JP3480504B2 - Thermoplastic composite material for molding - Google Patents

Thermoplastic composite material for molding

Info

Publication number
JP3480504B2
JP3480504B2 JP31695093A JP31695093A JP3480504B2 JP 3480504 B2 JP3480504 B2 JP 3480504B2 JP 31695093 A JP31695093 A JP 31695093A JP 31695093 A JP31695093 A JP 31695093A JP 3480504 B2 JP3480504 B2 JP 3480504B2
Authority
JP
Japan
Prior art keywords
fiber
fiber bundle
length
molding
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31695093A
Other languages
Japanese (ja)
Other versions
JPH07164438A (en
Inventor
武 土井田
俊明 北洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP31695093A priority Critical patent/JP3480504B2/en
Publication of JPH07164438A publication Critical patent/JPH07164438A/en
Application granted granted Critical
Publication of JP3480504B2 publication Critical patent/JP3480504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特に優れた耐破壊靭性を
有する成形用熱可塑性樹脂複合材料を提供することに関
する。
FIELD OF THE INVENTION The present invention relates to a thermoplastic resin composite material for molding which has particularly excellent fracture toughness.

【0002】[0002]

【従来の技術】従来の繊維強化樹脂複合材料は特に熱硬
化性樹脂複合材料においては層間強度が低く例えばモー
ドI方式の破壊試験で得られるGIC のような破壊靭性
値が低く成形品としての耐久性、耐衝撃性など満足でき
るものではない。これに対して熱可塑性樹脂をマトリッ
クスとする繊維強化樹脂複合材料が種々開発されてい
る。これら複合材料ではそのマトリックスの有する高破
壊靭性により大幅に破壊靭性値が向上している。
2. Description of the Related Art Conventional fiber-reinforced resin composite materials have low interlaminar strength, especially in thermosetting resin composite materials, and have low fracture toughness values such as GIC obtained in a Mode I fracture test and durability as molded articles. The durability and impact resistance are not satisfactory. On the other hand, various fiber-reinforced resin composite materials using a thermoplastic resin as a matrix have been developed. In these composite materials, the fracture toughness value is greatly improved due to the high fracture toughness of the matrix.

【0003】[0003]

【発明が解決しようとする課題】しかしながら熱可塑性
樹脂をマトリックスとして用いる際においても例えば予
め強化繊維間へ樹脂を含浸させたプリプレグテープ状の
ものを積層して成形した場合においては層間が明瞭に現
れ、層間破壊が生じ易く必ずしも高い破壊靭性値が得ら
れていない。
However, when the thermoplastic resin is used as the matrix, for example, when the prepreg tape-like material in which the resin is impregnated in advance between the reinforcing fibers is laminated and molded, the layers appear clearly. However, interlaminar fracture easily occurs and a high fracture toughness value is not always obtained.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、強化繊維が一方向に配向され、熱可
塑性樹脂をマトリックスとして含浸されてなり、強化繊
維に垂直方向の断面内水平線上に存在する繊維束連続境
界長さ/繊維束平均長軸長さ比の平均が2.5以下であ
り、且つ繊維束の短軸/長軸長さ比が0.1以上である
ことを特徴とする成形用繊維強化熱可塑性樹脂複合材料
からなる。また、強化繊維長が30から400mmを有
する成形用繊維強化熱可塑性樹脂複合材料からなる。
The constitution of the present invention for solving the above-mentioned problems is such that the reinforcing fibers are oriented in one direction and impregnated with a thermoplastic resin as a matrix, and the reinforcing fibers have a cross-section in the direction perpendicular to the direction. The average of the continuous fiber bundle boundary length / fiber bundle average major axis length ratio existing on the horizontal line is 2.5 or less, and the minor axis / major axis length ratio of the fiber bundle is 0.1 or more. And a fiber-reinforced thermoplastic resin composite material for molding. It also comprises a molding fiber-reinforced thermoplastic resin composite material having a reinforcing fiber length of 30 to 400 mm.

