JP3486023B2 - Combustion heating method - Google Patents

Combustion heating method

Info

Publication number
JP3486023B2
JP3486023B2 JP28482595A JP28482595A JP3486023B2 JP 3486023 B2 JP3486023 B2 JP 3486023B2 JP 28482595 A JP28482595 A JP 28482595A JP 28482595 A JP28482595 A JP 28482595A JP 3486023 B2 JP3486023 B2 JP 3486023B2
Authority
JP
Japan
Prior art keywords
temperature fluid
heat storage
low temperature
high temperature
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28482595A
Other languages
Japanese (ja)
Other versions
JPH09126675A (en
Inventor
正伸 富田
隆広 神戸
正彦 平城
栄一 明智
敏明 長谷川
Original Assignee
コスモエンジニアリング株式会社
日本ファーネス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コスモエンジニアリング株式会社, 日本ファーネス工業株式会社 filed Critical コスモエンジニアリング株式会社
Priority to JP28482595A priority Critical patent/JP3486023B2/en
Publication of JPH09126675A publication Critical patent/JPH09126675A/en
Application granted granted Critical
Publication of JP3486023B2 publication Critical patent/JP3486023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加熱炉内の被加熱
管路に対しレベルの異なる二つの熱流束領域を形成する
燃焼加熱方法に関し、更に詳しくは、改質炉の小型化が
可能な炭化水素の水蒸気改質炉の燃焼加熱方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion heating method for forming two heat flux regions having different levels with respect to a heated pipe in a heating furnace, and more specifically, it is possible to downsize a reforming furnace. The present invention relates to a combustion heating method for a hydrocarbon steam reforming furnace.

【0002】[0002]

【従来の技術】従来、反応条件に適合させるため加熱炉
内に温度レベルの異なる二つの熱流束領域を形成しよう
とする場合、燃焼バーナの設置場所、設置本数、燃焼方
法等精密に制御しても、明確に形成することが出来ず、
加熱炉内に仕切壁を設け、室を分ける等して対応してき
た。近年、蓄熱型の燃焼装置が開発されているが、一体
型高速切換式蓄熱型のもので、それぞれ対向するように
炉壁に設置し、燃焼を高速で切換えるものは、炉内温度
を均一にすることはできても、加熱炉内に温度レベルの
異なる二つの熱流束領域を明確に形成することはできな
かった。一方、炭化水素の水蒸気改質は、次式で示され
る水蒸気改質反応工程を主とし、必要に応じて炭化水素
中の硫黄分を除去する前工程としての脱硫工程、後工程
としてCOを水蒸気と反応させH2 とCO2 へ転換する
変成工程、圧力スイング吸着法(PSA)、膜分離等の
水素精製工程、CO2 を除去するCO2 洗浄工程、CO
とCO2 をメタンに転換するメタネーション工程が付加
される。 Cmn+oH2O→pCO+qCO2+rH2+sCH4
zC 従来、水蒸気改質反応工程で用いられる水蒸気改質炉
は、触媒を充填した改質管と燃焼バーナを有するもので
あるが、炉内温度が不均一で部分加熱の傾向にあった。
また、改質管入口から中央部にかけて、改質ゾーンと呼
ばれる吸熱反応を伴う均一な高熱流束加熱を必要とする
領域と当該中央部から出口にかけて、シフト反応ゾーン
(CO+H2O→CO2+H2)と呼ばれる高熱流束加熱
を必要としない領域の2つの異なる熱流束領域が存在
し、このため、従来の燃焼バーナ方式では、上記熱流束
領域を形成しようとしても図8のような不均一な温度分
布(熱流束分布)となるため、熱回収するためには改質
管を長くせざるをえず、改質炉が大型化していた。ま
た、反応条件を変更する場合、これに対応する加熱量の
変更も十分行えず収率低下等を引起していた。
2. Description of the Related Art Conventionally, when it is attempted to form two heat flux regions having different temperature levels in a heating furnace in order to adapt to reaction conditions, it is necessary to precisely control the installation location of the combustion burner, the number of installations, the combustion method, etc. I could not form clearly,
We have responded by providing a partition wall in the heating furnace and dividing the room. In recent years, a heat storage type combustion device has been developed, but an integrated high-speed switching heat storage type, which is installed on the furnace wall so as to face each other and switches combustion at high speed, makes the furnace temperature uniform. However, it was not possible to clearly form two heat flux regions having different temperature levels in the heating furnace. On the other hand, the steam reforming of hydrocarbons mainly includes a steam reforming reaction step represented by the following formula, a desulfurization step as a pre-step for removing the sulfur content in the hydrocarbon as necessary, and CO as steam as a post-step. a metamorphic step of converting the H 2 and CO 2 are reacted, the pressure swing adsorption (PSA), membrane hydrogen purification step separation or the like, CO 2 cleaning process for removing CO 2, CO
And a methanation step to convert CO 2 to methane is added. C m H n + oH 2 O → pCO + qCO 2 + rH 2 + sCH 4 +
zC Conventionally, a steam reforming furnace used in a steam reforming reaction step has a reforming tube filled with a catalyst and a combustion burner, but the temperature inside the furnace is non-uniform and there is a tendency for partial heating.
In addition, from the inlet of the reforming pipe to the central portion, a region called a reforming zone that requires uniform high heat flux heating accompanied by endothermic reaction and from the central portion to the outlet thereof, shift reaction zone (CO + H 2 O → CO 2 + H 2 ) There are two different heat flux areas called high heat flux heating areas that do not require high heat flux heating. For this reason, in the conventional combustion burner method, even if the above heat flux area is attempted to be formed, it is not uniform as shown in FIG. Since the temperature distribution is uniform (heat flux distribution), the reforming tube has to be long in order to recover heat, and the reforming furnace has been enlarged. In addition, when the reaction conditions are changed, the heating amount corresponding thereto cannot be changed sufficiently, which causes a decrease in yield and the like.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明の目的
は、加熱炉あるいは改質炉の炉内空間中、被加熱管路に
対し、反応条件に適合するレベルの異なる二つの熱流束
領域を形成することにより加熱炉等、特に炭化水素の水
蒸気改質炉において熱効率の向上及び炉の小型化が可能
な燃焼加熱方法を提供するものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide two heat flux regions having different levels suitable for reaction conditions with respect to a pipe to be heated in a furnace space of a heating furnace or a reforming furnace. The present invention provides a combustion heating method capable of improving thermal efficiency and downsizing a heating furnace or the like, particularly in a steam reforming furnace for hydrocarbons, by forming the heating furnace.

【0004】 かかる実情において、本発明者は鋭意検
討を行った結果、特に炭化水素の水蒸気改質炉におい
て、蓄熱型熱交換器一体型燃焼装置を使用し、被加熱管
路(改質管路)に対しレベルの異なる二つの熱流束領域
を形成すれば、熱回収の効率が向上するとともに、改質
管路が短く出来、従って、当該改質炉が著しく小型化で
きることを見出し、本発明を完成するに至った。すなわ
ち、本発明は蓄熱交換器を通してバーナへの燃焼用空気
の供給及び当該バーナからの燃焼ガスの排出を行う蓄熱
型熱交換器一体型燃焼装置を1対又は複数対、炉壁に設
置し、その供給燃料を調整することにより、加熱炉内空
間中、被加熱管路に対し、当該管路入口部から当該管路
の中央部までが高熱流束領域、当該管路の中央部から当
該管路の出口部までが低温流束領域であるレベルの異な
る二つの熱流束領域を形成することを特徴とする燃焼加
熱方法を提供するものである。
Under these circumstances, as a result of earnest studies by the present inventor, as a result, in a hydrocarbon steam reforming furnace, a heat storage type heat exchanger integrated combustion device is used, and a heated pipe (reforming pipe) is used. ), It is found that the efficiency of heat recovery is improved and the reforming pipe can be shortened by forming two heat flux regions having different levels, and therefore the reforming furnace can be remarkably downsized, and the present invention is realized. It came to completion. That is, the present invention is a heat storage type heat exchanger integrated combustion device for supplying combustion air to the burner and discharging combustion gas from the burner through the heat storage exchanger, installed in the furnace wall in one or more pairs, By adjusting the supplied fuel, in the heating furnace internal space, with respect to the pipeline to be heated, the high heat flux region is from the pipeline inlet portion to the central portion of the pipeline, and from the central portion of the pipeline to the pipeline. It is intended to provide a combustion heating method characterized in that two heat flux regions having different levels, which are low temperature flux regions, are formed up to the outlet of the passage.

【0005】[0005]

【発明の実施の形態】本発明の燃焼加熱方法において用
いられる蓄熱型熱交換器一体型燃焼装置は、蓄熱型交換
器を通してバーナへの燃焼用空気の供給及び当該バーナ
からの燃焼ガスの排出を行う蓄熱型熱交換器を有し、こ
れを一体化した燃焼装置であれば特に制限されず、例え
ば特開平7−83585号公報に開示されているものを
用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION A heat storage type heat exchanger integrated combustion apparatus used in a combustion heating method of the present invention is designed to supply combustion air to a burner and discharge combustion gas from the burner through the heat storage type exchanger. There is no particular limitation as long as it is a combustion device that has a heat storage type heat exchanger for performing the operation and is integrated with it, and for example, the one disclosed in JP-A-7-83585 can be used.

【0006】すなわち、図1に蓄熱型熱交換器一体型燃
焼装置の一例を、図2に蓄熱型熱交換器の一例を示す。
蓄熱型熱交換器30をバーナシステムの燃焼用空気系
(低温流体の流路)33及び燃焼排ガス系(高温流体の
流路)34に接続し、蓄熱型熱交換器30を経て供給す
る燃焼用空気によってバーナ35を燃焼させる一方、燃
焼排ガスを炉内37から取り出して蓄熱型熱交換器30
を経て排出させ、燃焼排ガスの廃熱で燃焼用空気を燃焼
排ガス温度近くの高温に予熱して供給するようにしてい
る。この炉は、炉体38に少なくとも2基1対のバーナ
35を設置して成る。バーナ35は、その構造及び燃焼
方式に特に限定を受けるものではないが、蓄熱型熱交換
器30を通して燃焼用空気の供給が図られている。ま
た、炉内37の燃焼排ガスは、炉体38に設置された高
温流体手段、例えば燃焼排ガス系34と接続された排気
筒36などによって取り出される。尚、図中の符号31
は燃焼用空気を供給ファン、32は燃焼排ガスを排出す
るファンである。また、図示していないがバーナ35に
は通常着火手段やパイロットバーナなどの付帯設備が設
けられる。
That is, FIG. 1 shows an example of the heat storage type heat exchanger integrated combustion apparatus, and FIG. 2 shows an example of the heat storage type heat exchanger.
The heat storage type heat exchanger 30 is connected to the combustion air system (low temperature fluid flow path) 33 and the combustion exhaust gas system (high temperature fluid flow path) 34 of the burner system, and is supplied via the heat storage type heat exchanger 30 for combustion. While burning the burner 35 with air, the combustion exhaust gas is taken out of the furnace 37 and the heat storage type heat exchanger 30 is used.
The combustion air is preheated to a high temperature near the temperature of the combustion exhaust gas and supplied by the waste heat of the combustion exhaust gas. This furnace comprises a furnace body 38 and at least two pairs of burners 35 installed therein. The burner 35 is not particularly limited in its structure and combustion method, but the combustion air is supplied through the heat storage type heat exchanger 30. Further, the combustion exhaust gas in the furnace 37 is taken out by a high temperature fluid means installed in the furnace body 38, for example, an exhaust pipe 36 connected to the combustion exhaust gas system 34. Incidentally, reference numeral 31 in the drawing
Is a fan for supplying combustion air, and 32 is a fan for discharging combustion exhaust gas. Although not shown, the burner 35 is usually provided with auxiliary equipment such as ignition means and pilot burner.

【0007】かかる蓄熱型熱交換器一体型燃焼装置に用
いられる蓄熱型熱交換器30としては、例えば周方向に
N(N=n+1、ここで、nは2以上の正の偶数で常時
流体が流れる室数である。)室に均等に区画された各室
内を軸方向に流体が通過可能とした蓄熱体と、この蓄熱
体の両開口端にそれぞれ接続されて温度差のある流体を
流す2系統の流路の一方の低温流体系統に接続される低
温流体室と他方の高温流体系統に接続される高温流体室
とに環状仕切壁で区画された2重管状の出入口手段と、
前記蓄熱体と前記出入口手段との間にそれぞれ介在され
て前記蓄熱体と出入口手段との間をそれぞれ遮断する一
方、前記低温流体室と前記蓄熱体とを連通させる低温流
体用連通孔及び前記高温流体室と前記蓄熱体とを連通さ
せる高温流体用連通孔とを交互にn/2個ずつ配置し、
連続的あるいは間欠的に回転して前記出入口手段の高温
流体室と低温流体室とをN室に区画された前記蓄熱体の
室のいずれかに順次連通させる切替手段とから成り、か
つ前記切替手段の高温流体用連通孔と低温流体用連通孔
とが数式(1)で表わされる角度αの間隔をあけて配置
され、
As the heat storage type heat exchanger 30 used in such a heat storage type heat exchanger integrated combustion apparatus, for example, N (N = n + 1, where n is a positive even number of 2 or more in the circumferential direction and always contains a fluid). The number of chambers that flow.) A heat storage body that allows fluid to pass axially through each of the chambers that are evenly divided into chambers, and a fluid having a temperature difference that is connected to both open ends of the heat storage body and that has a temperature difference 2 A double-piped inlet / outlet means partitioned by an annular partition into a low temperature fluid chamber connected to one low temperature fluid system and a high temperature fluid chamber connected to the other high temperature fluid system,
The low-temperature fluid communication hole and the high temperature, which are respectively interposed between the heat storage body and the inlet / outlet means to shut off between the heat storage body and the inlet / outlet means, and communicate the low-temperature fluid chamber and the heat storage body with each other. N / 2 number of high temperature fluid communication holes for communicating the fluid chambers with the heat storage body are alternately arranged,
The switching means is configured to rotate continuously or intermittently to sequentially connect the high temperature fluid chamber and the low temperature fluid chamber of the inlet / outlet means to one of the chambers of the heat storage body partitioned into N chambers, and the switching means. The high temperature fluid communication hole and the low temperature fluid communication hole are arranged at an interval of an angle α represented by Formula (1),

【0008】[0008]

【数4】 [Equation 4]

【0009】(式中、β1 は切替部の回転中心Oから高
温流体用連通孔に外接する中心角を示し、β2 は切替部
の回転中心Oから低温流体用連通孔に外接する中心角を
示す。) 更に低温流体用連通孔及び高温流体用連通孔の大きさが
数式(2)の関係を
(Wherein β 1 is a central angle circumscribed from the rotation center O of the switching portion to the communication hole for high temperature fluid, and β 2 is a central angle circumscribed from the rotation center O of the switching portion to the communication hole for low temperature fluid. Further, the size of the communication hole for low temperature fluid and the size of the communication hole for high temperature fluid can be expressed by the formula (2).

【0010】[0010]

【数5】 [Equation 5]

【0011】満足するものが好ましい。ここで、角度α
は、α=360°/nに設定することが好ましい。尚、
本明細書では、蓄熱体の区画された室とは、蓄熱体その
ものが複数の室に仕切られている場合は勿論のこと、分
配室によって実質的に複数の室に区画されている場合の
双方を含んでいる。
Satisfactory is preferable. Where the angle α
Is preferably set to α = 360 ° / n. still,
In the present specification, the term “the chamber in which the heat storage body is divided” refers not only to the case where the heat storage body itself is partitioned into a plurality of chambers but also to the case where the heat storage body is substantially divided into a plurality of chambers by the distribution chamber. Is included.

【0012】また、本発明で用いる蓄熱型熱交換器
(1)は、N(ここで、N=n+1で、nは2以上の正
の偶数で常時流体が流れる室数を示す。)室を1ユニッ
トとして総室数Z(ここで、Z=a・Nで、aはユニッ
ト数を示す正の整数)の複数ユニットの区画された室を
蓄熱体に形成すると共に総数Zの室のうち常時流体が流
れることのないa個の空室を1ユニットを構成するN室
と他のユニットのN室との間に形成し、かつ高温流体用
連通孔と低温流体用連通孔との配置角度αが数式(4)
の関係を有し、
Further, the heat storage type heat exchanger (1) used in the present invention has N (where N = n + 1, n is a positive even number of 2 or more, and indicates the number of chambers through which the fluid always flows) chambers. A total number of chambers Z (where Z = a · N, a is a positive integer indicating the number of units) is defined as one unit, and a plurality of partitioned chambers are formed in the heat storage body. An a-chamber that does not flow fluid is formed between the N chamber of one unit and the N chamber of another unit, and the arrangement angle α between the high temperature fluid communication hole and the low temperature fluid communication hole Is equation (4)
Have a relationship of

【0013】[0013]

【数6】 [Equation 6]

【0014】かつ高温流体用連通孔と低温流体用連通孔
との大きさが数式(5)で示される関係を
The size of the communication hole for the high temperature fluid and the size of the communication hole for the low temperature fluid are expressed by the equation (5).

【0015】[0015]

【数7】 [Equation 7]

【0016】満足するものが更に好ましい。Those satisfying are more preferable.

【0017】また、本発明で用いられる蓄熱型熱交換器
(2)は、周方向にN(N=n+2、ここで、nは2以
上の正の整数で常時流体が流れる室数である。)室に均
等に区画され各室内を軸方向に流体が通過可能とした蓄
熱体と、この蓄熱体の両開口端にそれぞれ接続されて温
度差のある流体を流す2系統の流路の一方の低温流体系
統に接続される低温流体室と他方の高温流体系統に接続
される高温流体室とに環状仕切壁で区画された2重管状
の出入口手段と、蓄熱体と出入口手段との間にそれぞれ
介在されて蓄熱体と出入口手段との間をそれぞれ遮断す
る一方、低温流体室と前記蓄熱体とを連通させる低温流
体用連通孔及び高温流体室と蓄熱体とを連通させる高温
流体用連通孔とが数式(3)で表わされる角度Cの間隔
をあけて配置され、
Further, the heat storage type heat exchanger (2) used in the present invention has N (N = n + 2, where n is a positive integer of 2 or more) in the circumferential direction and is the number of chambers through which the fluid always flows. ) A heat storage body that is evenly divided into chambers and through which fluid can pass in the axial direction, and one of two flow passages that are connected to both open ends of the heat storage body and that flow the fluid having a temperature difference. A double tubular inlet / outlet means partitioned by an annular partition into a low temperature fluid chamber connected to the low temperature fluid system and a high temperature fluid chamber connected to the other high temperature fluid system, and between the heat storage body and the inlet / outlet means, respectively. A low-temperature fluid communication hole for communicating between the low-temperature fluid chamber and the heat storage medium and a high-temperature fluid communication hole for communicating between the high-temperature fluid chamber and the heat storage medium while intervening between the heat storage medium and the inlet / outlet means. Are arranged at intervals of the angle C represented by the formula (3).

【0018】[0018]

【数8】 [Equation 8]

【0019】かつ連続的あるいは間欠的に回転して出入
口手段の高温流体室と低温流体室とをN室に区画された
蓄熱体の室のいずれかに順次連通させる切替手段とから
構成されているものも好適に用いられる。
Further, it is constituted by a switching means which rotates continuously or intermittently to sequentially connect the high temperature fluid chamber and the low temperature fluid chamber of the inlet / outlet means to one of the heat storage chambers divided into N chambers. A thing is also used suitably.

【0020】かかる蓄熱型熱交換器(2)は、N(ここ
で、N=n+2で、nは2以上の正の整数で常時流体が
流れる室数を示す。)室を1ユニットとして総室数Z
(ここで、Z=a・Nで、aはユニット数を示す正の整
数)の複数ユニットの区画された室を蓄熱体に形成する
と共に高温流体用連通孔と低温流体用連通孔との間に数
式(6)
In this heat storage type heat exchanger (2), N (here, N = n + 2, n is a positive integer of 2 or more, which indicates the number of chambers through which the fluid always flows) is defined as one unit. Number Z
(Where Z = a · N, where a is a positive integer indicating the number of units), a plurality of united chambers are formed in the heat storage body, and the space between the high temperature fluid communication hole and the low temperature fluid communication hole is formed. To the formula (6)

【0021】[0021]

【数9】 [Equation 9]

【0022】で表わされる角度Cの間隔が設定されてい
るものが好ましい。
It is preferable that the interval of the angle C represented by is set.

【0023】すなわち、図2において、出入口手段6の
低温流体室6aと高温流体室6bとはそれぞれ切替手段
3の低温流体用連通孔5と高温流体用連通孔4を介して
分配室2により蓄熱体1の異なる室・区画に連通され、
互いに交わることなく蓄熱体内に温度差のある2系統の
流体を流す。このとき、蓄熱型熱交換器(1)の場合に
は、a・N室に区画された蓄熱体内のうちa・n/2室
に高温流体例えば燃焼ガスが流れ、他のa・n/2室に
低温流体、例えば燃焼用空気が流れ、残りのa室はいず
れの流路にも接続されずに流体が流れない空室となる。
このため、出入口手段6の低温流体室6aに連通される
室・区画と高温流体室6bに連通される室・区画とを切
替手段3の操作によって順次変更すれば、高温流体と低
温流体とが蓄熱体の同じ室・区画を時間を異にして流れ
ることとなる。例えば、燃焼排ガスのような高温流体を
流した後の蓄熱体に燃焼用空気のような低温流体が流れ
ることとなり、高温流体の通過で加熱された蓄熱体の熱
を低温流体が奪い、熱交換する。
That is, in FIG. 2, the low temperature fluid chamber 6a and the high temperature fluid chamber 6b of the inlet / outlet means 6 store heat in the distribution chamber 2 via the low temperature fluid communication hole 5 and the high temperature fluid communication hole 4 of the switching means 3, respectively. It communicates with different rooms and compartments of body 1,
Two kinds of fluids having different temperatures are flowed in the heat storage body without intersecting each other. At this time, in the case of the heat storage type heat exchanger (1), a high-temperature fluid such as a combustion gas flows in the a / n / 2 chambers of the heat storage body partitioned into the a / N chambers, and the other a / n / 2 chambers. A low temperature fluid, for example, combustion air flows into the chamber, and the remaining chamber a is an empty chamber in which no fluid flows because it is not connected to any of the flow paths.
Therefore, if the chamber / compartment communicating with the low temperature fluid chamber 6a and the chamber / compartment communicating with the high temperature fluid chamber 6b of the entrance / exit means 6 are sequentially changed by the operation of the switching means 3, the high temperature fluid and the low temperature fluid are separated from each other. It will flow through the same room / compartment of the heat storage body at different times. For example, a low-temperature fluid such as combustion air will flow into the heat storage body after flowing a high-temperature fluid such as combustion exhaust gas, and the heat of the heat storage body heated by the passage of the high-temperature fluid will be taken by the low-temperature fluid, resulting in heat exchange. To do.

【0024】そして、流体の流れの切替は、高温流体用
連通孔4が低温流体用連通孔5よりも回転方向に進んで
おり、尚かつ同じ室に低温流体用連通孔5と高温流体用
連通孔4とが同時に存在することがなく、かつ前方の連
通孔から一つずつ順次前方の室に移り変わるため、空室
の次の室にある最前列の高温流体用連通孔4が蓄熱体1
の前方の区画、即ち空室にかかってもそれよりも後方の
低温流体用連通孔5及び他の高温流体用連通孔4や低温
流体用連通孔5は依然として同じ室・区画内に存在し切
替は始まらない。そして、最前列の高温流体用連通孔4
が空室であった前方の室・区画に完全に移ってから、い
ままで最前列の高温流体用連通孔4と連通していた室・
区画が空室となってそこに次の低温用連通孔5がさしか
かる。このとき、低温流体用連通孔5は、今までの室・
区画と新たな室・区画(空室)との二つの室・区画に同
時に跨り、二つの室・区画に同時に流体を供給しながら
切替られるので、流体の流れが遮断されることがない。
しかも、最前列の高温流体用連通孔4は低温流体用連通
孔5がさしかかった室・区画よりも一つ前の室・区画に
位置するため、高温流体と低温流体とが同じ区画内にお
いて混じり合うことがない。
The switching of the flow of the fluid is such that the communication hole 4 for the high temperature fluid is advanced in the rotational direction than the communication hole 5 for the low temperature fluid, and the communication hole 5 for the low temperature fluid and the communication for the high temperature fluid are communicated in the same chamber. Since the holes 4 and the holes 4 do not exist at the same time, and the holes 4 sequentially move from the front communication hole to the front chamber one by one, the communication holes 4 for the high-temperature fluid in the front row in the chamber next to the empty chamber are stored in the heat storage body 1.
Of the front, that is, the low-temperature fluid communication hole 5 and the other high-temperature fluid communication holes 4 and low-temperature fluid communication holes 5 that are located behind the same even if they are in the empty chamber still exist in the same chamber / compartment and are switched. Does not start. And, the communication hole 4 for high temperature fluid in the front row
The room that had been in communication with the high-temperature fluid communication hole 4 in the front row until now, after completely moving to the front room / compartment that was empty
The compartment becomes an empty room, and the next low temperature communication hole 5 approaches there. At this time, the communication hole 5 for the low temperature fluid is
Since the two chambers / compartments of the compartment and the new room / compartment (vacant chamber) are simultaneously straddled and the two chambers / compartments are switched while supplying the fluid at the same time, the flow of the fluid is not interrupted.
Moreover, since the communication hole 4 for the high temperature fluid in the front row is located in the chamber / compartment one before the chamber / compartment where the communication hole 5 for the low temperature fluid is approaching, the high temperature fluid and the low temperature fluid are mixed in the same compartment. It doesn't fit.

【0025】本発明の燃焼加熱方法において、蓄熱型熱
交換器一体型燃焼装置を1対又は複数対、炉壁に設置す
ることにより行われ、当該1対又は複数対の一方が、被
加熱管路入口側に設置されていればどのように設置され
ていてもかまわない。例えば図4(a)、(b)は、2
個1対のものを、図4(c)、(d)は、2個2対のも
のを、図4(e)は3個1対のものを示す。後述するよ
うな加熱炉内空間中、被加熱管路に対しレベルの異なる
二つの熱流束領域を形成するには、加熱炉又は改質炉の
容量、被加熱体の容量、反応条件等を考慮しつつ、上記
蓄熱型熱交換器一体型燃焼装置の数、配置場所等を適宜
選択して行えばよい。図5(a)、(b)被加熱管路入
口側からみた図で(a)は、ボックス型加熱炉を(b)
は円筒型加熱炉を示す。
In the combustion heating method of the present invention, one or a plurality of heat storage type heat exchanger-integrated combustion devices are installed on the furnace wall, and one of the one or a plurality of pairs is to be heated. It does not matter how it is installed if it is installed at the entrance side. For example, in FIGS. 4A and 4B, 2
FIG. 4 (c) and FIG. 4 (d) show two pairs of two, and FIG. 4 (e) shows three pairs of one. In order to form two heat flux regions of different levels for the heated pipeline in the heating furnace internal space as described below, consider the capacity of the heating furnace or reforming furnace, the capacity of the heated object, the reaction conditions, etc. At the same time, the number of heat-storage-type heat exchanger integrated combustion devices, the place of arrangement, and the like may be appropriately selected. 5 (a) and 5 (b) are views seen from the inlet side of the pipe to be heated, FIG. 5 (a) shows a box-type heating furnace (b).
Indicates a cylindrical heating furnace.

【0026】加熱炉の種類は特に制限されず、例えば管
式加熱炉、炭化水素の水蒸気改質炉、鉄鋼炉等が挙げら
れ、そのうち、炭化水素の水蒸気改質炉が好ましい。か
かる炭化水素の水蒸気改質炉(以下、単に「改質炉」と
も言う)としては、例えばニッケル系触媒が充填された
数本〜数百本の改質管を配し、蓄熱型熱交換器一体型燃
焼装置が2〜20配置されているものが好ましい。
The type of the heating furnace is not particularly limited, and examples thereof include a tube heating furnace, a hydrocarbon steam reforming furnace, a steel furnace, and the like, of which the hydrocarbon steam reforming furnace is preferable. As such a steam reforming furnace for hydrocarbons (hereinafter, also simply referred to as "reforming furnace"), for example, several to several hundred reforming tubes filled with a nickel-based catalyst are arranged, and a heat storage heat exchanger is provided. It is preferable that 2 to 20 integrated combustion devices are arranged.

【0027】 本発明の燃焼加熱方法においては、加熱
炉内空間中、被加熱管路に対し、レベルの異なる二つの
熱流束領域を形成する必要があり、被加熱管路入口から
当該管路の中央部までが高熱流束領域、当該管路中央部
から出口部までが低熱流束領域とする。図6は炭化水素
の水蒸気改質炉におけるレベルの異なる二つの熱流束領
域を形成する例を示す。図6中、破線は、理想的な熱流
束分布を示し、実線は、実際の熱流束分布を示す。従っ
て、高温流束領域から低温流束領域至る遷移領域は、存
在してもかまわない。また、図7に示すようにそれぞれ
の熱流束領域は運転条件(反応条件)等により、左右あ
るいは上下に変動させることもできる。従って、中央部
は、被加熱管路の中心を示すものではなく、当該中心±
全管路長×0.2の幅を持った部位を示す。炭化水素の
水蒸気改質の場合、中央部とは、改質反応ゾーンの終了
部であり、シフト反応の開始部である。高温熱流束領域
を右側にシフトさせる場合としては、原料流量を多くす
る場合、触媒劣化に伴い対処する場合等がある。また、
高温熱流束領域、低温熱流束領域、それぞれ均一の熱流
束をとるのが好ましいが、それぞれ中心熱流束値の±2
0%の熱流束幅で変動していてもかまわない。
In the combustion heating method of the present invention, it is necessary to form two heat flux regions having different levels with respect to the pipe to be heated in the space inside the heating furnace, and the heat pipe region from the inlet of the pipe to be heated The high heat flux region extends to the central portion, and the low heat flux region extends from the central portion of the pipeline to the outlet portion. FIG. 6 shows an example of forming two heat flux regions having different levels in a hydrocarbon steam reforming furnace. In FIG. 6, the broken line shows the ideal heat flux distribution, and the solid line shows the actual heat flux distribution. Therefore, a transition region from the high temperature flux region to the low temperature flux region may exist. Further, as shown in FIG. 7, each heat flux region can be changed horizontally or vertically depending on operating conditions (reaction conditions) and the like. Therefore, the central portion does not indicate the center of the heated pipe, but the center ±
A part having a width of total pipe length × 0.2 is shown. In the case of steam reforming of hydrocarbons, the central portion is the end portion of the reforming reaction zone and the start portion of the shift reaction. Examples of the case where the high temperature heat flux region is shifted to the right include a case where the raw material flow rate is increased and a case where the catalyst deterioration is taken into consideration. Also,
It is preferable to take a uniform heat flux in each of the high-temperature heat flux region and the low-temperature heat flux region, but each is ± 2 of the central heat flux value.
It may be fluctuated with a heat flux width of 0%.

【0028】本発明の燃焼加熱方法において、被加熱管
路入口部から当該管路の中央部までが高熱流束領域、当
該管路の中央部から当該管路の出口部までが低熱流束領
域とするため、加熱炉の被加熱管路入口側に設置された
蓄熱型熱交換器一体型燃焼装置に当該加熱炉に供給する
全燃料量の30〜100重量%、好ましくは50〜10
0重量%を供給することが二つの異なる熱流束領域が明
確に形成でき、熱回収も効率的に行われるため好まし
い。
In the combustion heating method of the present invention, a high heat flux region is provided from the heated pipe inlet to the center of the pipe, and a low heat flux region is provided from the pipe to the outlet of the pipe. Therefore, 30 to 100% by weight, preferably 50 to 10% by weight of the total amount of fuel supplied to the heating-type heat exchanger integrated combustion apparatus installed on the inlet side of the heating furnace of the heating furnace.
It is preferable to supply 0% by weight because two different heat flux regions can be clearly formed and heat recovery can be efficiently performed.

【0029】従って、図4(c)に示すように4個の蓄
熱型熱交換器一体型燃焼装置を設置した改質炉におい
て、供給熱量比をQ1(=Q2):Q3(=Q4)=50:
50〜100:0の範囲で調整し、ボックス型改質炉で
炉内入口温度1200〜1400℃(熱流束65,00
0〜80,000kcal/m2・h)、炉内出口温度100
0〜1100℃(熱流束25,000〜40,000kc
al/m2・h)、円筒型改質炉で炉内入口温度1300〜
1500℃(熱流束40,000〜55,000kcal/
m2・h)、炉内出口温度1100〜1200℃(熱流束
16,000〜30,000kcal/m2・h)とすること
が好ましい。
Therefore, as shown in FIG. 4 (c), in the reforming furnace in which four heat storage type heat exchanger integrated combustion devices are installed, the supply heat quantity ratio is Q 1 (= Q 2 ): Q 3 (= Q 4 ) = 50:
Adjust in the range of 50 to 100: 0, and in the box-type reforming furnace, the furnace inlet temperature is 1200 to 1400 ° C (heat flux 65,000).
0-80,000 kcal / m 2 · h), furnace outlet temperature 100
0 to 1100 ° C (heat flux 25,000 to 40,000 kc
al / m 2 · h), cylindrical reforming furnace with inlet temperature 1300-
1500 ° C (heat flux 40,000-55,000 kcal /
m 2 · h), and the furnace outlet temperature is preferably 1100 to 1200 ° C (heat flux 16,000 to 30,000 kcal / m 2 · h).

【0030】上述したように、高温燃焼ガスと低温空気
の流路切替時に流体の流れが遮断されることなく、安定
した流体の供給ないし排出が可能なため、火炎が安定
し、かつ、高温燃焼用空気による高温燃焼のため特定領
域について均一温度とすることができる。従って、当該
燃焼装置を複数用い、それぞれ独立して特定量の燃料供
給を行えば、炉内の空間中、レベルの異なる二つの熱流
束領域を形成することができる。これにより、炭化水素
の水蒸気改質炉のように改質管の中で要求熱量の異なる
二つの反応が生じる場合には、これに適合した熱流束領
域が形成出来るため特に好ましい。
As described above, when the flow paths of the high temperature combustion gas and the low temperature air are switched, the flow of the fluid is not interrupted and the stable supply or discharge of the fluid is possible, so that the flame is stable and the high temperature combustion is performed. Due to the high temperature combustion by use air, it is possible to make the temperature uniform in a specific region. Therefore, by using a plurality of the combustion devices and independently supplying a specific amount of fuel, two heat flux regions having different levels can be formed in the space inside the furnace. Thus, when two reactions having different required heat amounts occur in the reforming tube such as a hydrocarbon steam reforming furnace, a heat flux region suitable for the two reactions can be formed, which is particularly preferable.

【0031】[0031]

【発明の効果】炉内の熱を効率的に回収出来るため、従
来のようにコンベクション部へ余熱管等の設置が不要と
なり、設備投資が軽減出来る。燃焼排ガスのうち水蒸気
発生のための熱回収量と蓄熱体を通す熱量を調整し、熱
的自己完結として自在な設計、運転に対応できる。特に
炭化水素の水蒸気改質炉では、レベルの異なる二つの温
度領域により被加熱体に有効に熱量を供給出来るため、
改質炉の小型化が可能である。また、改質炉内の高温熱
流束領域において、温度が均一化できるため、改質管の
部分過熱の可能性が低下し、このためS/C(スチーム
/炭素)の軽減、炭素析出の回避及びチューブ寿命の延
長化が図れる。
EFFECTS OF THE INVENTION Since the heat in the furnace can be efficiently recovered, it is not necessary to install a residual heat pipe or the like in the convection section as in the conventional case, and the capital investment can be reduced. By adjusting the amount of heat recovered from the combustion exhaust gas for generating steam and the amount of heat passing through the heat storage body, it is possible to support flexible design and operation as thermal self-sufficiency. Especially in a hydrocarbon steam reforming furnace, the amount of heat can be effectively supplied to the object to be heated by two temperature regions of different levels,
The reforming furnace can be downsized. In addition, since the temperature can be made uniform in the high temperature heat flux region in the reforming furnace, the possibility of partial overheating of the reforming tube is reduced, which reduces S / C (steam / carbon) and avoids carbon precipitation. Also, the life of the tube can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる蓄熱型熱交換器一体型燃焼装置
を示す説明図である。
FIG. 1 is an explanatory view showing a heat storage type heat exchanger integrated combustion device used in the present invention.

【図2】蓄熱型熱交換器一体型燃焼装置で用いる蓄熱型
熱交換器を示す説明図である。
FIG. 2 is an explanatory view showing a heat storage type heat exchanger used in the heat storage type heat exchanger integrated combustion device.

【図3】高温流体用連通孔と低温流体用連通孔との関係
を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a communication hole for high temperature fluid and a communication hole for low temperature fluid.

【図4】本発明で用いる加熱炉の一例を示す断面図であ
る。
FIG. 4 is a sectional view showing an example of a heating furnace used in the present invention.

【図5】本発明で用いる加熱炉の一例を示す側面図であ
る。
FIG. 5 is a side view showing an example of a heating furnace used in the present invention.

【図6】炭化水素の水蒸気改質炉内の熱流束分布を示す
図である。
FIG. 6 is a diagram showing a heat flux distribution in a hydrocarbon steam reforming furnace.

【図7】熱流束分布の態様を示す図である。FIG. 7 is a diagram showing an aspect of heat flux distribution.

【図8】従来の燃焼バーナシステムを用いた加熱炉の熱
流束分布を示す図である。
FIG. 8 is a diagram showing a heat flux distribution of a heating furnace using a conventional combustion burner system.

【符号の説明】[Explanation of symbols]

7 被加熱管 8 火炎 30 蓄熱型熱交換器 39 蓄熱型熱交換器一体型燃焼装置 40 加熱炉 7 Heated tube 8 flames 30 heat storage type heat exchanger 39 Combustion device with integrated heat storage heat exchanger 40 heating furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平城 正彦 東京都千代田区麹町6丁目6番 コスモ エンジニアリング株式会社内 (72)発明者 明智 栄一 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 長谷川 敏明 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (56)参考文献 特開 平5−118764(JP,A) 特開 昭59−74409(JP,A) 特開 平7−83585(JP,A) 実開 昭59−142651(JP,U) 実開 昭56−141736(JP,U) (58)調査した分野(Int.Cl.7,DB名) F28D 17/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masahiko Hirashiro 6-6, Kojimachi, Chiyoda-ku, Tokyo Cosmo Engineering Co., Ltd. (72) Eiichi Akechi 2-53, Shirute, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Kogyo Co., Ltd. (72) Inventor Toshiaki Hasegawa 2-53, Shirate, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Co., Ltd. (56) Reference JP-A-5-118764 (JP, A) JP-A-59 -74409 (JP, A) JP-A-7-83585 (JP, A) Actually developed 59-142651 (JP, U) Actually developed 56-141736 (JP, U) (58) Fields investigated (Int.Cl) . 7 , DB name) F28D 17/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蓄熱交換器を通してバーナへの燃焼用空
気の供給及び当該バーナからの燃焼ガスの排出を行う蓄
熱型熱交換器一体型燃焼装置を1対又は複数対、炉壁に
設置し、その供給燃料を調整することにより、加熱炉内
空間中、被加熱管路に対し、当該管路入口部から当該管
路の中央部までが高熱流束領域、当該管路の中央部から
当該管路の出口部までが低温流束領域であるレベルの異
なる二つの熱流束領域を形成することを特徴とする燃焼
加熱方法。
1. A heat storage type heat exchanger integrated combustion device for supplying combustion air to a burner and discharging combustion gas from the burner through the heat storage exchanger is installed on the furnace wall in one or more pairs, By adjusting the supplied fuel, in the heating furnace internal space, with respect to the pipeline to be heated, the high heat flux region is from the pipeline inlet portion to the central portion of the pipeline, and from the central portion of the pipeline to the pipeline. A combustion heating method characterized in that two heat flux regions having different levels, which are low temperature flux regions, are formed up to the outlet of the passage.
【請求項2】 被加熱管路入口側に設置された蓄熱型熱
交換器一体型燃焼装置に全燃料量の50〜100重量%
を供給する請求項1記載の燃焼加熱方法。
2. 50 to 100% by weight of the total fuel amount in the heat storage type heat exchanger integrated combustion device installed on the inlet side of the heated pipeline.
The combustion heating method according to claim 1, further comprising:
【請求項3】 加熱炉が炭化水素と水蒸気が流入する触
媒を充填した改質管を有する炭化水素の水蒸気改質炉で
ある請求項1又は2記載の燃焼加熱方法。
3. The combustion heating method according to claim 1, wherein the heating furnace is a hydrocarbon steam reforming furnace having a reforming tube filled with a catalyst into which hydrocarbon and steam flow.
【請求項4】 蓄熱型熱交換器一体型燃焼装置の蓄熱型
熱交換器が周方向にN(N=n+1、ここで、nは2以
上の正の偶数で常時流体が流れる室数である。)室に均
等に区画された各室内を軸方向に流体が通過可能とした
蓄熱体と、この蓄熱体の両開口端にそれぞれ接続されて
温度差のある流体を流す2系統の流路の一方の低温流体
系統に接続される低温流体室と他方の高温流体系統に接
続される高温流体室とに環状仕切壁で区画された2重管
状の出入口手段と、前記蓄熱体と前記出入口手段との間
にそれぞれ介在されて前記蓄熱体と出入口手段との間を
それぞれ遮断する一方、前記低温流体室と前記蓄熱体と
を連通させる低温流体用連通孔及び前記高温流体室と前
記蓄熱体とを連通させる高温流体用連通孔とを交互にn
/2個ずつ配置し、連続的あるいは間欠的に回転して前
記出入口手段の高温流体室と低温流体室とをN室に区画
された前記蓄熱体の室のいずれかに順次連通させる切替
手段とから成り、かつ前記切替手段の高温流体用連通孔
と低温流体用連通孔とが数式(1)で表わされる角度α
の間隔をあけて配置され、 【数1】 (式中、β1は切替部の回転中心Oから高温流体用連通
孔に外接する中心角を示し、β2は切替部の回転中心O
から低温流体用連通孔に外接する中心角を示す。) 更に前記低温流体用連通孔及び高温流体用連通孔の大き
さが数式(2)の関係を 【数2】 満足するものである請求項1〜3のいずれか1項記載の
燃焼加熱方法。
4. The heat storage type heat exchanger of the heat storage type heat exchanger integrated combustion apparatus has N (N = n + 1) in the circumferential direction, where n is a positive even number of 2 or more and is the number of chambers through which the fluid always flows. A heat storage body that allows a fluid to pass in the axial direction through each of the chambers that are evenly divided into chambers, and a flow path of two systems that are connected to both open ends of the heat storage body and flow the fluid having a temperature difference. A double tubular inlet / outlet means partitioned by an annular partition wall into a low temperature fluid chamber connected to one low temperature fluid system and a high temperature fluid chamber connected to the other high temperature fluid system, the heat storage body and the inlet / outlet means. While interposing between the heat storage body and the inlet / outlet means respectively, the low temperature fluid communication hole for communicating the low temperature fluid chamber and the heat storage body, and the high temperature fluid chamber and the heat storage body. Alternately with the high-temperature fluid communication holes for communication
And / or switching means for arranging every two of them and rotating them continuously or intermittently so that the high temperature fluid chamber and the low temperature fluid chamber of the inlet / outlet means are sequentially communicated with any one of the chambers of the heat storage body divided into N chambers. And the communication hole for the high temperature fluid and the communication hole for the low temperature fluid of the switching means are represented by the mathematical expression (1).
Are arranged at intervals of (In the formula, β 1 indicates a central angle circumscribing the rotation center O of the switching portion to the communication hole for high temperature fluid, and β 2 indicates the rotation center O of the switching portion.
Shows the central angle circumscribing the through hole for the low temperature fluid. ) Further, the size of the communication hole for the low temperature fluid and the communication hole for the high temperature fluid is expressed by the following equation (2). The combustion heating method according to any one of claims 1 to 3, which is satisfied.
【請求項5】 蓄熱型熱交換器一体型燃焼装置の蓄熱型
熱交換器が周方向にN(N=n+2、ここで、nは2以
上の正の整数で常時流体が流れる室数である。)室に均
等に区画され各室内を軸方向に流体が通過可能とした蓄
熱体と、この蓄熱体の両開口端にそれぞれ接続されて温
度差のある流体を流す2系統の流路の一方の低温流体系
統に接続される低温流体室と他方の高温流体系統に接続
される高温流体室とに環状仕切壁で区画された2重間状
の出入口手段と、前記蓄熱体と前記出入口手段との間に
それぞれ介在されて前記蓄熱体と出入口手段との間をそ
れぞれ遮断する一方、前記低温流体室と前記蓄熱体とを
連通させる低温流体用連通孔及び前記高温流体室と前記
蓄熱体とを連通させる高温流体用連通孔とが数式(3)
で表わされる角度Cの間隔をあけて配置され、 【数3】 かつ連続的あるいは間欠的に回転して前記出入口手段の
高温流体室と低温流体室とをN室に区画された前記蓄熱
体の室のいずれかに順次連通させる切替手段とから成る
ものである請求項1〜3のいずれか1項記載の燃焼加熱
方法。
5. The heat storage type heat exchanger of the heat storage type heat exchanger integrated combustion apparatus has N (N = n + 2) in the circumferential direction, where n is a positive integer of 2 or more and is the number of chambers through which the fluid always flows. .) A heat storage body that is evenly divided into chambers and allows fluid to pass through each chamber in the axial direction, and one of two flow paths that are connected to both open ends of the heat storage body and flow the fluid having a temperature difference. Of the low temperature fluid chamber connected to the low temperature fluid system and the high temperature fluid chamber connected to the other high temperature fluid system, and the double space-shaped inlet / outlet means partitioned by the annular partition wall, the heat storage body and the inlet / outlet means. While interposing between the heat storage body and the inlet / outlet means respectively, the low temperature fluid communication hole for communicating the low temperature fluid chamber and the heat storage body, and the high temperature fluid chamber and the heat storage body. The communication hole for the high temperature fluid to be communicated is the mathematical formula (3).
Are arranged at intervals of an angle C represented by And a switching means that rotates continuously or intermittently to sequentially connect the high temperature fluid chamber and the low temperature fluid chamber of the inlet / outlet means to one of the heat storage chambers divided into N chambers. Item 4. The combustion heating method according to any one of Items 1 to 3.
JP28482595A 1995-11-01 1995-11-01 Combustion heating method Expired - Lifetime JP3486023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28482595A JP3486023B2 (en) 1995-11-01 1995-11-01 Combustion heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28482595A JP3486023B2 (en) 1995-11-01 1995-11-01 Combustion heating method

Publications (2)

Publication Number Publication Date
JPH09126675A JPH09126675A (en) 1997-05-16
JP3486023B2 true JP3486023B2 (en) 2004-01-13

Family

ID=17683503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28482595A Expired - Lifetime JP3486023B2 (en) 1995-11-01 1995-11-01 Combustion heating method

Country Status (1)

Country Link
JP (1) JP3486023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997274A (en) * 2011-09-19 2013-03-27 李豫伯 Heat recovery system for high-temperature waste gas

Also Published As

Publication number Publication date
JPH09126675A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
AU779240B2 (en) Regenerative type carbon dioxide separator and carbon dioxide separating system
US4824658A (en) Production of synthesis gas using convective reforming
US7297169B2 (en) Apparatus and method for hydrocarbon reforming process
JPS59138893A (en) Heat exchanger for cooling hot gas, particularly, hot gas from synthesis of ammonia
US20090011290A1 (en) Method and apparatus for thermochemical recuperation with partial heat recovery of the sensible heat present in products of combustion
JP2003525115A (en) Endothermic reaction process and device
WO1995015462A1 (en) Regenerative type burner and storage type heat exchanging system available therefor
US6793700B2 (en) Apparatus and method for production of synthesis gas using radiant and convective reforming
JPH0868596A (en) Rotary type heat transfer and heating type purifier applied to exhaust gas
JP3486023B2 (en) Combustion heating method
JP2012511421A (en) Chemical reactor operation
JPH0271003A (en) Boiler
JP4680628B2 (en) Heavy oil reformer and heavy oil-fired gas turbine system
JP2017113746A (en) Radiant non-catalytic recuperative reformer
JP3563753B2 (en) Heating method and apparatus for tubular heating furnace
BRPI0618102A2 (en) steam generation method and apparatus
JP3410591B2 (en) Hydrocarbon steam reforming method
JP4315292B2 (en) Water gas generating apparatus and water gas generating method
JP4049445B2 (en) Steam reforming method and steam reforming apparatus
JPH11179191A (en) Catalyst modification type reaction furnace
US2276356A (en) Catalytic reactor
SU1213308A1 (en) Thermal generating set
JP2744756B2 (en) Heat storage type heat exchanger and heat storage type burner system using the same
SU932189A1 (en) Regenerative gas heater
JP2023090916A (en) Gasification system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term