JP3481381B2 - Waterproof and airtight material for mold-proof building and method for producing the same - Google Patents

Waterproof and airtight material for mold-proof building and method for producing the same

Info

Publication number
JP3481381B2
JP3481381B2 JP02297496A JP2297496A JP3481381B2 JP 3481381 B2 JP3481381 B2 JP 3481381B2 JP 02297496 A JP02297496 A JP 02297496A JP 2297496 A JP2297496 A JP 2297496A JP 3481381 B2 JP3481381 B2 JP 3481381B2
Authority
JP
Japan
Prior art keywords
semiconductor particles
antibacterial metal
antibacterial
antifungal
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02297496A
Other languages
Japanese (ja)
Other versions
JPH09195638A (en
Inventor
昭 藤嶋
和仁 橋本
信之 中田
敏夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP02297496A priority Critical patent/JP3481381B2/en
Publication of JPH09195638A publication Critical patent/JPH09195638A/en
Application granted granted Critical
Publication of JP3481381B2 publication Critical patent/JP3481381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、防黴性建築用水密
気密材及びその製造方法に関し、さらに詳しくは、高分
子材料からなる基材中に光触媒作用を示す半導体粒子を
分散させ、その光触媒作用で基材表面に抗菌性金属又は
抗菌性金属化合物を析着させた抗菌・防黴作用を有する
建築用水密気密材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold-proof, watertight and airtight material for construction and a method for producing the same. More specifically, semiconductor particles exhibiting a photocatalytic action are dispersed in a base material made of a polymer material, and the photocatalyst is obtained. The present invention relates to a watertight airtight building material having an antibacterial and antifungal effect in which an antibacterial metal or an antibacterial metal compound is deposited on the surface of a substrate by an action, and a method for producing the same.

【0002】[0002]

【従来の技術】一般住宅やオフィス等における黴の問題
や、病院院内感染など、屋内における黴や細菌の問題は
以前から存在していたが、これに対する効果的で簡易な
対処法はなかった。特に、窓ガラスの固定部として用い
られているガスケット部は、結露水や汚れ等が溜り易
く、それにより黴が生えて黒ずんでしまい、衛生的でな
いだけでなく、美観的にも悪くなってしまうという問題
があった。また、一旦生えた黴は除去し難く、黴処理剤
等の薬品を用いて除去する方法はあるが、薬品の安全
性、臭い等の問題から薬品による黴除去作業は容易でな
かった。従って、当初からガスケットに抗菌・防黴性を
持たせることが望まれている。
2. Description of the Related Art Although the problems of mold in general houses and offices and the problems of mold and bacteria indoors such as hospital nosocomial infections have existed for a long time, there is no effective and simple countermeasure against them. In particular, the gasket part used as the fixing part of the window glass is liable to accumulate dew condensation and dirt, which causes mold to grow and darken, which is not only hygienic but also aesthetically unpleasant. There was a problem. Further, once the mold has grown, it is difficult to remove it, and there is a method of removing it using a chemical such as a mildew treating agent, but it is not easy to remove the mold with chemicals due to problems such as safety of chemicals and odor. Therefore, it is desired from the beginning to give the gasket antibacterial and antifungal properties.

【0003】抗菌・防黴性をガスケットに付与する方法
としては、有機系の薬品をあらかじめガスケット中に添
加するという方法がある。しかし、この方法は、薬品が
徐々に放出されていくため、最終的には抗菌・防黴性が
失われてしまう。また、ゼオライトやシリカゲル等に抗
菌性金属や抗菌性金属化合物を担持させた無機系の抗菌
剤をガスケットに配合するという方法もある。しかし、
ガスケット表面で充分な抗菌・防黴性を発揮させるため
には、抗菌剤を大量に配合する必要があり、それによっ
て基材材料のゴムや樹脂材料の柔軟性が損なわれ、千切
れ易くあるいは切れ易くなり、材料の機械的性質が低下
するという問題がある。また、抗菌・防黴性は、外気と
接触する材料の表層部に存在する抗菌剤にのみ依存する
ため、材料内部の抗菌剤は無駄になり、コストの増大を
招くという問題もある。
As a method of imparting antibacterial / mildew-proof properties to a gasket, there is a method of adding an organic chemical to the gasket in advance. However, in this method, the chemicals are gradually released, so that the antibacterial and antifungal properties are finally lost. There is also a method of blending an inorganic antibacterial agent in which an antibacterial metal or an antibacterial metal compound is supported on zeolite, silica gel or the like in a gasket. But,
In order to exert sufficient antibacterial and antifungal properties on the gasket surface, it is necessary to add a large amount of antibacterial agent, which impairs the flexibility of the rubber or resin material of the base material and makes it easy to break or break. There is a problem that it becomes easy and the mechanical properties of the material deteriorate. Further, since the antibacterial and antifungal properties depend only on the antibacterial agent existing in the surface layer of the material that comes into contact with the outside air, the antibacterial agent inside the material is wasted, which causes a problem of increasing cost.