【0005】本発明で用いる熱可塑性樹脂としては、ナ
イロン6、ナイロン6.6等のポリアミド樹脂、ポリエ
チレンテレフタレート、ポリブチレンテレフタレート等
のポリエステル樹脂、ポリプロピレン、ポリエチレン等
のポリオレフィン樹脂、また、ポリカーボネート、ポリ
エーテルイミド、ポリフェニレンスルフィド、ポリエー
テルケトン、等が挙げられるが、これらに限定されるも
のではない。また、強化繊維はガラス繊維、炭素繊維、
アラミド繊維等の有機、無機繊維が挙げられるがこれら
に限定されるものではない。
Examples of the thermoplastic resin used in the present invention include polyamide resins such as nylon 6 and nylon 6.6, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polypropylene and polyethylene, and polycarbonate and polyether. Examples thereof include, but are not limited to, imide, polyphenylene sulfide, and polyether ketone. The reinforcing fibers are glass fiber, carbon fiber,
Examples thereof include organic and inorganic fibers such as aramid fiber, but are not limited thereto.

【0006】強化繊維は一方向に配向し且つ繊維束を形
成し、その繊維束が短軸/長軸長さ比平均が0.1以上
を有し且つ、強化繊維に垂直方向の断面内水平線上に存
在する繊維束連続境界長さ/繊維束平均長軸長さとの平
均比が2.5以下であるように配置されてなることを特
徴とする。このように強化繊維を配置することにより例
えばモードIによる破壊靭性値GIC の評価を行った場
合クラックの進行が生じ難く高い破壊靭性値を得ること
ができる。繊維束の短軸/長軸の平均比が0.1より小
さい場合では繊維束境界領域が大きくなり破壊が生じ易
くなり好ましくない。
The reinforcing fibers are oriented in one direction and form a fiber bundle, and the fiber bundle has a minor axis / major axis length ratio average of 0.1 or more and is horizontal in a cross section in a direction perpendicular to the reinforcing fibers. It is characterized in that they are arranged so that the average ratio of the continuous boundary length of fiber bundles present on the line / the average major axis length of fiber bundles is 2.5 or less. By arranging the reinforcing fibers in this way, for example, when the fracture toughness value GIC according to mode I is evaluated, it is possible to obtain a high fracture toughness value in which the progress of cracks hardly occurs. If the average ratio of the minor axis / major axis of the fiber bundle is smaller than 0.1, the boundary region of the fiber bundle becomes large and breakage easily occurs, which is not preferable.

【0007】また、強化繊維に垂直方向の断面内水平線
上に存在する繊維束連続境界長さ/繊維束平均長軸の比
が2.5より大きい場合ではクラックの進行が生じ易く
なり破壊靭性値が低下するため好ましくない。強化繊維
の平均繊維長は30〜400mmが好ましい。30mm
より短い場合では強化効率が低下し良好な機械特性が得
られないため好ましくない。また、400mmより長い
場合では成形時の金型賦形が難しく好ましくない。
Further, when the ratio of the continuous boundary length of fiber bundles / the average major axis of fiber bundles present on the horizontal line in the cross section in the direction perpendicular to the reinforcing fibers is larger than 2.5, the progress of cracks easily occurs and the fracture toughness value is increased. Is decreased, which is not preferable. The average fiber length of the reinforcing fibers is preferably 30 to 400 mm. 30 mm
If the length is shorter, the strengthening efficiency decreases and good mechanical properties cannot be obtained, which is not preferable. Further, if it is longer than 400 mm, it is difficult to shape the mold during molding, which is not preferable.

【0008】尚、本発明における強化繊維への樹脂の含
浸被覆方法および成形体を得る方法は、例えば強化繊維
間へ熱可塑性樹脂パウダーを担持させた後、加熱圧縮成
形する方法、強化繊維間へ熱可塑性樹脂パウダーを担持
させた後、更にその上に熱可塑性樹脂を被覆し加熱圧縮
成形する方法、また強化繊維とマトリックス繊維とを混
繊した後、加熱圧縮成形する方法などを用いることがで
きる。なかでも混繊法は含浸特性にすぐれ更に好ましく
は牽切紡績を用いた混繊法を利用することが望ましい。
The method of impregnating and coating the reinforcing fibers with the resin and the method of obtaining a molded article are, for example, a method in which a thermoplastic resin powder is supported between the reinforcing fibers and then heat compression molding is performed, and between the reinforcing fibers. It is possible to use a method in which a thermoplastic resin powder is supported, and then a thermoplastic resin is further coated thereon and heated and compression molded, or a method in which reinforcing fibers and matrix fibers are mixed and then heated and compression molded. . Among them, the mixed fiber method has excellent impregnation characteristics, and more preferably, it is desirable to use the mixed fiber method using the draft spinning.

【0009】[0009]

【実施例】以下に本発明を実施例により説明するが本発
明はこれらに何ら限定されるものではない。 実施例1 ナイロン6繊維と炭素繊維を引き揃えて牽切紡績しナイ
ロン6繊維と炭素繊維が混繊され実質的に無撚の状態と
し更にそのヤーンの表面をヤーン全重量の5%に相当す
るナイロン6繊維で捲回・被覆しトータルのヤーンデニ
ールが5800で炭素繊維体積含有率50%、平均繊維
長75mmの混繊糸を得た。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. Example 1 Nylon 6 fibers and carbon fibers are aligned and drawn and spun to make the nylon 6 fibers and carbon fibers mixed and substantially untwisted, and the surface of the yarn corresponds to 5% of the total weight of the yarn. Wound and coated with nylon 6 fiber to obtain a mixed yarn having a total yarn denier of 5800, a carbon fiber volume content of 50%, and an average fiber length of 75 mm.

【0010】上記のようにして得た混繊糸を金属枠に所
定量張力を付与しつつ巻回する。その後ヒートプレスに
設置した250mmの正方形の嵌合金型(凹側の一対は
開口)内に供給し一方向強化平板の熱圧縮成形を行っ
た。成形品に予備クラックを設けるために予め厚み10
μm、長さ50mmのテフロンフィルムを端部の一方に
厚み中央へ挿入しておく。金型温度および付与した圧力
は260℃、10kg/cm2 であり厚み3mm、25
0mmの正方形の平板を得た。その結果繊維束の短軸と
長軸との長さ比の平均が0.35を有し、断面内水平線
上に存在する連続繊維束境界長さ/繊維束平均長軸の比
の平均が0.56である成形板を得た。これらの比の測
定・算出は以下のようにして行った。上述のように加熱
圧縮成形して得られた成形品を幅10mm、長さ20m
mに長手方向を繊維配向方向に平行にして切り出し、エ
ポキシ樹脂中に強化繊維方向を上下方向にして包埋後、
0.3μmのアルミナパウダーを含むペーストと研磨用
バフとを用いて成形品断面の研磨を行い鏡面状態に仕上
げた。このサンプルを反射型の光学顕微鏡にて観察に用
い、更に光学顕微鏡像を画像処理装置に取り込むことに
より成形品断面の像を画像処理することにより繊維束の
短軸、長軸長さをまた、断面内水平線上に存在する連続
繊維束境界長さを計測した。得られた値に基づいて繊維
束の短軸/長軸の比をまた、繊維束連続境界長さ/繊維
束平均長軸の比を計算した。
The mixed fiber obtained as described above is wound around a metal frame while applying a predetermined amount of tension. Then, it was supplied into a 250 mm square fitting mold (a pair of concave side is an opening) installed in a heat press to perform heat compression molding of a unidirectionally strengthened flat plate. In order to provide a preliminary crack on the molded product, a thickness of 10
A Teflon film having a length of μm and a length of 50 mm is inserted into one of the ends at the center of the thickness. The mold temperature and applied pressure are 260 ° C., 10 kg / cm 2 and thickness 3 mm, 25
A 0 mm square flat plate was obtained. As a result, the average of the length ratios of the short axis and the long axis of the fiber bundle was 0.35, and the average of the ratio of continuous fiber bundle boundary length / fiber bundle average long axis existing on the horizontal line in the cross section was 0. A molded plate of 0.56 was obtained. The measurement and calculation of these ratios were performed as follows. A molded product obtained by heat compression molding as described above has a width of 10 mm and a length of 20 m.
After cutting out with the longitudinal direction parallel to the fiber orientation direction in m, and embedding the reinforcing fiber direction in the epoxy resin in the vertical direction,
Using a paste containing 0.3 μm alumina powder and a polishing buff, the cross section of the molded product was polished to a mirror-finished state. This sample was used for observation with a reflection type optical microscope, and the minor axis and major axis length of the fiber bundle were also corrected by image-processing the image of the cross section of the molded product by further incorporating the optical microscope image into the image processing device. The continuous fiber bundle boundary length existing on the horizontal line in the cross section was measured. Based on the values obtained, the ratio of the minor axis / major axis of the fiber bundle and the ratio of the continuous boundary length of the fiber bundle / the average major axis of the fiber bundle were calculated.

【0011】上述のようにして得た一方向強化平板より
強化繊維に長手方向を平行に幅25mm、長さ155m
mに切り出した。このサンプルを用いてモードI方式の
破壊靭性評価法を用いてGIc を測定した。その結果を
表1に掲げた。層間での破壊は極めて少なく、繊維束内
での破壊が多く認められ高いGIc 値を示している。
From the unidirectional reinforcing flat plate obtained as described above, the longitudinal direction is parallel to the reinforcing fibers, the width is 25 mm and the length is 155 m.
Cut out to m. Using this sample, GIc was measured by the fracture toughness evaluation method of Mode I method. The results are listed in Table 1. Fracture between layers was extremely small, and many fractures were observed within the fiber bundle, showing a high GIc value.

【0012】比較例1 フィラメント数12Kの炭素繊維を3本用いナイロン6
樹脂を直接含浸法にて繊維間へ含浸させテープ状にした
後、実施例1と同様の方法にてGIc 測定用の一方向強
化成形品を得た。この際得られた成形品の強化繊維に対
して垂直方向の断面内の強化繊維束の短軸長さ/長軸長
さの比は0.05であった。また、同断面内水平線上に
存在する繊維束連続境界長さ/繊維束平均長軸長さとの
比は3.7であった。この成形品を用いてGIc の測定
を行った。その結果を表1に掲げた。繊維束間の層間が
明確に現れ測定後、層間で破壊していることが明確に認
められた。
Comparative Example 1 Nylon 6 using 3 carbon fibers having a filament number of 12K
A resin was directly impregnated between the fibers to form a tape, and then a unidirectionally reinforced molded article for GIc measurement was obtained in the same manner as in Example 1. In this case, the ratio of the minor axis length / the major axis length of the reinforcing fiber bundle in the cross section in the direction perpendicular to the reinforcing fibers of the obtained molded product was 0.05. The ratio of the continuous boundary length of the fiber bundle / the average major axis length of the fiber bundle existing on the horizontal line in the same section was 3.7. GIc was measured using this molded product. The results are listed in Table 1. The layers between the fiber bundles clearly appeared, and after the measurement, it was clearly recognized that the layers were broken.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】以上のように強化繊維を配置することに
より得られる本発明の成形用熱可塑性樹脂繊維強化複合
材料を成形に供することにより、高い破壊靭性値を有す
る成形品を得ることができる。
EFFECTS OF THE INVENTION By subjecting the thermoplastic resin fiber-reinforced composite material for molding of the present invention obtained by arranging reinforcing fibers as described above to molding, a molded article having a high fracture toughness value can be obtained. .

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強化繊維が一方向に配向され、熱可塑性
樹脂をマトリックスとして含浸されてなり、強化繊維に
垂直方向の断面内水平線上に存在する繊維束連続境界長
さ/繊維束平均長軸長さ比の平均が2.5以下であり、
且つ繊維束の短軸/長軸長さ比が0.1以上であること
を特徴とする成形用繊維強化熱可塑性樹脂複合材料。
1. A fiber bundle continuous boundary length / fiber bundle average major axis which is obtained by orienting reinforced fibers in one direction and impregnated with a thermoplastic resin as a matrix, and is present on a horizontal line in a cross section in a direction perpendicular to the reinforced fibers. The average length ratio is 2.5 or less,
A fiber-reinforced thermoplastic resin composite material for molding, characterized in that the fiber bundle has a minor axis / major axis length ratio of 0.1 or more.
【請求項2】 強化繊維の平均長が30〜400mmを
有することを特徴とする請求項1記載の成形用繊維強化
熱可塑性樹脂複合材料。
2. The fiber-reinforced thermoplastic resin composite material for molding according to claim 1, wherein the reinforcing fibers have an average length of 30 to 400 mm.
JP31695093A 1993-12-16 1993-12-16 Thermoplastic composite material for molding Expired - Fee Related JP3480504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31695093A JP3480504B2 (en) 1993-12-16 1993-12-16 Thermoplastic composite material for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31695093A JP3480504B2 (en) 1993-12-16 1993-12-16 Thermoplastic composite material for molding

Publications (2)

Publication Number Publication Date
JPH07164438A JPH07164438A (en) 1995-06-27
JP3480504B2 true JP3480504B2 (en) 2003-12-22

Family

ID=18082746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31695093A Expired - Fee Related JP3480504B2 (en) 1993-12-16 1993-12-16 Thermoplastic composite material for molding

Country Status (1)

Country Link
JP (1) JP3480504B2 (en)

Also Published As

Publication number Publication date
JPH07164438A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
DK168732B1 (en) Fiber-reinforced thermoplastic material and process for its manufacture
Park et al. Element and processing
US4799985A (en) Method of forming composite fiber blends and molding same
US20040067364A1 (en) Carbon nanofiber-dispersed resin fiber-reinforced composite material
JPH05247761A (en) Hybrid yarn comprising polyamide filaments and reinforcing filaments
EP0226420A2 (en) Flexible composite material and process for preparing same
Ladizesky et al. Ultra-high-modulus polyethylene fibre composites: I—The preparation and properties of conventional epoxy resin composites
EP2799470A1 (en) Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material
JP6895682B2 (en) Manufacturing method of unidirectional prepreg, fiber reinforced thermoplastic resin sheet, unidirectional prepreg and fiber reinforced thermoplastic resin sheet, and molded article
CA1323488C (en) Non-shrinkable hybrid yarn
CA2001142C (en) Molding material for thermoplastic composites
WO2018143068A1 (en) Fiber-reinforced resin molding material
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
KR930010554B1 (en) Composites reinforced with high strength aramid fibers having fibrillated ends
CA1294772C (en) Composite fiber blends
US5024890A (en) Size composition for impregnating filament strands and glass fibers coated therein
CN111565902A (en) Reinforcing fiber bundle base material, method for producing same, fiber-reinforced thermoplastic resin material using same, and method for producing same
JPH07122190B2 (en) Preform yarn for thermoplastic composite material and method for producing the same
JP3480504B2 (en) Thermoplastic composite material for molding
JPH06320536A (en) Long fiber reinforced synthetic resin strand or pellet
US20030215633A1 (en) Fiber glass product incorporating string binders
JPWO2019131125A1 (en) Fiber reinforced thermoplastic resin molding material
JPH0280639A (en) Unidirectional preform sheet and production thereof
US5178907A (en) Process for the fabrication of high density continuous fiber preforms
JPH06254848A (en) Thermoplastic prepreg fabric and laminate from the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees