a transmission force.
A characteristic active vibration damping control method.
【請求項4】 請求項1記載の能動振動減衰電磁加振機
において、前記支持用弾性体を通して伝達される力の検
出手段にかわり、支持部と永久磁石の相対速度を速度セ
ンサにより検出し、これを積分し、支持用弾性体のばね
定数を掛けて伝達力に変換する伝達力検出方法を具備す
ることを特徴とする能動振動減衰制御方法。
4. An active vibration damping electromagnetic exciter according to claim 1.
The force transmitted through the supporting elastic body is detected.
Instead of the output means, the relative speed between the support and the permanent magnet is changed to the speed set.
Sensor, integrates this, and supports elastic spring
Equipped with a transmission force detection method that multiplies a constant and converts it to a transmission force.
An active vibration damping control method characterized by:
【請求項5】 請求項1記載の能動振動減衰電磁加振機
において、前記支持用弾性体を通して伝達される力の検
出手段にかわり、支持部の加速度と永久磁石の加速度を
加速度センサにより検出し、これを2回積分し、これら
の差に支持用弾性体のばね定数を掛けて伝達力に変換す
る伝達力検出方法を具備することを特徴とする能動振動
減衰制御方法。
5. An active vibration damping electromagnetic exciter according to claim 1.
The force transmitted through the supporting elastic body is detected.
Instead of the output means, the acceleration of the support and the acceleration of the permanent magnet
It is detected by the acceleration sensor, this is integrated twice,
Is multiplied by the spring constant of the supporting elastic body to convert it into a transmission force.
Active vibration characterized by having a transmission force detection method
Attenuation control method.
JP2000273626A 2000-09-08 2000-09-08 Active vibration damping electromagnetic exciter and active vibration damping control method Expired - Lifetime JP3486673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273626A JP3486673B2 (en) 2000-09-08 2000-09-08 Active vibration damping electromagnetic exciter and active vibration damping control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273626A JP3486673B2 (en) 2000-09-08 2000-09-08 Active vibration damping electromagnetic exciter and active vibration damping control method

Publications (2)

Publication Number Publication Date
JP2002079178A JP2002079178A (en) 2002-03-19
JP3486673B2 true JP3486673B2 (en) 2004-01-13

Family

ID=18759533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273626A Expired - Lifetime JP3486673B2 (en) 2000-09-08 2000-09-08 Active vibration damping electromagnetic exciter and active vibration damping control method

Country Status (1)

Country Link
JP (1) JP3486673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821953B1 (en) * 2015-12-31 2018-03-09 주식회사 진 Inertia type of vibration exciter

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8584820B2 (en) 2006-10-31 2013-11-19 Nissan Motor Co., Ltd. Vibration reducing device and vibration reducing method
JP5092606B2 (en) * 2007-07-30 2012-12-05 日産自動車株式会社 Vibration reduction device
DE102009021466B4 (en) * 2009-05-15 2012-03-22 Kuhnke Automotive Gmbh & Co. Kg Electric vibrator
KR101636565B1 (en) * 2009-05-22 2016-07-05 엘지전자 주식회사 Apparatus for generating vibration and method for controlling vibration thereof
JP2012129575A (en) * 2010-12-10 2012-07-05 Tokkyokiki Corp Audio insulator and audio system
WO2012015032A1 (en) 2010-07-30 2012-02-02 特許機器株式会社 Insulator for audio and method for evaluating same
DE102011081291A1 (en) * 2011-08-19 2013-02-21 Robert Bosch Gmbh Device for extinguishing oscillations in engine mounting utilized for fastening internal combustion engine to body of vehicle, has oscillation damper, and controlling device for detecting oscillating movement of oscillation damper
CN102417015B (en) * 2011-10-10 2013-10-30 哈尔滨工程大学 Built-in separating ship body structure anti-impact protection device
JP5955083B2 (en) * 2012-04-27 2016-07-20 日産自動車株式会社 Active vibration isolator
FR2991418B1 (en) * 2012-05-31 2020-02-07 Korea Institute Of Machinery & Materials ACTIVE CONTROLLED TYPE OF VIBRATION ABSORBING DEVICE
KR101389903B1 (en) 2012-11-27 2014-04-30 배명근 Vibration generator for human body
CN103084327B (en) * 2013-01-25 2014-11-05 西安交通大学 Non-contact vibration exciter with lower power consumption and adjustable exciting force directions and control method
CN103786847B (en) * 2014-01-20 2016-08-17 江苏海事职业技术学院 A kind of adjustable naval vessel pipeline anti-impact device
CN104989776B (en) * 2015-07-08 2017-06-13 中国船舶重工集团公司第七一九研究所 A kind of electromagnetic type active-passive composite vibration isolator
KR101618525B1 (en) * 2015-09-11 2016-05-04 김선태 Distribution box of earthquake-proof type
KR101620063B1 (en) * 2015-09-24 2016-05-11 주식회사 라이트 제림 Distribution box of earthquake-proof type having up and down and refraction buffer
CN108144831A (en) * 2016-12-05 2018-06-12 南京圣威惠众机电技术有限公司 A kind of integrated dynamic force measures and the adjustable rotation vibrator of resonant frequency in real time
RU182376U1 (en) * 2017-07-17 2018-08-15 Валентин Яковлевич Потапов Electronically Resonant Vibrator
JP7219626B2 (en) * 2019-02-14 2023-02-08 前田建設工業株式会社 damping system
CN113639006B (en) * 2021-07-26 2023-09-15 东风越野车有限公司 Active-passive combined self-adaptive vibration control suspension system and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821953B1 (en) * 2015-12-31 2018-03-09 주식회사 진 Inertia type of vibration exciter

Also Published As

Publication number Publication date
JP2002079178A (en) 2002-03-19

Similar Documents

Publication Publication Date Title
JP3486673B2 (en) Active vibration damping electromagnetic exciter and active vibration damping control method
US4083433A (en) Active vibration damper with electrodynamic sensor and drive units
US5027925A (en) Procedure and apparatus for damping the vibrations of an elevator car
JP3192100B2 (en) Microphone
JPH11331987A (en) Microphone
US5011108A (en) Active mounts
US5409078A (en) Adaptively controlled vibration damping support apparatus for vehicle power unit including engine
CN109889192A (en) A kind of crystal oscillator antivibration method, apparatus and hybrid compensation anti-shake system
JP4615638B2 (en) Method and apparatus for attenuating mechanical resonance of a speaker
KR20120101346A (en) A/d conversion device, damping device, and vehicle mounted with these
JPS5997341A (en) Device for restraining vibration of structural body
KR100941809B1 (en) Apparatus for Testing Dynamic Vibration Damping Type Active Vibration-Proof Apparatus
KR100952784B1 (en) Apparatus for Testing Dynamic Vibration Damping Type Active Vibration-Proof Apparatus
JP2003130128A (en) Active vibration-free apparatus
JP2001271870A (en) Active vibration damping device
WO2011115488A1 (en) Active vibration isolation system, arrangement and method
JP3823397B2 (en) Active vibration control method
JPH10141428A (en) Active vibration resistant device
JPH01207574A (en) Vibrationproof device for construction
JPH0415354B2 (en)
EP0999379A3 (en) Active vibration control
JP2000506588A (en) Active pneumatic mount
JP2004332847A (en) Damping device
JP2585551B2 (en) Control method of active vibration isolation support device
JPS595799A (en) Vibration-resistant microphone

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3486673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term