【0004】ところで、TiO2に代表される光触媒作
用を有する半導体粒子が抗菌・防黴作用を示すことは従
来から知られており、最近では、それらを利用してメン
テナンスフリーの抗菌・防黴作用を持たせた素材の開発
が進められている。例えば特開平2−124949号に
は、幾分の水分を含み、TiO2とZnOとの混成体を
主体とした微粉末脱臭剤を含有する熱可塑性樹脂シート
を成形したプラスチック成形品について開示されてい
る。また、特開平2−6333号には、酸化チタンの粒
子表面に銅、亜鉛等の抗菌性金属を担持させた抗菌性粉
末について開示されており、この粉末を樹脂、ゴム、ガ
ラス等に配合することにより抗菌性組成物が得られ、ま
た、公知の方法により、電気機器、家具調度品、室内装
飾材、食品等の包装資材などの抗菌性処理のほか、環境
衛生施設、機器類の抗菌剤として上記粉末が利用できる
と教示されている。
By the way, it has been conventionally known that semiconductor particles having a photocatalytic action represented by TiO 2 exhibit an antibacterial and antifungal action, and recently, maintenance-free antibacterial and antifungal actions have been utilized by utilizing them. Development of materials with For example, JP-A-2-124949 discloses a plastic molded article formed by molding a thermoplastic resin sheet containing a fine powder deodorant mainly containing a composite of TiO 2 and ZnO, which contains some water. There is. Further, Japanese Patent Laid-Open No. 2-6333 discloses an antibacterial powder in which antibacterial metals such as copper and zinc are supported on the surface of titanium oxide particles, and the powder is blended with resin, rubber, glass and the like. An antibacterial composition is obtained by the above method, and by a known method, in addition to antibacterial treatment of electrical equipment, furniture furnishings, upholstery materials, packaging materials such as food, etc., environmental hygiene facilities, antibacterial agents for equipment. Is taught that the above powder can be used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、TiO
2等の光触媒作用を有する半導体粒子を高分子材料基材
中に配合する場合、その光触媒作用によって高分子材料
自体が分解され、基材の柔軟性が損なわれ、機械的性質
が低下するという問題が生じる。高分子材料の損傷を抑
制するには、光触媒作用の小さい半導体粒子を使用する
必要があるが、その場合には、充分な抗菌・防黴性が発
揮されなくなる。さらに、光触媒作用で抗菌・防黴性を
発揮させようとする場合、光の照射が不可欠であり、浴
室や台所などの屋内建材用水密気密材の場合、抗菌・防
黴性を示すために必要な光量の光が入射し難いという問
題がある。また、基材表面で充分な抗菌・防黴性を発揮
させるためには光触媒活性の高い半導体粒子を大量に配
合する必要があるが、この光触媒用の半導体粒子は高価
であり、コストの増大を招いてしまう。さらに、通常、
微弱な光で光触媒作用を発揮する半導体粒子は、粒径が
数nmと微細であるため、高分子材料中への分散性が悪
いという問題もある。一方、半導体粒子を高分子材料表
面にコーティングした場合、高分子材料とコーティング
膜との充分な密着性が得られず、コーティング膜が剥離
してしまう恐れがある。
However, TiO 2
When compounding photocatalytic semiconductor particles such as 2 into a polymer material base material, the polymer material itself is decomposed by the photocatalytic function, the flexibility of the base material is impaired, and the mechanical properties deteriorate. Occurs. In order to suppress the damage of the polymer material, it is necessary to use semiconductor particles having a small photocatalytic action, but in that case, sufficient antibacterial and antifungal properties cannot be exhibited. In addition, irradiation of light is indispensable when trying to exert antibacterial and antifungal properties by photocatalytic action, and in the case of watertight airtight materials for indoor building materials such as bathrooms and kitchens, it is necessary to show antibacterial and antifungal properties. There is a problem that it is difficult for a large amount of light to enter. Further, in order to exert sufficient antibacterial and antifungal properties on the surface of the base material, it is necessary to blend a large amount of semiconductor particles having high photocatalytic activity, but the semiconductor particles for photocatalyst are expensive and increase the cost. I will invite you. Moreover, usually
Since the semiconductor particles that exhibit a photocatalytic action with weak light have a fine particle diameter of several nm, there is also a problem that the dispersibility in the polymer material is poor. On the other hand, when semiconductor particles are coated on the surface of a polymer material, sufficient adhesion between the polymer material and the coating film cannot be obtained, and the coating film may peel off.

【0006】従って、本発明の目的は、前記したような
光触媒作用を有する半導体粒子を高分子材料中に配合し
た際の光触媒作用による強度や柔軟性等の機械的性質の
低下といった問題、及び光触媒作用の小さい半導体粒子
を配合した場合の抗菌・防黴性の低下といった問題を解
決し、長期間にわたって優れた抗菌・防黴作用を発揮す
るガスケット部材等の建築用水密気密材を提供すること
にある。さらに本発明の目的は、外気に曝される高分子
材料基材表面にのみ抗菌・防黴作用を有する抗菌性金属
又は抗菌性金属化合物を光触媒の酸化還元反応によって
析着させることにより、優れた抗菌・防黴作用を発揮す
ると共に、加工性、柔軟性、強度等にも優れ、しかも比
較的容易に、低コストで製造できる建築用水密気密材及
びその製造方法を提供することにある。
Therefore, an object of the present invention is to reduce the mechanical properties such as strength and flexibility due to the photocatalytic action when the above-mentioned semiconductor particles having the photocatalytic action are compounded in the polymer material, and the photocatalyst. To provide a watertight airtight material for construction such as a gasket member, which solves the problem of deterioration of antibacterial and antifungal properties when compounded with semiconductor particles having a small action, and exhibits excellent antibacterial and antifungal effects over a long period of time. is there. Further, the object of the present invention is excellent by depositing an antibacterial metal or an antibacterial metal compound having an antibacterial / antifungal action only on the surface of a polymer material substrate exposed to the outside air by a redox reaction of a photocatalyst. An object of the present invention is to provide a watertight airtight material for construction, which exhibits antibacterial and antifungal effects, is excellent in workability, flexibility, strength, etc., and can be relatively easily manufactured at low cost, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、高分子材料からなる基材中に基材
材料に損傷を与えない程度の微弱な光触媒作用を示す半
導体粒子が混在し、その基材表面に露出している前記半
導体粒子の表面に抗菌性金属又は抗菌性金属化合物が析
着されてなることを特徴とする防黴性建築用水密気密材
が提供される。好適な態様においては、上記半導体粒子
は0.1〜1μmの粒径を有し、少なくとも1部が基材
表面に露出するように高分子材料基材に対して1〜20
重量%の割合で混在している。さらに本発明によれば、
上記のような防黴性建築用水密気密材の製造に好適に用
いられる、高分子材料からなる基材材料に損傷を与えな
い程度の微弱な光触媒作用を示す半導体粒子が混在した
基材材料が提供されると共に、さらに、該基材材料を、
抗菌性金属イオン又は抗菌性金属化合物イオンを含む溶
液と接触せしめ、紫外線を照射することにより上記半導
体粒子の光触媒作用によって抗菌性金属イオン又は抗菌
性金属化合物イオンを還元し、上記基材表面に抗菌性金
属又は抗菌性金属化合物を析出させることを特徴とする
防黴性建築用水密気密材の製造方法が提供される。
In order to achieve the above object, according to the present invention, a semiconductor particle exhibiting a weak photocatalytic action to the extent that it does not damage the base material made of a polymeric material. Mixed with and exposed to the substrate surface
Provided is a watertight and airtight material for antifungal construction , comprising an antibacterial metal or an antibacterial metal compound deposited on the surface of conductor particles . In a preferred embodiment, the semiconductor particles have a particle size of 0.1 to 1 μm, and have a particle size of 1 to 20 with respect to the polymer material substrate so that at least a part thereof is exposed on the surface of the substrate.
It is mixed in a weight percentage. Further according to the invention,
Suitable for use in the production of the mold-proof watertight airtight material for construction as described above, a base material mixed with semiconductor particles exhibiting a weak photocatalytic effect that does not damage the base material made of a polymer material And further comprising the substrate material:
The antibacterial metal ion or the antibacterial metal compound ion is brought into contact with the solution, and the antibacterial metal ion or the antibacterial metal compound ion is reduced by the photocatalytic action of the semiconductor particles by irradiating with ultraviolet rays, and the base material surface is antibacterial. Disclosed is a method for producing a watertight and airtight material for antifungal construction, which comprises depositing a functional metal or an antibacterial metal compound.

