JP3481346B2 - Method for producing ultra high molecular weight polyethylene porous body - Google Patents

Method for producing ultra high molecular weight polyethylene porous body

Info

Publication number
JP3481346B2
JP3481346B2 JP11714395A JP11714395A JP3481346B2 JP 3481346 B2 JP3481346 B2 JP 3481346B2 JP 11714395 A JP11714395 A JP 11714395A JP 11714395 A JP11714395 A JP 11714395A JP 3481346 B2 JP3481346 B2 JP 3481346B2
Authority
JP
Japan
Prior art keywords
porous body
molecular weight
weight polyethylene
high molecular
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11714395A
Other languages
Japanese (ja)
Other versions
JPH08309828A (en
Inventor
広治 政野
完爾 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP11714395A priority Critical patent/JP3481346B2/en
Publication of JPH08309828A publication Critical patent/JPH08309828A/en
Application granted granted Critical
Publication of JP3481346B2 publication Critical patent/JP3481346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、超高分子量ポリエチレ
ン製多孔質体の製造方法に係り、特に、多数の連続気孔
を有し、透過性及び耐薬品性に優れ、微細な物質のろ過
フィルターや、反応過程または処理過程中の特定関与物
キャリヤー等に使用される、長尺状の多孔質体が効率的
に得られる超高分子量ポリエチレン製多孔質体の製造方
法に関する。 【0002】 【従来技術とその課題】従来、超高分子量ポリエチレン
(以下「UHMWPE」という)を、ブレーカープレー
トが配設されたラム押出機を利用して、多孔質体を連続
的に成形加工することが提案されている。 【0003】即ち、UHMWPEをラム押出機に投入
し、ラム押出機のシリンダー温度をUHMWPEの融点
以上300℃付近以下の温度で加熱処理すると、UHM
WPEがゴム状の粘稠な溶融物となってラム押出機に配
設されているブレーカプレートにある多数のオリフィス
を4〜17kg/cm2 の圧力で通過し、その熱と圧力
によってメルトフラクチャア(成形品の表面に不規則な
凹凸を生ずる現象)を起こしたものや、粒子が高い或い
は低い嵩密度で紐状に連なったものなどのストランド状
分散粒子として押出され、引続きそれらストランド状分
散粒子を成形金型内に通過させて、ストランド状分散粒
子の相互間を融着して多孔質体を形成するものであっ
た。 【0004】しかしながら、上記ラム押出機を利用して
得られたUHMWPE製多孔質体は、押出方向にすじ状
に生ずるストランド模様が成形後の多孔質体の外表面に
発生したり、また、比較的気孔度の低い多孔質体が形成
されるという問題があった。 【0005】即ち、UHMWPEの流動しにくい点を考
慮し、使用するブレーカープレートのオリフィスの孔径
を比較的大きくし、加えて成形金型も高い気孔度の多孔
質体を望む際には、その入り口側と出口側通過断面を略
同じ内通路に設定するので、溶融したストランド状分散
粒子のUHMWPEは、その金型内を流通しても受ける
背圧が低いままの状態で相互に融着し合い、その結果ス
トランド模様を発生したり、逆にそのストランド模様を
打消すために背圧をやや高めると、気孔度の比較的低い
多孔質体になってしまう等の問題があった。 【0006】 【課題を解決するための手段】本発明は上記課題を解決
するものであって、その要旨とするところは、超高分子
量ポリエチレンをラム押出機で押出成形する超高分子量
ポリエチレン製多孔質体の製造方法において、ラム押出
機内の先端部に押出成形品の断面形状に対応する連続状
あるいは非連続状の線状スリットを設けたブレーカープ
レートを配設し、当該線状スリットから、少なくとも一
部が溶融状態となった超高分子量ポリエチレンを主体と
する組成物を、加熱温度150℃〜300℃の範囲で通
過させ、ブレーカープレートに連設し、押出成形品とほ
ぼ同一形状をした成形金型内で部分溶融箇所を相互に融
着して連続多孔質体とすることを特徴とする超高分子量
ポリエチレン製多孔質体の製造方法にある。 【0007】本発明は、ラム押出機を使用し、該押出機
に配設してあるブレーカープレートの押出成形品の断面
形状に対応した特定形状の線状スリットにUHMWPE
を通過させて、粒子状UHMWPEを押出成形品の断面
形状に対応した気孔率の高い連続膨脹体としたのち、こ
れを押出成形品とほぼ同一形状とした成形口金を通過さ
せて、所望の多数の連続気孔を有する多孔質体に賦形す
る、UHMWPE製多孔質体の製造方法である。 【0008】即ち、UHMWPEは線状スリットを通過
後若干膨脹して、該線状スリット幅より大きい肉厚の、
ほぼ所望する最終成形品に対応した形状をした気孔率の
高い連続膨脹体となり、スリット通過後直ちに成形金型
内で、膨脹体の気孔がつぶされない程度の圧力で、所望
する最終成形品の形状に賦形するものである。上記線状
スリットは押出成形品の断面形状とほぼ同一形状の連続
状あるいは非連続状に設けるものであり、スリットの幅
等は押出成形品の断面形状等により適宜きめることがで
きる。 【0009】この際、嵩密度が0.80g/cm3 以下
の均質な多孔質体を得るためには、UHMWPEをある
選択された剪断速度領域、例えば1×101 〜1×10
4 sec−1 でブレーカープレートの線状スリットを通
過させることが好ましい。本発明の製造方法では、従来
技術と異なり、ブレーカープレートには多数のオリフィ
スがないため、オリフィスに起因するストランド模様が
多孔質体表面に発生ぜず、均質で、嵩密度の低い多孔質
体を成形することができる。 【0010】また、上記UHMWPEに、溶融補助剤的
に5重量部〜20重量部の中分子量ポリエチレンや、多
孔質体の気孔度と伸張率の調整剤的に5重量部〜20重
量部の高・中・低密度ポリエチレン、中高分子量ポリエ
チレン等を添加することができる。 【0011】さらには、0.5重量部〜10重量部、好
ましくは1.5重量部〜2.5重量部の導電性付与剤、
0.5重量部〜10重量部、好ましくは5重量部以下の
滑剤、0.003重量部〜0.3重量部、好ましくは
0.01重量部〜0.15重量部の有機過酸化物等を添
加することもできる。 【0012】上記導電性付与剤としては、ケッチェンブ
ラック、チャンネルブラック、ファーネスブラック、サ
ーマルブラック、アセチレンブラックなどの導電性カー
ボンブラックや金属粉、金属酸化物等であり、上記滑剤
としては、モンタン酸エステル系のワックス、脂肪酸誘
導体のワックス等であり、そして上記有機過酸化物とし
ては、2,5−ジメチル−2,5−(t−ブチルパーオ
キシ)ヘキサン、ジクミルパーオキサイド等が使用でき
る。以下、本発明を実施例により説明する。 【0013】 【実施例】 実施例1 粘度平均分子量600×104 、平均粒径187μm、
嵩比重0.377であって、200℃における弾性率が
4.15×107 dyne/cm2 のUHMWPEを、
円筒状の成形金型を付設したラム押出機を用い、下記押
出条件で、ブレーカープレートの線状スリットにおける
剪断速度を4.1×103 sec−1(線状スリットの
形状=外径56.7mm、内径56.3mm、スリット
幅0.2mm)に設定し、外径60mm、内径53m
m、肉厚3.5mmのパイプ状多孔質体を押出成形し
た。 【0014】*押出条件 押出量……14kg/hr 温度……チャンバー:170℃、シリンダー:240
℃、 成形金型:190℃ 実施例2 粘度平均分子量330×104 、平均粒径335μm、
嵩比重0.458であって、200℃における弾性率が
3.50×107 dyne/cm2 のUHMWPEを、
上記実施例1と同様のラム押出機及び押出条件で、ブレ
ーカープレートの線状スリットにおける剪断速度を4.
1×103 sec−1 (線状スリットの形状=外径5
6.7mm、内径56.3mm、スリット幅0.2m
m)に設定し、外径60mm、内径53mm、肉厚3.
5mmのパイプ状多孔質体を押出成形した。 【0015】実施例3 粘度平均分子量330×104 、平均粒径160μm、
嵩比重0.449であって、200℃における弾性率が
3.75×107 dyne/cm2 のUHMWPEを、
上記実施例1と同様のラム押出機及び押出条件で、ブレ
ーカープレートの線状スリットにおける剪断速度を4.
1×103 sec−1 (線状スリットの形状=外径5
6.7mm、内径56.3mm、スリット幅0.2m
m)に設定し、外径60mm、内径53mm、肉厚3.
5mmのパイプ状多孔質体を押出成形した。 【0016】実施例4 粘度平均分子量600×104 、平均粒径187μm、
嵩比重0.377であって、200℃における弾性率が
4.15×107 dyne/cm2 のUHMWPEを、
上記実施例1と同様のラム押出機及び押出条件で、ブレ
ーカープレートの線状スリットにおける剪断速度を3.
6×101 sec−1 (線状スリットの形状=外径5
8.5mm、内径54.5mm、スリット幅2.0m
m)に設定し、外径60mm、内径53mm、肉厚3.
5mmのパイプ状多孔質体を押出成形した。 【0017】実施例5 粘度平均分子量330×104 、平均粒径335μm、
嵩比重0.458であって、200℃における弾性率が
3.50×107 dyne/cm2 のUHMWPEを、
上記実施例1と同様のラム押出機及び押出条件で、ブレ
ーカープレートの線状スリットにおける剪断速度を3.
6×101 sec−1 (線状スリットの形状=外径5
8.5mm、内径54.5mm、スリット幅2.0m
m)に設定し、外径60mm、内径53mm、肉厚3.
5mmのパイプ状多孔質体を押出成形した。 【0018】実施例6 粘度平均分子量330×104 、平均粒径160μm、
嵩比重0.449であって、200℃における弾性率が
3.75×107 dyne/cm2 のUHMWPEを、
上記実施例1と同様のラム押出機及び押出条件で、ブレ
ーカープレートの線状スリットにおける剪断速度を3.
6×101 sec−1 (線状スリットの形状=外径5
8.5mm、内径54.5mm、スリット幅2.0m
m)に設定し、外径60mm、内径53mm、肉厚3.
5mmのパイプ状多孔質体を押出成形した。 【0019】比較例1 粘度平均分子量330×104 、平均粒径160μm、
嵩比重0.449であって、200℃における弾性率が
3.75×107 dyne/cm2 のUHMWPEを、
上記実施例1と同様の押出条件で、線状スリットに代え
て複数のオリフィスを設けたブレーカープレートを用
い、剪断速度を4.0×102 sec−1(オリフィス
…1.0mmφ×5.0mmL、孔個数:72)に設定
し、上記実施例と同一サイズのパイプ状多孔質体を押出
成形した。 【0020】上記実施例1〜6及び比較例1で得られた
多孔質体について測定した嵩比重を表1に表した。 【0021】 【表1】【0022】表1から実施例1乃至6により得られた多
孔質体は、いずれも低い嵩比重であって所期の目的を達
成しており、また外表面にはストランド模様等が見られ
ず外観良好であった。これに対して比較例1により得ら
れた多孔質体は、嵩比重が高く、またストランド模様が
発生した。 【0023】 【発明の効果】本発明は上記構成よりなるので下記の効
果を発揮することができる。即ち本発明により、UHM
WPEをブレーカープレートの線状スリットに通過させ
ることにより、より嵩密度の低い連続気孔を具えた多孔
質体を得ることができると共に、気孔空隙率が大きく均
質で、多孔質体表面にストランド模様のない所望のUH
MWPE製多孔質体を連続かつ短時間に容易に成形する
ことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous body made of ultra-high molecular weight polyethylene, and more particularly to a method for producing a porous body having a large number of continuous pores and having a high permeability and chemical resistance. Ultra-high-molecular-weight polyethylene porous material that can efficiently obtain a long porous material that is used as a filter for fine substances and a carrier for specific substances involved in the reaction or treatment process, etc. And a method for producing the same. [0002] Conventionally, a porous body is continuously formed from ultra-high molecular weight polyethylene (hereinafter referred to as "UHMWPE") using a ram extruder provided with a breaker plate. It has been proposed. That is, when UHMWPE is charged into a ram extruder and the cylinder temperature of the ram extruder is heat-treated at a temperature not lower than the melting point of UHMWPE and not higher than 300 ° C., UHM
The WPE passes as a rubbery viscous melt through a number of orifices in a breaker plate provided in the ram extruder at a pressure of 4 to 17 kg / cm 2 , and the heat and pressure cause the melt fracture to occur. (Phenomenon causing irregular irregularities on the surface of the molded article), or the particles are extruded as strand-like dispersed particles such as those in which the particles are connected in a string form with a high or low bulk density, and subsequently the strand-like dispersed particles are extruded. Was passed through a molding die to fuse the strand-like dispersed particles to each other to form a porous body. However, in the porous body made of UHMWPE obtained by using the above-described ram extruder, a strand pattern generated in the extrusion direction in the form of a stripe appears on the outer surface of the formed porous body. There is a problem that a porous body having a low porosity is formed. In other words, considering that UHMWPE is difficult to flow, the hole diameter of the orifice of the breaker plate to be used is relatively large, and in addition, when a porous body having a high porosity is desired for the molding die, the entrance of the porous body is required. The UHMWPE of the molten strand-like dispersed particles fuses with each other in a state in which the back pressure received is low even when flowing through the mold, since the passage cross sections of the side and the outlet side are set to be substantially the same inner passage. However, as a result, if a back pressure is slightly increased to generate a strand pattern or conversely cancel the strand pattern, a porous body having a relatively low porosity results. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the gist of the present invention is to provide an ultra-high molecular weight polyethylene porous material which is formed by extruding ultra-high molecular weight polyethylene with a ram extruder. In the method for producing a solid body, a breaker plate provided with a continuous or discontinuous linear slit corresponding to the cross-sectional shape of the extruded product is provided at a tip portion in a ram extruder, and at least from the linear slit, A composition mainly composed of ultra-high molecular weight polyethylene partially melted is passed at a heating temperature of 150 ° C. to 300 ° C., connected to a breaker plate, and formed into almost the same shape as an extruded product. A method for producing a porous body made of ultra-high molecular weight polyethylene, characterized in that partial melting points are mutually fused in a mold to form a continuous porous body. According to the present invention, a ram extruder is used, and a UHMWPE is formed in a linear slit having a specific shape corresponding to the cross-sectional shape of an extruded product of a breaker plate provided in the extruder.
To make the particulate UHMWPE into a continuous expanded body having a high porosity corresponding to the cross-sectional shape of the extruded product. This is a method for producing a porous body made of UHMWPE, in which the porous body having continuous pores is formed. That is, UHMWPE slightly expands after passing through the linear slit, and has a thickness larger than the width of the linear slit.
It becomes a continuous expanded body with a high porosity almost in the shape corresponding to the desired final molded article, and immediately after passing through the slit, in the molding die, at a pressure such that the pores of the expanded body are not crushed, the shape of the desired final molded article It is shaped. The linear slits are provided in a continuous or discontinuous shape having substantially the same shape as the cross-sectional shape of the extruded product, and the width and the like of the slit can be appropriately determined according to the cross-sectional shape of the extruded product. At this time, in order to obtain a homogeneous porous body having a bulk density of 0.80 g / cm 3 or less, UHMWPE must be treated in a selected shear rate region, for example, 1 × 10 1 to 1 × 10 3.
It is preferable to pass through the linear slit of the breaker plate at 4 sec -1 . In the production method of the present invention, unlike the prior art, since the breaker plate does not have a large number of orifices, a strand pattern caused by the orifice does not occur on the surface of the porous body, and a uniform porous body having a low bulk density is produced. Can be molded. [0010] The above UHMWPE may be added with 5 to 20 parts by weight of a medium molecular weight polyethylene as a melting aid, or with 5 to 20 parts by weight as a modifier of porosity and elongation of a porous body. -Medium / low density polyethylene, medium high molecular weight polyethylene, etc. can be added. Furthermore, 0.5 to 10 parts by weight, preferably 1.5 to 2.5 parts by weight of a conductivity-imparting agent,
0.5 to 10 parts by weight, preferably 5 parts by weight or less of a lubricant, 0.003 to 0.3 parts by weight, preferably 0.01 to 0.15 parts by weight of an organic peroxide and the like Can also be added. Examples of the conductivity-imparting agent include conductive carbon black such as Ketjen black, channel black, furnace black, thermal black, and acetylene black, metal powders, metal oxides, and the like. Examples of the organic peroxide include 2,5-dimethyl-2,5- (t-butylperoxy) hexane and dicumyl peroxide. Hereinafter, the present invention will be described with reference to examples. EXAMPLES Example 1 Viscosity average molecular weight 600 × 10 4 , average particle size 187 μm,
UHMWPE having a bulk specific gravity of 0.377 and an elastic modulus at 200 ° C. of 4.15 × 10 7 dyne / cm 2
Using a ram extruder equipped with a cylindrical molding die, the shear rate at the linear slit of the breaker plate was set to 4.1 × 10 3 sec −1 (the shape of the linear slit = outer diameter of 56. 7 mm, inner diameter 56.3 mm, slit width 0.2 mm), outer diameter 60 mm, inner diameter 53 m
A pipe-shaped porous body having a thickness of 3.5 mm and a thickness of 3.5 mm was extruded. * Extrusion conditions Extrusion amount: 14 kg / hr Temperature: chamber: 170 ° C., cylinder: 240
° C, Mold: 190 ° C Example 2 Viscosity average molecular weight 330 × 10 4 , average particle size 335 μm,
UHMWPE having a bulk specific gravity of 0.458 and an elastic modulus at 200 ° C. of 3.50 × 10 7 dyne / cm 2
3. Using the same ram extruder and extrusion conditions as in Example 1 above, set the shear rate at the linear slit of the breaker plate to 4.
1 × 10 3 sec −1 (shape of linear slit = outer diameter 5
6.7mm, inner diameter 56.3mm, slit width 0.2m
m), outer diameter 60 mm, inner diameter 53 mm, wall thickness 3.
A 5 mm pipe-shaped porous body was extruded. Example 3 A viscosity average molecular weight of 330 × 10 4 , an average particle diameter of 160 μm,
UHMWPE having a bulk specific gravity of 0.449 and an elastic modulus at 200 ° C. of 3.75 × 10 7 dyne / cm 2 ,
3. Using the same ram extruder and extrusion conditions as in Example 1 above, set the shear rate at the linear slit of the breaker plate to 4.
1 × 10 3 sec −1 (shape of linear slit = outer diameter 5
6.7mm, inner diameter 56.3mm, slit width 0.2m
m), outer diameter 60 mm, inner diameter 53 mm, wall thickness 3.
A 5 mm pipe-shaped porous body was extruded. Example 4 A viscosity average molecular weight of 600 × 10 4 , an average particle size of 187 μm,
UHMWPE having a bulk specific gravity of 0.377 and an elastic modulus at 200 ° C. of 4.15 × 10 7 dyne / cm 2
Using the same ram extruder and extrusion conditions as in Example 1, the shear rate at the linear slit of the breaker plate was set to 3.
6 × 10 1 sec −1 (shape of linear slit = outer diameter 5
8.5mm, inner diameter 54.5mm, slit width 2.0m
m), outer diameter 60 mm, inner diameter 53 mm, wall thickness 3.
A 5 mm pipe-shaped porous body was extruded. Example 5 A viscosity average molecular weight of 330 × 10 4 , an average particle size of 335 μm,
UHMWPE having a bulk specific gravity of 0.458 and an elastic modulus at 200 ° C. of 3.50 × 10 7 dyne / cm 2
Using the same ram extruder and extrusion conditions as in Example 1, the shear rate at the linear slit of the breaker plate was set to 3.
6 × 10 1 sec −1 (shape of linear slit = outer diameter 5
8.5mm, inner diameter 54.5mm, slit width 2.0m
m), outer diameter 60 mm, inner diameter 53 mm, wall thickness 3.
A 5 mm pipe-shaped porous body was extruded. Example 6 A viscosity average molecular weight of 330 × 10 4 , an average particle diameter of 160 μm,
UHMWPE having a bulk specific gravity of 0.449 and an elastic modulus at 200 ° C. of 3.75 × 10 7 dyne / cm 2 ,
Using the same ram extruder and extrusion conditions as in Example 1, the shear rate at the linear slit of the breaker plate was set to 3.
6 × 10 1 sec −1 (shape of linear slit = outer diameter 5
8.5mm, inner diameter 54.5mm, slit width 2.0m
m), outer diameter 60 mm, inner diameter 53 mm, wall thickness 3.
A 5 mm pipe-shaped porous body was extruded. Comparative Example 1 A viscosity average molecular weight of 330 × 10 4 , an average particle diameter of 160 μm,
UHMWPE having a bulk specific gravity of 0.449 and an elastic modulus at 200 ° C. of 3.75 × 10 7 dyne / cm 2 ,
Under the same extrusion conditions as in Example 1, a breaker plate provided with a plurality of orifices instead of the linear slits was used, and the shear rate was 4.0 × 10 2 sec −1 (orifice... 1.0 mmφ × 5.0 mmL). , Number of holes: 72), and a pipe-shaped porous body having the same size as in the above example was extruded. Table 1 shows the bulk specific gravity measured for the porous bodies obtained in Examples 1 to 6 and Comparative Example 1. [Table 1] From Table 1, all of the porous bodies obtained in Examples 1 to 6 have low bulk specific gravities and achieve the intended purpose, and have no strand pattern on the outer surface. The appearance was good. On the other hand, the porous body obtained in Comparative Example 1 had a high bulk specific gravity and generated a strand pattern. The present invention has the above-mentioned structure, and can exhibit the following effects. That is, according to the present invention, UHM
By passing WPE through the linear slits of the breaker plate, it is possible to obtain a porous body having continuous pores having a lower bulk density, and a large and uniform porosity, and a strand pattern on the porous body surface. Not the desired UH
The MWPE porous body can be easily and continuously formed in a short time.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 47/00 - 47/96 C08J 9/00 - 9/42 B29C 44/00 - 44/60 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B29C 47/00-47/96 C08J 9/00-9/42 B29C 44/00-44/60

Claims (1)

(57)【特許請求の範囲】 【請求項1】 超高分子量ポリエチレンをラム押出機で
押出成形する超高分子量ポリエチレン製多孔質体の製造
方法において、ラム押出機内の先端部に押出成形品の断
面形状に対応する連続状あるいは非連続状の線状スリッ
トを設けたブレーカープレートを配設し、当該線状スリ
ットから、少なくとも一部が溶融状態となった超高分子
量ポリエチレンを主体とする組成物を、加熱温度150
℃〜300℃の範囲で通過させ、ブレーカープレートに
連設し、押出成形品とほぼ同一形状をした成形金型内で
部分溶融箇所を相互に融着して連続多孔質体とすること
を特徴とする超高分子量ポリエチレン製多孔質体の製造
方法。
(57) [Claim 1] In a method for producing a porous body made of ultra-high molecular weight polyethylene by extruding ultra-high molecular weight polyethylene with a ram extruder, an extruded product is formed at the tip of the ram extruder. Arrange a breaker plate provided with a continuous or discontinuous linear slit corresponding to the cross-sectional shape, from the linear slit, at least a part of a composition mainly composed of ultra-high molecular weight polyethylene in a molten state At a heating temperature of 150
Passed in the range of ℃ ~ 300 ℃, connected continuously to the breaker plate, in a molding die almost the same shape as the extruded product, partially fused parts are mutually fused to form a continuous porous body A method for producing a porous body made of ultra-high molecular weight polyethylene.
JP11714395A 1995-05-16 1995-05-16 Method for producing ultra high molecular weight polyethylene porous body Expired - Lifetime JP3481346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11714395A JP3481346B2 (en) 1995-05-16 1995-05-16 Method for producing ultra high molecular weight polyethylene porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11714395A JP3481346B2 (en) 1995-05-16 1995-05-16 Method for producing ultra high molecular weight polyethylene porous body

Publications (2)

Publication Number Publication Date
JPH08309828A JPH08309828A (en) 1996-11-26
JP3481346B2 true JP3481346B2 (en) 2003-12-22

Family

ID=14704529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11714395A Expired - Lifetime JP3481346B2 (en) 1995-05-16 1995-05-16 Method for producing ultra high molecular weight polyethylene porous body

Country Status (1)

Country Link
JP (1) JP3481346B2 (en)

Also Published As

Publication number Publication date
JPH08309828A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
JP4547471B2 (en) Sintered porous plastic product and method for producing the same
EP0911142B1 (en) Use of a polyamide 12 for selective laser sintering and polyamide 12 powder
US4302413A (en) Process for preparing extrudable polyimide granules
US4331619A (en) Ethylene-chlorotrifluoroethylene copolymer foam
JPH035349A (en) Preparation of material and material made by said preparation
NL8105582A (en) COMPRESSING USING ROLLERS FROM POLYMER POWDERS TO COMPLETELY DENSE PRODUCTS.
KR960704969A (en) A compatibilized carbon black and a process and a method for using
JPH0546852B2 (en)
DE102004004237A1 (en) Process for the production of microporous plastic products and the plastic products obtainable by this process and a plastic starting material
JP2001510103A (en) Extrusion of polymer
JPH0125769B2 (en)
JP3481346B2 (en) Method for producing ultra high molecular weight polyethylene porous body
JP3483331B2 (en) Method for producing porous body made of ultra-high molecular weight polyethylene
EP0951502B1 (en) Porous moulded bodies of thermoplastic polymers
JP3282209B2 (en) Manufacturing method of porous polytetrafluoroethylene molded body
JPS61197641A (en) Manufacture of electroconductive bridged polyolefin foam
DE69307953T2 (en) Pre-expanded particles from LLDPE
JPS6254651B2 (en)
JPH0929813A (en) Manufacture of ultra-high-molecular-weight polyethylene porous material
EP0272606B1 (en) Process for the extrusion for ultra-high molecular-weight polyethylene
JPH093236A (en) Porous article of ultrahigh molecular weight polyethylene
KR101672004B1 (en) Manufacturing method of PTFE separation membranes
JP2002137276A (en) Method for manufacturing profile porous body made of ultrahigh molecular weight polyethylene
EP0124958A1 (en) Process for preparing a styrenic polymer foam
JP3302806B2 (en) Foam molding material and method for producing foam molding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term