【0008】[0008]

【発明の実施の形態】本発明に係る防黴性建築用水密気
密材は、ゴムや樹脂等の高分子材料の基材中に混在させ
る半導体粒子として光触媒作用の小さいものを使用し、
光触媒作用による高分子材料の分解を抑制し、高分子材
料の伸びや強度等の機械的性質の低下といった問題を解
決すると共に、このような半導体粒子が混在した高分子
材料を抗菌性金属イオン又は抗菌性金属化合物イオンを
含む溶液と接触せしめ、紫外線を照射することにより、
上記半導体粒子の光触媒作用によって、基材表面(露出
している半導体粒子の表面)に銀、銅等の光照射が無い
状態でも優れた抗菌・防黴性を発揮する抗菌性金属又は
抗菌性金属化合物を析着させ、長期間にわたって優れた
抗菌・防黴性を発揮させようとするものである。本発明
の微弱な光触媒作用を示す半導体粒子とは、基材に対す
る混在量を制御したり、粒径を制御したり、形状又は比
表面積を制御したり、あるいは材料特性で制御したりし
て微弱な光触媒作用を示すようにしたものである。半導
体粒子の比表面積について言えば、一般に1〜100m
2/gの範囲が適当であり、好ましくは1〜20m2/g
である。また、例えば顔料タイプのTiO2で粒径が2
00nm〜1μmで比表面積が10m2/g前後のもの
を好適に用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The anti-mold watertight airtight material for construction according to the present invention uses semiconductor particles having a small photocatalytic action as semiconductor particles mixed in a base material of a polymer material such as rubber or resin,
Suppressing the decomposition of the polymer material by photocatalysis, and solving the problem of the mechanical properties such as elongation and strength of the polymer material is reduced, the polymer material containing such semiconductor particles mixed antibacterial metal ions or By contacting it with a solution containing antibacterial metal compound ions and irradiating it with ultraviolet rays,
Due to the photocatalytic action of the semiconductor particles, the surface of the base material (exposed
The surface of the semiconductor particles) is deposited with an antibacterial metal or antibacterial metal compound that exhibits excellent antibacterial and antifungal properties even in the absence of light irradiation of silver, copper, etc. It is intended to exhibit antifungal properties. The semiconductor particles exhibiting a weak photocatalytic action according to the present invention means that the amount mixed with respect to the base material is controlled, the particle size is controlled, the shape or the specific surface area is controlled, or the material properties are controlled to be weak. It is designed to exhibit a great photocatalytic action. Speaking of the specific surface area of semiconductor particles, it is generally 1 to 100 m.
The range of 2 / g is suitable, and preferably 1 to 20 m 2 / g.
Is. Also, for example, pigment type TiO 2 having a particle size of 2
Those having a specific surface area of about 00 m to 1 μm and about 10 m 2 / g can be preferably used.

【0009】すなわち、本発明においては、高分子材料
中に分散させる光触媒作用を有する半導体粒子は、その
後基材表面に抗菌性金属又は抗菌性金属化合物を析出さ
せるための酸化還元反応の光触媒として利用されてい
る。従って、このような半導体粒子は、通常の使用状態
下程度の照度では充分な光触媒作用を示さないが、強力
な紫外線照射下では抗菌性金属イオンや抗菌性金属化合
物イオンを還元する程度の光触媒作用を示す半導体粒子
であればよく、このような半導体粒子を高分子材料中に
分散させても、高分子材料に損傷を与えることなく基材
表面にのみ抗菌性金属又は抗菌性金属化合物を析出させ
ることが可能となる。また、抗菌性金属又は抗菌性金属
化合物を析出させる反応が短時間で行われることから、
紫外線照射による高分子材料の損傷は微弱なものであ
る。さらに、本発明によって得られる建築用水密気密材
は、基材表面に析着されたAg、Cu、Pt、Pd、A
u等の抗菌性金属又はそれらの抗菌性金属化合物によ
り、光照射が無い状態でも優れた抗菌・防黴作用を長期
間にわたって発揮できる。
That is, in the present invention, the semiconductor particles having a photocatalytic action dispersed in the polymer material are used as a photocatalyst for the redox reaction for depositing the antibacterial metal or the antibacterial metal compound on the surface of the substrate thereafter. Has been done. Therefore, such a semiconductor particle does not show a sufficient photocatalytic action under illuminance under a normal use condition, but a photocatalytic action enough to reduce an antibacterial metal ion or an antibacterial metal compound ion under strong ultraviolet irradiation. It is sufficient to use a semiconductor particle exhibiting the above, and even if such a semiconductor particle is dispersed in a polymer material, the antibacterial metal or the antibacterial metal compound is deposited only on the surface of the base material without damaging the polymer material. It becomes possible. Further, since the reaction for depositing the antibacterial metal or the antibacterial metal compound is carried out in a short time,
The damage of the polymer material due to the ultraviolet irradiation is weak. Furthermore, the watertight airtight material for construction obtained by the present invention is Ag, Cu, Pt, Pd, A deposited on the surface of the base material.
An antibacterial metal such as u or an antibacterial metal compound thereof can exhibit excellent antibacterial and antifungal effects for a long period of time even in the absence of light irradiation.

【0010】基材となる高分子材料としては、塩化ビニ
ル樹脂、アクリルゴム、ニトリルゴム(NBR)、ブチ
ルゴム(IIR)、スチレン・ブタジエンゴム(SB
R)、エチレンプロピレンターポリマー(EPDM)等
の適度の柔軟性と強度を有するものであれば特に限定さ
れず、用途に応じて適宜選定することができる。本発明
の建築用水密気密材をガスケット部材として用いる場
合、上記高分子材料としてもガスケットに従来用いられ
ている各種樹脂やゴムを好適に用いることができる。
The polymer material used as the base material is vinyl chloride resin, acrylic rubber, nitrile rubber (NBR), butyl rubber (IIR), styrene-butadiene rubber (SB).
R), ethylene propylene terpolymer (EPDM), etc. are not particularly limited as long as they have appropriate flexibility and strength, and can be appropriately selected according to the application. When the watertight airtight material for construction according to the present invention is used as a gasket member, various resins and rubbers conventionally used in gaskets can be preferably used as the polymer material.

【0011】前記高分子材料に配合される半導体粒子と
しては、わずかでも光触媒作用を有する半導体でその伝
導帯の位置が抗菌性金属イオンや抗菌性金属化合物イオ
ンの還元電位よりも卑であればいずれも使用可能であ
り、例えばTiO2、SrTiO3、ZnO、CdS、S
nO2等が挙げられるが、これらの中でも特にTiO2
好ましい。使用する半導体粒子の粒径は、0.01μm
〜10μm、好ましくは0.1μm〜1μmが適当であ
る。粒径が0.1μmより小さくなると、粒径が小さ過
ぎて取り扱いが困難であったり、分散性が悪くなるとい
う問題も生じてくる。一方、粒径が大きくなり過ぎる
と、材料表面に大きな粒子が存在することになり、表面
の滑らかさが失われ、材料表面に露出した粒子が脱落し
易くなる。高分子材料に配合する半導体としては、粒
径、コスト、安全性の点から、従来から白色系顔料とし
て使用されているルチル型の顔料用TiO2が特に好ま
しい。
The semiconductor particles to be blended with the polymer material are semiconductors having even a slight photocatalytic action, and if the position of the conduction band is less than the reduction potential of the antibacterial metal ion or the antibacterial metal compound ion. Can also be used, for example TiO 2 , SrTiO 3 , ZnO, CdS, S
Examples thereof include nO 2 , and among these, TiO 2 is particularly preferable. The particle size of the semiconductor particles used is 0.01 μm
10 μm, preferably 0.1 μm to 1 μm is suitable. When the particle size is smaller than 0.1 μm, there are problems that the particle size is too small to handle and the dispersibility deteriorates. On the other hand, if the particle size is too large, large particles are present on the material surface, the surface smoothness is lost, and the particles exposed on the material surface are likely to fall off. From the viewpoint of particle size, cost and safety, rutile type TiO 2 for pigments, which has been conventionally used as a white pigment, is particularly preferable as the semiconductor compounded in the polymer material.

【0012】高分子材料に配合される光触媒作用を有す
る半導体粒子の混合量は、高分子材料に対して0.5〜
100重量%(ここで100重量%は半導体粒子の重量
と高分子材料の重量が等しいことに相当する。)、好ま
しくは1〜20重量%が適当である。1重量%よりも少
なくなると、表面に露出する半導体粒子の量が減少する
ことにより、表面に析出する抗菌性金属又は抗菌性金属
化合物の量が減少し、充分な抗菌・防黴性が得られ難く
なる。一方、100重量%を超えると、抗菌・防黴性の
発揮に関しては問題ないが、建築用水密気密材としての
機械的性質が著しく低下する。
The amount of the semiconductor particles having a photocatalytic action mixed in the polymer material is 0.5 to 0.5 with respect to the polymer material.
100% by weight (here, 100% by weight corresponds to the weight of the semiconductor particles being equal to the weight of the polymer material), preferably 1 to 20% by weight. If the amount is less than 1% by weight, the amount of semiconductor particles exposed on the surface decreases, and the amount of antibacterial metal or antibacterial metal compound deposited on the surface decreases, and sufficient antibacterial and antifungal properties are obtained. It will be difficult. On the other hand, when it exceeds 100% by weight, there is no problem in exhibiting antibacterial and antifungal properties, but the mechanical properties as a watertight airtight material for construction remarkably deteriorate.

【0013】高分子材料中に半導体粒子を分散させた建
築用水密気密材の製造方法としては、種々の方法を用い
ることができる。例えば、高分子材料中に前記半導体粒
子を配合し、充分混練りした後に適当な押出型を用いて
押出成形することにより、図1に示すように、高分子材
料1中に半導体粒子2が均一に分散した、任意の断面形
状の建築用水密気密材が得られる。さらには、押出成形
ばかりでなく、射出成形やプレス成形など、高分子成形
品を製造する種々の方法によって前記半導体粒子を分散
させた高分子材料の成形あるいは製造が可能である。
Various methods can be used as a method for producing a watertight airtight material for construction in which semiconductor particles are dispersed in a polymer material. For example, by mixing the above-mentioned semiconductor particles in a polymer material, sufficiently kneading, and then extrusion-molding using a suitable extrusion die, as shown in FIG. It is possible to obtain a watertight airtight material for construction having an arbitrary cross-sectional shape, which is dispersed in. Further, not only extrusion molding but also molding or manufacturing of a polymer material in which the semiconductor particles are dispersed can be carried out by various methods such as injection molding or press molding for manufacturing a polymer molded article.

【0014】また、高分子材料中に半導体粒子を分散さ
せる態様としては、上記図1に示す態様の他に、光触媒
作用を有する半導体粒子を高分子材料基材の少なくとも
一方の表面に向かって多くなるように混在させたり、あ
るいは、光触媒作用を有する半導体粒子が分散した高分
子材料からなる層と上記半導体粒子が分散していない高
分子材料からなる層の二層構造とすることにより、基材
の表層部には充分な量の半導体粒子が存在するが、内部
にはできるだけ存在しないようにして配合量を減らし、
また半導体粒子を多量に配合した時の材料の伸びや強度
等の機械的性質の低下をかなり防止することができる。
このような二層構造の高分子材料を製造する方法として
は、例えば予め高分子材料に適量の半導体粒子を混合
し、充分混練したものを表層材とし、この表層材と、内
層材を構成する高分子材料を同時に共押出しすることに
より、半導体粒子が分散した表層材が内層材表面に強固
に接合した二層構造の高分子材料とすることができる。
また、射出成形やプレス成形では、金型のキャビティ内
壁面に前記半導体粒子や高分子材料に半導体粒子を練り
込んだフィルムを予め塗布もしくは貼着しておき、そこ
に高分子材料を射出したり、充填してプレスすることに
よっても、表面層に半導体粒子が分散した高分子材料が
得られる。
As a mode of dispersing the semiconductor particles in the polymer material, in addition to the mode shown in FIG. 1, many semiconductor particles having a photocatalytic action are spread toward at least one surface of the polymer material substrate. Or a double layer structure of a layer made of a polymer material in which semiconductor particles having a photocatalytic action are dispersed and a layer made of a polymer material in which the semiconductor particles are not dispersed, There is a sufficient amount of semiconductor particles in the surface layer of, but the compounding amount is reduced by making it as little as possible inside.
Further, it is possible to considerably prevent deterioration of mechanical properties such as elongation and strength of the material when a large amount of semiconductor particles are blended.
As a method for producing such a two-layered polymeric material, for example, a suitable amount of semiconductor particles are mixed in advance with the polymeric material and sufficiently kneaded to form a surface layer material, and the surface layer material and the inner layer material are constituted. By co-extruding the polymer material at the same time, it is possible to obtain a polymer material having a two-layer structure in which the surface layer material in which the semiconductor particles are dispersed is firmly bonded to the surface of the inner layer material.
Further, in injection molding or press molding, a film obtained by kneading the semiconductor particles or the polymer particles with the semiconductor particles is previously applied or adhered to the inner wall surface of the cavity of the mold, and the polymer material is injected therein. The polymer material in which the semiconductor particles are dispersed in the surface layer can also be obtained by filling and pressing.

【0015】上記のように半導体粒子を分散させた高分
子材料表面に抗菌性金属又は抗菌性金属化合物を析出さ
せる方法は、硝酸銀や塩化銅などの銀や銅などの抗菌性
金属を含む適当な化合物の溶液を調製し、一つの方法と
しては、半導体粒子を分散させた高分子材料を該溶液中
に浸し、紫外線ランプやブラックライトなどで紫外線を
照射すると、光触媒作用で生じた電子により抗菌性金属
イオン又は抗菌性金属化合物イオンが還元され、該高分
子材料表面に抗菌性金属又は抗菌性金属化合物が析出す
る。この場合、抗菌性金属又は抗菌性金属化合物の析出
量は、溶液中の抗菌性金属イオンの量、すなわち調製し
た溶液の濃度や溶液中に添加するアルコールやEDTA
などの還元剤の濃度で制御する。紫外線照射時間によっ
て析出量を制御する方法もあるが、本発明の場合、高分
子材料への損傷を避ける為、紫外線照射時間は短い方が
好ましく、従って析出量は調製した溶液の濃度で制御す
る方が好ましい。
As described above, the method of depositing the antibacterial metal or the antibacterial metal compound on the surface of the polymer material in which the semiconductor particles are dispersed is carried out by a suitable method containing an antibacterial metal such as silver nitrate such as silver nitrate or copper chloride or copper. A solution of the compound is prepared, and one method is to immerse the polymer material in which the semiconductor particles are dispersed in the solution, and irradiate it with ultraviolet rays from an ultraviolet lamp or a black light to obtain antibacterial properties due to the electrons generated by the photocatalytic action. The metal ion or the antibacterial metal compound ion is reduced, and the antibacterial metal or the antibacterial metal compound is deposited on the surface of the polymer material. In this case, the amount of the antibacterial metal or the antibacterial metal compound deposited is determined by the amount of the antibacterial metal ion in the solution, that is, the concentration of the prepared solution or the alcohol or EDTA added to the solution.
It is controlled by the concentration of reducing agent such as. There is also a method of controlling the deposition amount by the ultraviolet irradiation time, but in the case of the present invention, the ultraviolet irradiation time is preferably shorter in order to avoid damage to the polymer material, and therefore the deposition amount is controlled by the concentration of the prepared solution. Is preferred.

【0016】また、別の方法としては、前記溶液を半導
体粒子を分散させた高分子材料上にスプレー等の適当な
方法で塗布した後、紫外線を照射する方法がある。この
方法では、溶液中の抗菌性金属イオンの量、すなわち調
製した溶液の濃度や添加する還元剤の濃度や塗布量によ
って抗菌性金属又は抗菌性金属化合物の析出量が制御で
きる。以上のような方法によって、図2に示すように、
高分子材料1からなる基材表面に露出している前記半導
体粒子2の表面に抗菌性金属又は抗菌性金属化合物3が
析出した本発明に係る建築用水密気密材10が作製され
る。また、本発明の建築用水密気密材の防黴性が低下し
た場合、該水密気密材表面に前記の方法で抗菌性金属又
は抗菌性金属化合物を再度析出させることで防黴性を維
持させることができる。この場合、施工後の状態での処
理である為、スプレー法等で塗布後、紫外線を照射する
方法が好ましい。
As another method, there is a method in which the solution is applied onto a polymer material in which semiconductor particles are dispersed by an appropriate method such as spraying, and then the solution is irradiated with ultraviolet rays. In this method, the amount of the antibacterial metal or the antibacterial metal compound deposited can be controlled by the amount of the antibacterial metal ion in the solution, that is, the concentration of the prepared solution, the concentration of the reducing agent added, and the coating amount. By the above method, as shown in FIG.
The semiconductor which is exposed on the surface of the base material made of the polymer material 1.
The watertight airtight material for construction 10 according to the present invention is produced in which the antibacterial metal or the antibacterial metal compound 3 is deposited on the surface of the body particles 2 . Further, when the antifungal property of the watertight airtight material for construction of the present invention is lowered, the antifungal property is maintained by reprecipitating the antibacterial metal or the antibacterial metal compound on the surface of the watertight airtight material by the above method. You can In this case, since the treatment is carried out after the construction, it is preferable to apply ultraviolet rays after applying by a spray method or the like.

【0017】半導体粒子を分散させた高分子材料の表面
に抗菌性金属又は抗菌性金属化合物が析出した建築用水
密気密材の製造は、従来の建築用水密気密材の製造方法
に連続して行うことが可能である。すなわち、従来の建
築用水密気密材の製造は、高分子材料を連続して押出成
形することによってなされているが、本発明に係る建築
用水密気密材の製造は、図3に示すように、半導体粒子
を配合した高分子材料のペレットをホッパー11に投入
し、押出機12により押出成形した後、抗菌性金属イオ
ン又は抗菌性金属化合物イオンを含む溶液の浴13中を
通して浸し、その後、紫外線照射装置14で紫外線を照
射し、抗菌性金属又は抗菌性金属化合物を成形体表面に
析出させ、その後水洗浴15中を通して水洗した後、巻
取機16で巻き取る製造工程とすれば、従来の製造工程
を大きく変更することなく、また、生産性を減少させる
ことなく、連続して本発明に係る建築用水密気密材10
の製造が可能となる。また、このような製造工程であれ
ば、浴13を抗菌性金属イオン又は抗菌性金属化合物イ
オンを含まない水浴に変更することのみで、通常の建築
用水密気密材の製造も可能である。
The production of the watertight airtight material for buildings in which the antibacterial metal or the antibacterial metal compound is deposited on the surface of the polymer material in which the semiconductor particles are dispersed is carried out continuously from the conventional method for producing a watertight airtight material for buildings. It is possible. That is, the conventional production of the watertight airtight material for construction is performed by continuously extruding a polymer material, but the production of the watertight airtight material for construction according to the present invention is as shown in FIG. Pellets of a polymer material mixed with semiconductor particles are put into a hopper 11 and extrusion-molded by an extruder 12, and then immersed in a bath 13 of a solution containing antibacterial metal ions or antibacterial metal compound ions, and then irradiated with ultraviolet rays. UV irradiation is performed by the device 14 to deposit an antibacterial metal or an antibacterial metal compound on the surface of the molded body, which is then passed through a washing bath 15 and washed with water, and then wound up by a winder 16. The watertight airtight material for construction 10 according to the present invention continuously without significantly changing the process and without reducing the productivity.
Can be manufactured. In addition, with such a manufacturing process, it is possible to manufacture a normal watertight airtight material for construction only by changing the bath 13 to a water bath containing no antibacterial metal ions or antibacterial metal compound ions.

【0018】[0018]

【実施例】以下、実施例及び比較例を示して本発明の効
果について具体的に説明するが、本発明が下記実施例に
限定されるものでないことはもとよりである。
EXAMPLES The effects of the present invention will be specifically described below with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to the following Examples.

【0019】基礎例 塩化ビニルコンパウンド(組成:塩化ビニル樹脂=3
8.6wt%、可塑剤=36.7wt%、炭酸カルシウ
ム=23.1wt%、安定剤=1.2wt%、顔料=
0.4wt%)200gに粒径200nm、比表面積1
0m2/gの顔料用TiO2(ルチル型)を2g混練り
し、その後、プレス成形を行い、□150×150mm
2、厚さ1mmの半導体粒子配合塩化ビニル樹脂シート
を作製した。
Basic example Vinyl chloride compound (composition: vinyl chloride resin = 3
8.6 wt%, plasticizer = 36.7 wt%, calcium carbonate = 23.1 wt%, stabilizer = 1.2 wt%, pigment =
0.4wt%) 200g particle size 200nm, specific surface area 1
2 g of 0 m 2 / g pigment-use TiO 2 (rutile type) was kneaded, and then press-molded to obtain □ 150 × 150 mm
2. A vinyl chloride resin sheet containing semiconductor particles and having a thickness of 1 mm was prepared.

【0020】基礎比較例 比較の為に粒径7nm、比表面積320m2/gの光触
媒用TiO2(アナターゼ型)を配合する以外は、基礎
と同様にして塩化ビニル樹脂シートを作製した。
The particle size 7nm for basic Comparative Examples comparison, except that blending a specific surface area of 320 m 2 / g of photocatalytic TiO 2 (anatase), basic
A vinyl chloride resin sheet was produced in the same manner as in the example .

【0021】機械的性質の評価: 上記基礎例及び基礎比較例で作製した各塩化ビニル樹脂
シートに対して、JIS A 5756の6.6及び
6.12に規定される方法に基づき、引張強度試験及び
伸び試験を実施した。さらに基礎例及び基礎比較例で作
製した各塩化ビニル樹脂シートについて500時間の促
進暴露を行い、その後の試料についても引張試験及び伸
び試験を行い、機械的性質の評価を行った。その結果を
表1に示す。表1中では、JIS A 5756に規定
される基準値を満たす結果については○、基準値を満た
さない結果については×で示してある。
Evaluation of mechanical properties: Tensile strength tests were carried out on the respective vinyl chloride resin sheets prepared in the above-mentioned basic example and basic comparative example , based on the method specified in 6.6 and 6.12 of JIS A 5756. And an elongation test were carried out. Further, each vinyl chloride resin sheet produced in the basic example and the basic comparative example was subjected to accelerated exposure for 500 hours, and the subsequent samples were also subjected to a tensile test and an elongation test to evaluate the mechanical properties. The results are shown in Table 1. In Table 1, results that satisfy the standard value specified in JIS A 5756 are indicated by ◯, and results that do not satisfy the standard value are indicated by x.

【表1】 [Table 1]

【0022】表1に示す結果から、促進暴露前の試料に
ついては、基礎例及び基礎比較例の塩化ビニル樹脂シー
トは共に基準値を満たすことが認められる。しかし、促
進暴露後では、基礎比較例の塩化ビニル樹脂シートの伸
びが低下し、基準値を満たせなくなっている。これは、
促進暴露時の光照射による光触媒作用で塩化ビニル樹脂
に含まれている可塑剤が分解されたため、伸びが低下し
たものである。基礎例の塩化ビニル樹脂シートでは、配
合されているTiO2の光触媒作用が小さいため、前記
のような可塑剤の分解による機械的性質の低下が起こら
なかったものである。従って、基礎比較例のように光触
媒作用の大きい半導体粒子を配合した高分子材料は、そ
の機械的性質が低下するため、実際に使用することが困
難であることが確認できる。
From the results shown in Table 1, it is recognized that for the samples before accelerated exposure, the vinyl chloride resin sheets of the basic example and the basic comparative example both satisfy the standard value. However, after accelerated exposure, the elongation of the vinyl chloride resin sheet of the basic comparative example decreased, and the standard value could not be satisfied. this is,
The elongation was lowered because the plasticizer contained in the vinyl chloride resin was decomposed by the photocatalytic action of light irradiation during accelerated exposure. In the vinyl chloride resin sheet of the basic example, since the photocatalytic action of TiO 2 contained in the vinyl chloride resin sheet is small, the mechanical properties are not deteriorated due to the decomposition of the plasticizer as described above. Therefore, it can be confirmed that the polymer material in which the semiconductor particles having a large photocatalytic action are blended as in the basic comparative example is difficult to be actually used because its mechanical property is deteriorated.

【0023】実施例 基礎例 で作製した半導体粒子配合塩化ビニル樹脂シート
を0.05モル/リットルの塩化銅水溶液に浸漬し、1
00Wの紫外線ランプで紫外線を照射し、半導体粒子配
合塩化ビニル樹脂シート上に0.05mg/cm2の銅
を析出させた。
Example 1 The vinyl chloride resin sheet containing semiconductor particles prepared in the basic example was immersed in a 0.05 mol / liter copper chloride aqueous solution, and 1
Ultraviolet rays were irradiated with a 00W ultraviolet lamp to deposit 0.05 mg / cm 2 of copper on the vinyl chloride resin sheet containing semiconductor particles.

【0024】比較例1及び2 比較の為に有機系防黴剤を1重量%配合した防黴性塩化
ビニル樹脂シート(比較例)及びゼオライトに銀を担
持させた無機系抗菌剤を1重量%配合した防黴性塩化ビ
ニル樹脂シートを作製した(比較例)。
Comparative Examples 1 and 2 For comparison, 1% by weight of an antifungal vinyl chloride resin sheet containing 1% by weight of an organic antifungal agent (Comparative Example 1 ) and an inorganic antibacterial agent in which silver is supported on zeolite % Antifungal vinyl chloride resin sheet was prepared (Comparative Example 2 ).

【0025】防黴性試験: 実施例及び比較例1,2で作製した各防黴性塩化ビニ
ル樹脂シートに対し、JIS A 5756の6.14
に規定される方法に基づき防黴性試験を実施した。ま
た、実施例及び比較例1,2で作製した各防黴性塩化
ビニル樹脂シートを500時間促進暴露を行った後、同
様の防黴性試験を実施した。その結果を表2に示す。
尚、表2中での判定は、JIS Z 2911に従い、
3が黴を接種部分に菌糸の発育が認められないもの、2
が菌糸の発育部分の面積が黴接種面積の1/3を超えな
いもの、1が菌糸の発育部分の面積が黴接種面積の1/
3を超えるものの3段階評価で示してある。
Antifungal test: For each antifungal vinyl chloride resin sheet produced in Example 1 and Comparative Examples 1 and 2 , JIS A 5756 6.14.
The antifungal test was carried out based on the method specified in 1. In addition, after each mold-proof vinyl chloride resin sheet produced in Example 1 and Comparative Examples 1 and 2 was subjected to accelerated exposure for 500 hours, the same mold-proof test was carried out. The results are shown in Table 2.
The judgment in Table 2 is in accordance with JIS Z 2911.
3 shows no growth of mycelium in the part inoculated with mold, 2
The area of mycelial growth is not more than 1/3 of the fungal inoculation area, 1 is the area of mycelial growth is 1 / of the fungal inoculation area
Those with a rating of more than 3 are shown on a 3-point scale.

【表2】 [Table 2]

【0026】表2に示す結果から、実施例で作製した
防黴性塩化ビニル樹脂シートは促進暴露前後共に良好な
防黴性を有していることが認められる。これに対し、比
較例で作製した防黴性塩化ビニル樹脂シートでは、促
進暴露前の防黴性は良好であるが、促進暴露後では防黴
性が無くなっている。比較例は有機系の防黴剤を配合
しており、この薬剤がシート内部から外部へと浸出する
ことによって防黴性を示している。従って、比較例
作製した防黴性塩化ビニル樹脂シートは、長時間使用し
ているとシート中に含まれている薬剤が失われ、防黴性
も消失することが確認された。比較例で作製された防
黴性塩化ビニル樹脂シートは、促進暴露前後の防黴性は
変化しておらず、無機系抗菌剤が安定であることがわか
る。しかし、その防黴性自体は実施例1よりも劣ってい
る。これは、無機系抗菌剤の配合量が少なかったため、
基材表面に充分な抗菌剤が存在していないためである。
しかし、大量に配合することは、高分子材料自体の機械
的性質を低下させ、また、高価な無機系抗菌剤を使用し
ていることからコスト的にも好ましくない。以上から、
低コストで光触媒作用の小さい顔料用TiO2を高分子
材料に添加し、その表面に光触媒作用を利用して抗菌性
金属あるいは抗菌性金属化合物を析出させることによっ
て、従来の方法よりも、長い期間、優れた防黴性を発揮
できることが確認された。
From the results shown in Table 2, it is confirmed that the antifungal vinyl chloride resin sheet produced in Example 1 has good antifungal properties both before and after accelerated exposure. On the other hand, the antifungal vinyl chloride resin sheet produced in Comparative Example 1 has good antifungal properties before accelerated exposure, but loses antifungal properties after accelerated exposure. Comparative Example 1 contains an organic antifungal agent, and exhibits antifungal property by leaching this agent from the inside of the sheet to the outside. Therefore, it was confirmed that the antifungal vinyl chloride resin sheet produced in Comparative Example 1 loses the chemicals contained in the sheet and loses the antifungal property when used for a long time. The antifungal vinyl chloride resin sheet produced in Comparative Example 2 has no change in antifungal property before and after accelerated exposure, which shows that the inorganic antibacterial agent is stable. However, the antifungal property itself is inferior to that of Example 1. This is because the amount of inorganic antibacterial agent was small,
This is because there is not enough antibacterial agent on the surface of the base material.
However, blending in a large amount reduces the mechanical properties of the polymer material itself, and is expensive in terms of cost because it uses an expensive inorganic antibacterial agent. From the above,
By adding TiO 2 for pigments, which has low photocatalytic activity and low cost, to a polymeric material and depositing an antibacterial metal or an antibacterial metal compound on the surface by utilizing photocatalytic activity, a longer period of time than conventional methods can be obtained. , It was confirmed that it can exhibit excellent antifungal properties.

【0027】[0027]

【発明の効果】以上のように、本発明の防黴性建築用水
密気密材は、高分子材料に損傷を与えない程度の微弱な
光触媒作用を示す半導体粒子を混在させたものであるた
め、従来の光触媒作用による高分子材料の損傷といった
問題もなく、すなわち高分子材料の伸びや強度等の機械
的性質の低下といった問題もなく、また、上記半導体粒
子の光触媒作用を利用して材料表面にのみ抗菌性金属又
は抗菌性金属化合物を析着させたものであるため、優れ
た抗菌・防黴性を長期間にわたって発揮することができ
る。さらに、抗菌性金属又は抗菌性金属化合物の使用量
も低減できると共に、光照射が無い状態でも優れた抗菌
・防黴性を発揮する。従って、本発明によれば、特別な
装置を要することなく、低コストで長期間にわたり機械
的性質及び防黴性が持続する防黴性建築用水密気密材が
提供される。本発明に係る建築用水密気密材は、種々の
用途に用いることができ、その一例として、黴が付着し
易い台所や浴室等の水回りに使用される建材のガスケッ
ト等に特に有利に適用できる。さらに、本発明の方法を
用いることにより、建築用水密気密材以外の樹脂製品に
ついても、その機械的性質を損なうことなく、優れた抗
菌・防黴性を付与することが可能となる。
As described above, the mold-proof, watertight airtight material for construction according to the present invention is a mixture of semiconductor particles exhibiting a weak photocatalytic effect that does not damage the polymer material. There is no problem such as damage to the polymer material due to conventional photocatalytic action, that is, there is no problem of deterioration of mechanical properties such as elongation and strength of the polymer material, and the photocatalytic action of the above-mentioned semiconductor particles is applied to the surface of the material. Since only the antibacterial metal or the antibacterial metal compound is deposited, excellent antibacterial and antifungal properties can be exhibited for a long period of time. Further, the amount of antibacterial metal or antibacterial metal compound used can be reduced, and excellent antibacterial and antifungal properties are exhibited even in the absence of light irradiation. Therefore, according to the present invention, there is provided a watertight airtight material for a mildewproof construction, which does not require a special device and is low in cost and maintains the mechanical properties and the mildewproofness for a long time. The watertight airtight material for construction according to the present invention can be used for various purposes, and as an example, it can be particularly advantageously applied to a gasket of a building material used around water such as kitchen or bathroom where mold is likely to adhere. . Furthermore, by using the method of the present invention, it is possible to impart excellent antibacterial and antifungal properties to resin products other than watertight airtight materials for construction without impairing their mechanical properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】高分子材料中に光触媒作用を有する半導体粒子
を分散させた状態を示す部分拡大断面図である。
FIG. 1 is a partially enlarged cross-sectional view showing a state in which semiconductor particles having a photocatalytic action are dispersed in a polymer material.

【図2】半導体粒子を分散した高分子材料表面に抗菌性
金属又は抗菌性金属化合物を析着させた防黴性建築用水
密気密材の部分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of an antifungal watertight airtight material for molds, which has an antibacterial metal or an antibacterial metal compound deposited on the surface of a polymer material in which semiconductor particles are dispersed.

【図3】本発明に係る防黴性建築用水密気密材の製造工
程の一例を示す概略図である。
FIG. 3 is a schematic view showing an example of a manufacturing process of the mold-proof, watertight and airtight material for a building according to the present invention.

【符号の説明】[Explanation of symbols]

1 高分子材料 2 半導体粒子 3 抗菌性金属又は抗菌性金属化合物 10 防黴性建築用水密気密材 11 ホッパー 12 押出機 13 抗菌性金属イオン又は抗菌性金属化合物イオンを
含む溶液の浴 14 紫外線照射装置 15 水洗浴 16 巻取機
1 Polymeric Materials 2 Semiconductor Particles 3 Antibacterial Metals or Antibacterial Metal Compounds 10 Antifungal Watertight Airtight Materials for Buildings 11 Hoppers 12 Extruders 13 Baths of Antibacterial Metal Ions or Solutions Containing Antibacterial Metal Ions 14 UV Irradiation Devices 15 Washing bath 16 Winding machine

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08K 3/10 C08K 3/10 (72)発明者 橋本 和仁 神奈川県横浜市栄区飯島町2073番地2 ニューシティ本郷台D棟213号 (72)発明者 中田 信之 富山県黒部市堀切1300 (72)発明者 新井 敏夫 富山県富山市藤木841 (56)参考文献 特開 平6−227847(JP,A) 特開 平4−359985(JP,A) 特開 平7−26851(JP,A) (58)調査した分野(Int.Cl.7,DB名) E06B 3/62 A61L 2/16 B29D 31/00 C08J 5/10 C08J 7/00 304 C08K 3/10 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C08K 3/10 C08K 3/10 (72) Inventor Kazuhito Hashimoto 2703, Iijima-cho, Sakae-ku, Yokohama-shi, Kanagawa 2 New City Hongodai D Bldg. 213 (72) Inventor Nobuyuki Nakata 1300 Horikiri, Kurobe City, Toyama Prefecture (72) Inventor Toshio Arai 841 Fujiki, Toyama City, Toyama Prefecture (56) Reference JP-A-6-227847 (JP, A) JP-A-4-359985 (JP) , A) JP 7-26851 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) E06B 3/62 A61L 2/16 B29D 31/00 C08J 5/10 C08J 7/00 304 C08K 3/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高分子材料からなる基材中に基材材料に
損傷を与えない程度の微弱な光触媒作用を示す半導体粒
子が混在し、その基材表面に露出している前記半導体粒
子の表面に抗菌性金属又は抗菌性金属化合物が析着され
てなることを特徴とする防黴性建築用水密気密材。
1. The semiconductor particles, wherein semiconductor particles exhibiting a weak photocatalytic effect that does not damage the base material are mixed in a base material made of a polymer material and exposed on the surface of the base material.
An antifungal watertight airtight material for construction , comprising an antibacterial metal or an antibacterial metal compound deposited on the surface of a child .
【請求項2】 前記半導体粒子は0.01〜10μmの
粒径を有し、少なくとも1部が基材表面に露出するよう
に高分子材料基材に対して0.5〜100重量%の割合
で混在している請求項に記載の防黴性建築用水密気密
材。
2. The semiconductor particles have a particle size of 0.01 to 10 μm, and a proportion of 0.5 to 100% by weight based on the polymer material base material so that at least a part of the semiconductor particles is exposed on the surface of the base material. The anti-mold water-tight airtight material for construction according to claim 1 , which is mixed in.
【請求項3】 前記半導体粒子は0.1〜1μmの粒径
を有し、少なくとも1部が基材表面に露出するように高
分子材料基材に対して1〜20重量%の割合で混在して
いる請求項に記載の防黴性建築用水密気密材。
3. The semiconductor particles have a particle size of 0.1 to 1 μm, and are mixed in a ratio of 1 to 20% by weight with respect to a polymer material base material so that at least a part of the semiconductor particles is exposed on the surface of the base material. The water-proof and air-tight material for antifungal construction according to claim 2 .
【請求項4】 高分子材料からなる基材材料に損傷を与
えない程度の微弱な光触媒作用を示す半導体粒子が混在
した基材材料を、抗菌性金属イオン又は抗菌性金属化合
物イオンを含む溶液と接触せしめ、紫外線を照射するこ
とにより上記半導体粒子の光触媒作用によって抗菌性金
属イオン又は抗菌性金属化合物イオンを還元し、上記基
材表面に抗菌性金属又は抗菌性金属化合物を析出させる
ことを特徴とする防黴性建築用水密気密材の製造方法。
4. A base material in which semiconductor particles exhibiting a weak photocatalytic action that does not damage the base material made of a polymer material are mixed, and a solution containing an antibacterial metal ion or an antibacterial metal compound ion is used. It is characterized in that the antibacterial metal ion or the antibacterial metal compound ion is reduced by photocatalytic action of the semiconductor particles by contacting and irradiating with ultraviolet rays, and the antibacterial metal or the antibacterial metal compound is deposited on the substrate surface. A method for producing a watertight and airtight material for antifungal construction.
JP02297496A 1996-01-17 1996-01-17 Waterproof and airtight material for mold-proof building and method for producing the same Expired - Fee Related JP3481381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02297496A JP3481381B2 (en) 1996-01-17 1996-01-17 Waterproof and airtight material for mold-proof building and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02297496A JP3481381B2 (en) 1996-01-17 1996-01-17 Waterproof and airtight material for mold-proof building and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09195638A JPH09195638A (en) 1997-07-29
JP3481381B2 true JP3481381B2 (en) 2003-12-22

Family

ID=12097543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02297496A Expired - Fee Related JP3481381B2 (en) 1996-01-17 1996-01-17 Waterproof and airtight material for mold-proof building and method for producing the same

Country Status (1)

Country Link
JP (1) JP3481381B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580192B2 (en) * 2006-10-31 2013-11-12 Ethicon, Inc. Sterilization of polymeric materials

Also Published As

Publication number Publication date
JPH09195638A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
US5753322A (en) Antibacterial, antifungal aluminum building materials and fixtures using the materials
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
EP2235118B1 (en) Method of application of multifunctional photocatalytic and sanitary paints
EP3575263A1 (en) Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
JP3481381B2 (en) Waterproof and airtight material for mold-proof building and method for producing the same
JP2001081409A (en) Anti-fungus coating agent, anti-fungus agent and method for inhibiting nosocomial infection
JPH08302856A (en) Anti-fouling building material and facing building material unit
JP3210544B2 (en) Antibacterial and antifungal aluminum building materials and fittings using the same
JP3210546B2 (en) Antibacterial and antifungal building materials
JP5854590B2 (en) Antibacterial / deodorant treatment agent and antibacterial / deodorant treatment article
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JPH0551629B2 (en)
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
JP3338586B2 (en) Watertight and airtight materials for construction
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same
JP2000143369A (en) Surface-treating agent and antimicrobial pottery product and its production
JP3311570B2 (en) Anti-fouling screen net
JP2001062309A (en) Photocatalyst membrane excellent in soil resistance and building exterior material utilizing the same and building exterior
JPH02133449A (en) Plastic extrudate
JP3523476B2 (en) Manufacturing method of antibacterial and antifungal synthetic resin material
JPH11166332A (en) Operating member for antibacterial construction
JPH11263703A (en) Antimicrobial and antimicrobial resin composition
JP2011126941A (en) Coating liquid forming antimicrobial and deodorizing coating film and substrate with antimicrobial and deodorizing coating film
JP2000204194A (en) Resin molded article containing titanium oxide and production of the resin molded article and resin composition containing titanium oxide
JP2600546B2 (en) Toilet bowl

Legal Events

Date Code Title Description
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees