JP3476975B2 - Sound absorbing material - Google Patents

Sound absorbing material

Info

Publication number
JP3476975B2
JP3476975B2 JP22704495A JP22704495A JP3476975B2 JP 3476975 B2 JP3476975 B2 JP 3476975B2 JP 22704495 A JP22704495 A JP 22704495A JP 22704495 A JP22704495 A JP 22704495A JP 3476975 B2 JP3476975 B2 JP 3476975B2
Authority
JP
Japan
Prior art keywords
sound absorbing
absorbing material
pores
semi
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22704495A
Other languages
Japanese (ja)
Other versions
JPH0952778A (en
Inventor
敏史 寺村
清之 中川
憲樹 松尾
Original Assignee
クリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社 filed Critical クリオン株式会社
Priority to JP22704495A priority Critical patent/JP3476975B2/en
Publication of JPH0952778A publication Critical patent/JPH0952778A/en
Application granted granted Critical
Publication of JP3476975B2 publication Critical patent/JP3476975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、土木・建築分野の
建造物の一部分として利用されるケイ酸カルシウム水和
物系吸音材の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a calcium silicate hydrate-based sound absorbing material used as a part of a building in the field of civil engineering and construction.

【0002】[0002]

【従来の技術】従来から、ケイ酸カルシウム水和物系吸
音材は公知である(特開昭52−37403号公報)。
この公知技術によると前記吸音材は、ドデシルベンゼン
スルホン酸ナトリウム塩やノニルフェニールテトラエチ
レンオキサイドエーテル硫酸エステル等の気泡剤を空気
及び水と攪拌して微細な気泡を含有するエマルジョンを
得る工程、そのエマルジョンを吸音材製造用原料と混合
して気泡コンクリ−トスラリーを得る工程、その気泡コ
ンクリ−トスラリーを型枠に注型して成形する工程、及
びその工程で得られたコンクリ−ト多孔体をオートクレ
ーブ養生する工程を経て製造される。
2. Description of the Related Art Conventionally, a calcium silicate hydrate-based sound absorbing material has been known (JP-A-52-37403).
According to this known technique, the sound absorbing material is obtained by stirring a foaming agent such as sodium dodecylbenzenesulfonate or nonylphenyl tetraethylene oxide ether sulfate with air and water to obtain an emulsion containing fine bubbles, and the emulsion thereof. To obtain a foam concrete slurry by mixing with a raw material for producing a sound absorbing material, a step of casting the foam concrete slurry into a mold, and molding, and an autoclave curing the concrete porous body obtained in the step. It is manufactured through the steps.

【0003】[0003]

【発明が解決しようとする課題】前記公知技術により得
られた吸音材には微小な気泡が連続して存在しているの
で前記吸音材は優れた吸音特性を有するが、その吸音材
をより高い機械的特性、特に圧縮強度が要求される用途
に向けようとすると、なお改良の余地がある。例えば、
前記吸音材を他の建材と複合させて吸音が必要な建物の
室内側に壁材として使用しようとする場合において、吸
音材の圧縮強度が小さいと、その吸音材に何かの拍子に
他の剛体が衝突したとき、吸音材、すなわち壁材の表面
が部分的に引っ込むという問題があるし、その吸音材は
その搬送過程でも破損し易いという問題がある。
Since the sound absorbing material obtained by the above-mentioned known technique has fine air bubbles continuously present, the sound absorbing material has excellent sound absorbing characteristics, but the sound absorbing material has a higher sound absorbing property. There is still room for improvement in applications where mechanical properties, especially compressive strength, are desired. For example,
In the case where the sound absorbing material is to be used as a wall material on the indoor side of a building that requires sound absorption by being combined with other building materials, if the sound absorbing material has a low compressive strength, the sound absorbing material may have other beats. When the rigid body collides, there is a problem that the surface of the sound absorbing material, that is, the wall material, is partially retracted, and the sound absorbing material has a problem that the sound absorbing material is easily damaged during the transportation process.

【0004】ところが、この種の吸音材においては、吸
音特性をある程度維持しながら、圧縮強度を向上させる
ことが困難である。と言うのは、吸音特性を向上させる
には吸音材中の気孔を多く増やし気泡同士を連続させる
必要があり、気孔を増やすと気孔を形成している吸音材
の構成層である固体組織(マトリックス層)が少なくな
り、必然的に吸音材の圧縮強度が低下するからである。
なお、前記公知技術により、圧縮強度を高めるためにマ
トリックス層を多くすると気孔が少なくなり、その結
果、連続気孔が減少し、吸音特性が低下する。
However, in this type of sound absorbing material, it is difficult to improve the compressive strength while maintaining the sound absorbing characteristics to some extent. This is because in order to improve the sound absorption characteristics, it is necessary to increase the number of pores in the sound absorbing material and to make bubbles continuous with each other. When the number of pores is increased, the solid structure (matrix) that is the constituent layer of the sound absorbing material forming the pores This is because the number of layers is reduced, and the compressive strength of the sound absorbing material is inevitably lowered.
According to the above-mentioned known technique, when the matrix layer is increased in order to increase the compressive strength, the number of pores is reduced, and as a result, the number of continuous pores is reduced and the sound absorbing property is deteriorated.

【0005】そこで、本発明者等は、この問題を解決す
るために鋭意研究した結果、前記の連続気孔の多くが特
定の方向を向いている吸音材を製造するとともに、その
吸音材を使用するとき、前記連続気孔が特定の方向を向
く態様で使用すればよいとの事実を見い出し、本発明を
完成した。従って、本発明の課題は、吸音特性をほとん
ど低下させることなく機械的特性をより向上させること
が可能なケイ酸カルシウム系吸音材を提供することにあ
る。
Therefore, the inventors of the present invention have conducted extensive studies to solve this problem, and as a result, produced a sound absorbing material in which many of the continuous pores face a specific direction and use the sound absorbing material. At this time, the fact that the continuous pores should be used in such a manner as to face a specific direction was found, and the present invention was completed. Therefore, an object of the present invention is to provide a calcium silicate-based sound-absorbing material capable of further improving mechanical properties without substantially reducing the sound-absorbing properties.

【0006】[0006]

【課題を解決するための手段】本発明は、前記の課題を
解決するために、ケイ酸質原料と石灰質原料とを吸音材
製造の主原料とする水スラリーを発泡材としての金属ア
ルミニウム、増粘剤及び界面活性剤の存在下で型枠の中
で発泡と硬化をさせて、半可塑化した硬化物を得る工程
(半可塑物製造工程)と、その工程で得られた硬化物を
高温、高圧下で水蒸気養生する工程(養生工程)を経て
製造される吸音材であって、ほぼ球形をなす気孔を多数
包含する嵩比重が0.2〜0.5のケイ酸カルシウム水
和物からなり、前記気孔のうち相隣接する複数個の気孔
が、部分的に合体して、それらの間にできた連通孔を介
して連続的に繋がる連続気孔になっているとともに、多
数個の前記連続気孔が、前記半可塑物製造工程での発泡
時における水平方向を向いて配列している吸音材とす
る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention uses a siliceous raw material and a calcareous raw material as a sound absorbing material.
Water slurry, which is the main raw material for manufacturing, is used as a foaming material.
In the form in the presence of luminium, thickeners and surfactants
The process of foaming and curing with to obtain a semi-plasticized cured product
(Semi-plasticized product manufacturing process) and the cured product obtained in that process
Through the process of steam curing under high temperature and high pressure (curing process)
A sound-absorbing material to be produced , which comprises calcium silicate hydrate having a bulk specific gravity of 0.2 to 0.5 and including a large number of substantially spherical pores, wherein a plurality of pores adjacent to each other are present. , Partially connected to form continuous pores that are continuously connected through communication holes formed between them, and a large number of the continuous pores are foamed in the semi-plastic material manufacturing process.
The sound absorbing material is arranged so as to face the horizontal direction at the time .

【0007】[0007]

【発明の実施の形態】次に、前記吸音材の製造方法、構
造及び作用・効果について述べると、まず、本発明に係
る吸音材は、ほぼ球形をなす気孔を多数包含する嵩比重
が0.2〜0.5のケイ酸カルシウム水和物からなって
いる。この吸音材は主として二つの工程、すなわち、ケ
イ酸質原料と石灰質原料とを吸音材製造の主原料とする
水スラリーを発泡材、増粘剤及び界面活性剤の存在下で
型枠の中で発泡と硬化をさせて、半可塑化した硬化物を
得る工程(半可塑物製造工程)と、その工程で得られた
硬化物を高温、高圧下で水蒸気養生する工程(養生工
程)を経て製造される。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the manufacturing method, structure, function and effect of the sound absorbing material will be described. First, the sound absorbing material according to the present invention has a bulk specific gravity of 0. It consists of 2-0.5 calcium silicate hydrate. This sound absorbing material has two main steps, namely, a water slurry containing siliceous raw material and calcareous raw material as main raw materials for the production of a sound absorbing material in a mold in the presence of a foaming material, a thickener and a surfactant. Produced through a process of foaming and curing to obtain a semi-plasticized cured product (semi-plasticized product manufacturing process), and a process of curing the cured product obtained in that process with steam at high temperature and high pressure (curing process) To be done.

【0008】前記ケイ酸質原料としては石英、クリスト
バライト、珪砂、フライアッシュ、スラグ、シリカフュ
ーム等のSiO2 含有化合物の1種又は2種以上が使用
される。また、石灰質原料としては、生石灰、消石灰、
各種のポルトランドセメント等Ca含有化合物の1種又
は2種以上が使用されるが、半可塑物製造工程において
反応系内で発生する気泡の安定性や前記水スラリーが半
可塑化して硬化するまでの硬化時間の短縮等を考慮する
と、ポルトランドセメント、特に、普通ポルトランドセ
メント、早強ポルトランドセメント、中庸熱ポルトラン
ドセメントが好適に使用される。
As the siliceous raw material, one or more kinds of SiO 2 containing compounds such as quartz, cristobalite, silica sand, fly ash, slag and silica fume are used. Further, as calcareous raw materials, quick lime, slaked lime,
One kind or two or more kinds of Ca-containing compounds such as various Portland cements are used, but the stability of bubbles generated in the reaction system in the semi-plasticization manufacturing process and the water slurry until semi-plasticized and hardened Considering the shortening of the curing time, etc., Portland cement, particularly normal Portland cement, early-strength Portland cement, and moderate heat Portland cement are preferably used.

【0009】さらに、前記製造方法においては、高温・
高圧雰囲気下で水蒸気養生された軽量気泡コンクリ−ト
(ALC)の製造工程で、または本発明に係る吸音材の
製造工程でそれぞれ発生する半可塑物の解砕屑が、前記
気泡の安定化、及びセメントが使用されている場合その
セメントの水和反応の安定化等のために前記したケイ酸
質原料及び石灰質原料の一部として使用することも可能
である。
Further, in the above manufacturing method,
The crushed debris of the semi-plastic material generated in the manufacturing process of the light weight air bubble concrete (ALC) cured by steam under a high pressure atmosphere or in the manufacturing process of the sound absorbing material according to the present invention stabilizes the air bubbles, and When cement is used, it can be used as a part of the above-mentioned siliceous raw material and calcareous raw material in order to stabilize the hydration reaction of the cement.

【0010】解砕屑は、前記ケイ酸質原料と石灰質原料
の固形分の合計量を基準にして30重量%以下、好まし
くは5〜20重量%の範囲で使用される。前記解砕屑の
使用量が30重量%を超えると、通常の製造条件下では
半可塑物の強度が低下して脱型や加工に必要な強度を有
するものにならない。なお、前記工程に解砕屑が使用さ
れる場合は、この原料とセメント以外の石灰質原料を使
用しなくてもよい。この場合、前記固形分を基準にして
1〜5重量部の石膏が併用される。
The crushed waste is used in an amount of 30% by weight or less, preferably 5 to 20% by weight, based on the total solid content of the siliceous raw material and the calcareous raw material. When the amount of the crushed scraps used exceeds 30% by weight, the strength of the semi-plastic material is lowered under normal production conditions, and the strength required for demolding or processing cannot be achieved. When crushed waste is used in the above step, it is not necessary to use calcareous raw materials other than this raw material and cement. In this case, 1 to 5 parts by weight of gypsum based on the solid content is used together.

【0011】さらに、前記半可塑物製造工程において発
泡材としてアルミニウムの金属粉を使用することによ
り、本発明に係る吸音材の中において特定の方向を向い
て配向する連続気孔の形成が可能になる。連続気孔形成
の機構は、必ずしも明確にされていないが、おおよそ次
のように考えられる。
Further, by using aluminum metal powder as the foam material in the semi-plastic material manufacturing step, it becomes possible to form continuous pores oriented in a specific direction in the sound absorbing material according to the present invention. . The mechanism of continuous pore formation is not necessarily clarified, but it is considered as follows.

【0012】アルミニウムの金属粉は、前記水スラリー
のアルカリと反応して水素ガスを発生させ、原料の水ス
ラリーが半可塑化してゆく過程(発泡過程)においてこ
の水素ガスが集まって気泡になり水スラリーを押し上げ
る。他方、可塑化しつつある水スラリーには重力が働い
ているから、上昇してくる気泡は水スラリーの重力作用
を受け水平方向に逃げようとする。加えて、前記水スラ
リーが可塑化するにつれてその粘度も上昇するから、や
がて水スラリーの粘性エネルギーが水素ガスの発泡エネ
ルギーより大きくなり、その結果、水スラリーが前記気
泡を押し下げようとする。これらの作用を受けた各気泡
は、水平方向に長い楕円形になりかつその上昇方向と直
交する方向、すなわち水平方向に配列する。
The metal powder of aluminum reacts with the alkali of the water slurry to generate hydrogen gas, and in the process (foaming process) of the raw water slurry being semi-plasticized, the hydrogen gas collects into bubbles and becomes water. Push up the slurry. On the other hand, gravity acts on the plasticizing water slurry, and the rising bubbles try to escape in the horizontal direction due to the gravity effect of the water slurry. In addition, since the viscosity of the water slurry increases as it is plasticized, the viscous energy of the water slurry becomes larger than the foaming energy of hydrogen gas, and as a result, the water slurry tends to push down the bubbles. The bubbles that have been subjected to these actions become elliptical shapes that are long in the horizontal direction and are arranged in the direction orthogonal to the rising direction, that is, in the horizontal direction.

【0013】また、前記方法にはアルミニウムの金属粉
が多量に使用されるから、反応系内において多数の気泡
が発生し、同系の水和反応熱を受けてそれらの気泡がよ
り大きく膨脹するため、水平方向において互いに近接し
て配列した楕円形の気泡は接触し易くなる。その結果、
図1に示すように、その反応系Rにおいて楕円形の気泡
1とそれに近接している側部の気泡2は水平方向に合体
して数珠状気泡3をつくる。この数珠状気泡3は、後述
する連続気孔に変わる重要な要素となる。
In addition, since a large amount of aluminum metal powder is used in the above method, a large number of bubbles are generated in the reaction system, and the bubbles expand to a larger extent due to the heat of hydration reaction of the same system. The elliptical bubbles arranged close to each other in the horizontal direction easily come into contact with each other. as a result,
As shown in FIG. 1, in the reaction system R, an elliptical bubble 1 and a bubble 2 on the side adjacent to the ellipse form a beaded bubble 3 by horizontally coalescing. This beaded bubble 3 becomes an important element that becomes a continuous pore described later.

【0014】前記反応系内の気泡の連続性と方向性は以
上のように説明できるが、一般に反応系内で気泡同士が
接触した場合、気泡の殻の表面張力が大きいと気泡は合
体して一つの大きな気泡になろうとするので、それを阻
止する必要がある。そこで、本発明に係る前記半可塑物
製造工程においては前記水スラリーに界面活性剤が添加
される。
The continuity and directionality of the bubbles in the reaction system can be explained as described above. Generally, when the bubbles contact each other in the reaction system, the bubbles coalesce when the surface tension of the bubble shell is large. It's going to be one big bubble, so you need to stop it. Therefore, a surfactant is added to the water slurry in the step of manufacturing the semi-plastic material according to the present invention.

【0015】この界面活性剤は、水スラリーを機械的作
用、例えば、攪拌により起泡させるために使用するので
はなく、反応系内におけるアルミニウムの化学反応で発
生する気泡と水スラリーとの界面を活性させる目的で使
用される。従って、この目的に合致する界面活性剤であ
ればそれは使用可能であるが、好ましくは、高級アルコ
ールの硫酸エステルが使用される。この場合、反応系が
60〜80℃の温度範囲にあるとき前記反応系に前記界
面活性剤が添加される。さらに、本発明に係る前記反応
系の気泡が移動するときの抵抗を適度に抑制して気泡が
連続して水平方向に並ぶようにするために、反応系に増
粘剤、好ましくは、メチルセルロースが添加される。
This surface-active agent is not used for mechanical action of the water slurry, for example, for foaming it by stirring, but the interface between the bubbles generated by the chemical reaction of aluminum in the reaction system and the water slurry is not used. Used for the purpose of activation. Thus, although any surfactant that is suitable for this purpose can be used, preferably sulfuric acid esters of higher alcohols are used. In this case, the surfactant is added to the reaction system when the reaction system is in the temperature range of 60 to 80 ° C. Furthermore, in order to appropriately suppress the resistance when the bubbles of the reaction system according to the present invention move so that the bubbles are continuously arranged in the horizontal direction, a thickener, preferably methylcellulose, is added to the reaction system. Is added.

【0016】前記原料及び添加剤が用意されたら、ケイ
酸質原料と石灰質原料を水と混合して、シリカ(SiO
2) /酸化カルシウム(CaO)の比にして0.3〜1
の原料の水スラリーを調整し、得られた水スラリーに対
して前記原料の固形分100重量部当たり前記増粘剤を
0.1〜2.0重量部、界面活性剤を1.0〜3.0重
量部及びアルミニウムの金属粉を0.05〜0.2重量
部それぞれ混合して粘度が400〜2500cps.の
混合物とする。そして、その混合物を型枠に打設して発
泡・硬化させる。
After the raw materials and additives are prepared, the siliceous raw material and the calcareous raw material are mixed with water to form silica (SiO 2
2 ) / Calcium oxide (CaO) ratio of 0.3-1
The water slurry of the raw material is prepared, and 0.1 to 2.0 parts by weight of the thickener and 1.0 to 3 parts of the surfactant are added to 100 parts by weight of the solid content of the raw material with respect to the obtained water slurry. 0.0 parts by weight and 0.05 to 0.2 parts by weight of aluminum metal powder, respectively, to obtain a viscosity of 400 to 2500 cps. It is a mixture of. Then, the mixture is cast into a mold to foam and cure.

【0017】次に、このようにして得られた半可塑物を
切断して所定の大きさと形状を有する成形物、典型的に
はパネル状成形物にして、その成形物をオートクレーブ
に入れて温度150〜200℃、圧力8〜20気圧、好
ましくは9〜12気圧の飽和水蒸気雰囲気下で2〜8時
間養生すると、その半可塑物は、トバモライトで代表さ
れるケイ酸カルシウム水和物に変わり本発明に係る吸音
材になる。なお、半可塑物を切断して成形物にするとき
は、半可塑物に含まれている前記数珠状気泡の配列方向
に対して直交する方向に向かって切断する。そのように
すれば、後述する連続気孔が延びている方向にほぼ直交
するように切断された成形体を得ることが可能になる。
Next, the thus obtained semi-plastic material is cut into a molded product having a predetermined size and shape, typically a panel-shaped molded product, and the molded product is put in an autoclave and heated. When cured for 2 to 8 hours in a saturated steam atmosphere at 150 to 200 ° C. and a pressure of 8 to 20 atm, preferably 9 to 12 atm, the semiplastic material turns into calcium silicate hydrate represented by tobermorite. The sound absorbing material according to the invention. When the semi-plastic material is cut into a molded product, the semi-plastic material is cut in a direction orthogonal to the arrangement direction of the beads in the semi-plastic material. By doing so, it becomes possible to obtain a molded body that is cut so as to be substantially orthogonal to the direction in which the continuous pores described below extend.

【0018】このようにして得られた吸音材を、その前
駆体である半可塑物が型枠内に存在していたときその型
枠の水平方向と直交する方向に切断して、その切断面を
走査型電子顕微鏡で見ると、図2において模式的に示し
たように、吸音材4は直径が約0.1〜2mmの多数の
気孔5を含んでいることが観察される。そしてそれらの
気孔5のうち相隣接する複数個の気孔同士は、部分的に
合体してそれら気孔5の直径より小さい約0.01〜
1.5mmの直径を有する連通孔6を介して、連続気孔
7になっている。
The sound-absorbing material thus obtained is cut in a direction orthogonal to the horizontal direction of the mold when a semi-plastic material as its precursor is present in the mold, and its cut surface is cut. When viewed with a scanning electron microscope, it is observed that the sound absorbing material 4 includes a large number of pores 5 having a diameter of about 0.1 to 2 mm, as schematically shown in FIG. A plurality of pores adjacent to each other among the pores 5 are partially united to each other, and the pores have a diameter of about 0.01 to less than the diameter of the pores 5.
The continuous pores 7 are formed through the communication holes 6 having a diameter of 1.5 mm.

【0019】すなわち、前記連続気孔7の配向方向Y
直交する方向に沿って本発明に係る吸音材4を切断し、
その切断面を前記顕微鏡で写真撮影してみると、図4の
ように、相隣接する複数個の気孔は、連通孔を介して連
続的に繋がって連続気孔を形成している。
[0019] That is, the orientation direction Y of the continuous pores 7
Cutting the sound absorbing material 4 according to the present invention along a direction orthogonal to each other,
When the cut surface is photographed with the microscope, as shown in FIG. 4, a plurality of adjacent pores are continuously connected to each other through a communication hole to form a continuous pore.

【0020】そして、前記連続気孔の長手方向は、半可
塑物製造工程の型枠において半可塑物が存在した水平の
方向と一致する。これは、図1に示した反応系R内の数
珠状気泡3において相隣接する気泡1、2間に形成され
ていた膜8が前記養生工程で破壊されて、図3に示すよ
うに、その膜の存在していた部分が、気泡1、2の直径
より小さい連通孔6になったことによって、数珠状気泡
が連続気孔7になったものと考えられる。
The longitudinal direction of the continuous pores corresponds to the horizontal direction in which the semi-plastic material was present in the mold in the semi-plastic material manufacturing process. This is because the film 8 formed between the adjacent bubbles 1 and 2 in the beaded bubble 3 in the reaction system R shown in FIG. 1 is destroyed in the curing step, and as shown in FIG. It is considered that the bead-shaped bubbles became continuous pores 7 because the portion where the film was present became the communication hole 6 smaller than the diameter of the bubbles 1 and 2.

【0021】なお、前記吸音材の嵩比重(気孔を含む単
位体積当たりの質量)を測定してみると、それは0.2
〜0.5の範囲にある。また、前記写真における気孔の
断面の総面積及び連続気孔の断面の総面積を求めてみる
と、前者の面積(C)は、前記切断面の面積(A)に対
する面積比(C/A)にして0.4〜0.9の範囲にあ
るのに対して、後者の面積(B)は、同じく切断面の面
積(A)に対する面積比(B/A)にして0.2〜0.
7の範囲にあり、連続気孔に関してこの範囲の面積比を
有する吸音材であれば、前記課題を十分に達成可能であ
る。
The bulk specific gravity (mass per unit volume including pores) of the sound absorbing material is 0.2.
Is in the range of 0.5. Further, when the total area of the cross-sections of the pores and the total area of the cross-sections of the continuous pores in the photograph are calculated, the area (C) of the former is set to the area ratio (C / A) to the area (A) of the cut surface. The area (B) of the latter is the same as the area (A) of the cut surface (B / A) in the range of 0.4 to 0.9.
If the sound absorbing material is in the range of 7 and has the area ratio of continuous pores in this range, the above-mentioned problems can be sufficiently achieved.

【0022】次に、この吸音材をそのまま又はさらに切
断・切削加工して、建物の壁面又は騒音を発生する機
械、装置等のカバーやケーシングとして使用する。これ
らの使用態様においては、前記連続気孔が向く方向を吸
音させたい音の伝播方向と一致させる。もし、吸音材を
壁面にするのであれば、前者の方向をその壁面に対して
垂直にする。
Next, this sound absorbing material is used as it is, or is further cut / cut to be used as a cover or a casing of a wall surface of a building or a machine or device that generates noise. In these usage modes, the direction in which the continuous pores face is made to coincide with the propagation direction of the sound to be absorbed. If the sound absorbing material is used as a wall surface, the former direction is perpendicular to the wall surface.

【0023】すると、吸音材の連続気孔に対して直接又
は連続気孔以外の層であるマトリックス層を介して外部
から伝播してきた音は、その連続気孔の中の長い空気層
に伝達され、125〜2000Hzの広い周波数帯域に
おいて減衰する。さらに、連続気孔の途中には気孔の直
径より小さい連通孔が存在するため、気孔に入った音の
一部が、連通孔を通過できず気孔の壁面に衝突して反射
して再び空気層に入り減衰する。
Then, the sound propagated from the outside to the continuous pores of the sound absorbing material directly or through the matrix layer which is a layer other than the continuous pores is transmitted to the long air layer in the continuous pores, and thus 125 to 125 It attenuates in a wide frequency band of 2000 Hz. Furthermore, since there are communication holes in the middle of the continuous pores that are smaller than the diameter of the pores, some of the sound that has entered the pores cannot pass through the communication holes, collides with the wall surface of the pores, is reflected, and again forms the air layer. Enter and decay.

【0024】この過程までは従来技術と同じであるが、
本発明に係る吸音材においては多数の連続気孔がほぼ
一方向(水平方向)を向いて配向しているので、その方
向から入ってきた音の減衰効果は連続気孔がランダムに
配向している従来技術に係る吸音材より大きい。
The process up to this step is the same as in the prior art,
In the sound absorbing material according to the present invention, a large number of continuous pores are almost the same.
Since it is oriented in one direction (horizontal direction) , the sound attenuation effect from the direction is larger than that of the sound absorbing material according to the prior art in which the continuous pores are randomly oriented.

【0025】従って、本発明に係る吸音材が、従来技術
のそれと同じ機械的特性を有するものであれば、特定の
方向から入ってくる音を吸音するための吸音材として使
用する限度において、本発明に係る吸音材の吸音特性を
従来技術より高くすることが可能になり、逆に、吸音特
性を同じにすれば機械的特性を高めることが可能にな
る。
Therefore, if the sound absorbing material according to the present invention has the same mechanical characteristics as those of the prior art, it is possible to use it as a sound absorbing material for absorbing sound coming from a specific direction. The sound absorbing property of the sound absorbing material according to the present invention can be made higher than that of the prior art, and conversely, if the sound absorbing properties are the same, the mechanical property can be improved.

【0026】[0026]

【実施例】次に、本発明の効果を実施例をもって具体的
に説明する。 (半可塑物製造工程)60重量部のケイ砂、ALC製造
工程で発生した2重量部の半可塑物の解砕屑、2重量部
の石膏を90重量部の水に混合して水スラリーを調整し
た。この水スラリーに対して、38重量部の早強ポルト
ランドセメント、1重量部のメチルセルロースをそれぞ
れ加えて混合した後、さらに、0.2重量部のアルミニ
ウムの金属粉と2重量部の高級アルコールの硫酸エステ
ルを添加して、吸音材製造用の原料混合物を調合した。
この原料混合物の粘度が700〜800 cps.にな
った時点で、それを型枠(60cm×2000cm×7
0cm)に打設して発泡・硬化させた。
EXAMPLES Next, the effects of the present invention will be specifically described with reference to examples. (Semi-plastic material manufacturing process) 60 parts by weight of silica sand, 2 parts by weight of crushed semi-plastic material generated in the ALC manufacturing process, and 2 parts by weight of gypsum are mixed with 90 parts by weight of water to prepare a water slurry. did. To this water slurry, 38 parts by weight of early-strength Portland cement and 1 part by weight of methyl cellulose were added and mixed, respectively, and further, 0.2 parts by weight of metal powder of aluminum and 2 parts by weight of sulfuric acid of higher alcohol. The ester was added to prepare a raw material mixture for manufacturing the sound absorbing material.
The viscosity of this raw material mixture is 700 to 800 cps. When it became the formwork (60 cm x 2000 cm x 7
It was cast in 0 cm) and foamed and cured.

【0027】(養生工程)次に、前記工程で得られた半
可塑物を型枠から取り出して、その半可塑物をそれが型
枠の中にあったときの水平方向と直交する方向に相当す
る方向に切断した。得られた複数枚のパネル状成形体を
オートクレーブに入れて温度180℃、10気圧の水蒸
気雰囲気下で6時間養生して、本発明の吸音材を得た。
そしてその吸音材の一部分を採取して粉末にし、X線回
折法により分析したら、それはトバモライト及び石英で
あることが判明した。
(Curing step) Next, the semi-plasticized material obtained in the above-mentioned step is taken out from the mold, and the semi-plasticized material corresponds to a direction orthogonal to the horizontal direction when it is in the mold. Cut in the direction you want to. The obtained plurality of panel-shaped molded bodies were put into an autoclave and aged for 6 hours in a steam atmosphere at a temperature of 180 ° C. and 10 atm to obtain a sound absorbing material of the present invention.
Then, when a part of the sound absorbing material was sampled and powdered and analyzed by an X-ray diffraction method, it was found to be tobermorite and quartz.

【0028】同様に前記吸音材の嵩比重を測定したら、
その値は0.39であった。また、前記切断面を走査型
電子顕微鏡(日本電子株式会社製JSM−T20)で写
真撮影をしたところ、図4に示したようにそれには多数
の気孔が認められるとともに、それら気孔のうち相隣接
する複数個の気孔が部分的に合体し、それら気孔の直径
よりも小さい連通孔を介して連続気孔になっている様子
が認めれた。そして、蟻のシェルエット、数珠の一部
分又は串だんごのような形をした連続気孔はほとんどほ
ぼ同一方向(水平方向)を向き、前記養生工程における
半可塑物の切断方向から判断して連続気孔の配列方向
は、半可塑物製造工程において水素ガスが気泡となって
上昇した方向と直交していることが判かった。
Similarly, when the bulk specific gravity of the sound absorbing material is measured,
The value was 0.39. Moreover, when the cut surface was photographed with a scanning electron microscope (JSM-T20 manufactured by JEOL Ltd.), a large number of pores were observed in it as shown in FIG. a plurality of pores that are partially coalesce, a state that is a continuous pores observed et a via a small communication hole than the diameter of their pores. And, the continuous vesicles shaped like an ant shellet, a part of beads or a skewered dumpling face almost the same direction (horizontal direction) , and the continuous stomata of the continuous stomata are judged from the cutting direction of the semi-plastic material in the curing step. It was found that the arrangement direction was orthogonal to the direction in which the hydrogen gas became bubbles and rose in the semi-plasticized material manufacturing process.

【0029】次に、前記図4の写真を乾式複写機により
2枚ノンカラーで複写し、そのうちの1枚に写っている
気孔の全部を黒色に染め、他の1枚については連続気孔
だけを前記同様に黒色に染めて修正した。そしてそれら
修正写真を画像解析装置(日本アビオニクス社製TVI
P−4100)を利用して単位断面積(A)当たり黒色
面の面積をそれぞれ気孔の面積(C)及び連続気孔の面
積(B)として求めたら、前者は単位断面の面積(A)
に対する面積比(C/A)にして約0.77であるのに
対して、後者の面積(B)は、同じく単位断面積(A)
に対する面積比(B/A)にして約0.45であった。
Next, two sheets of the above-mentioned photograph of FIG. 4 were non-color-copied by a dry copying machine, all the pores shown in one of them were dyed black, and the other one had only continuous pores. It was dyed black and corrected in the same manner as above. Then, these modified photographs are analyzed by an image analysis device (TVI manufactured by Nippon Avionics Co., Ltd.).
P-4100) is used to determine the area of the black surface per unit cross-sectional area (A) as the area of pores (C) and the area of continuous pores (B), the former is the area of unit cross-section (A).
The area ratio (C / A) is about 0.77, whereas the latter area (B) is the same as the unit cross-sectional area (A).
The area ratio (B / A) was about 0.45.

【0030】さらに、前記吸音材を10cm×10cm
×10cm塊に切り出して試験体を作り、その試験体に
ついて圧縮試験を行なった(試験装置:インストロン社
製圧縮試験機)ところ、その試験体の圧縮強度は20k
gf/平方cmであった。
Further, the sound absorbing material is 10 cm × 10 cm.
A test piece was prepared by cutting out into 10 cm lumps, and a compression test was performed on the test piece (testing apparatus: compression tester manufactured by Instron Co., Ltd.). The compression strength of the test piece was 20 k.
It was gf / square cm.

【0031】最後に、前記吸音材から直径91.5m
m、厚さ70mmの円柱形の別の試験体を作製し、JI
S A 1406に準拠して前記試験体の垂直入射吸音
率を測定した。その結果を表1に示す。表1から明らか
なように、400〜2000Hzの周波数領域でこの実
施例の試験体は後述する比較例の試験体より高い吸音率
を示した。
Finally, the sound absorbing material has a diameter of 91.5 m.
m, and another 70 mm-thick cylindrical test body was prepared, and JI
The normal incident sound absorption coefficient of the test body was measured according to S A 1406. The results are shown in Table 1. As is clear from Table 1, the test body of this example exhibited a higher sound absorption coefficient than the test body of the comparative example described later in the frequency range of 400 to 2000 Hz.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【比較例】比較のために、従来技術に係る市販されてい
るケイ酸カルシウム系吸音材を実施例と同じ形状・大き
さに切り取って試験体を作り、その試験体について前記
と同様の評価をした。また、切断面を実施例と同じよう
に走査型電子顕微鏡で写真撮影した。その結果図5に示
すように、単位面積当たり気孔の数は実施例の約1.2
倍で、気孔の総面積は約70%であった。しかしなが
ら、連続気孔の面積は実施例の約1/5と少なく、しか
もそれには方向性を見出だすことはできなかった。この
比較例の試験体の吸音率は、前記表1に示したように、
125Hz以上400Hz未満の周波数領域で前記実施
例の試験体のそれよりわずかに高かったが、400Hz
以上の領域では実施例の試験体より明らかに低く、圧縮
強度は実施例のそれの49%であった。
[Comparative Example] For comparison, a commercially available calcium silicate-based sound absorbing material according to the prior art was cut into the same shape and size as in the example to prepare a test body, and the test body was evaluated in the same manner as above. did. Further, the cut surface was photographed with a scanning electron microscope as in the example. As a result, as shown in FIG. 5, the number of pores per unit area was about 1.2 in the example.
In total, the total area of pores was about 70%. However, the area of the continuous pores was as small as about ⅕ of that in the example, and the directionality could not be found in it. The sound absorption coefficient of the test body of this comparative example is as shown in Table 1 above.
Although slightly higher than that of the test body of the above-mentioned example in the frequency range of 125 Hz or more and less than 400 Hz,
In the above range, the compressive strength was clearly lower than that of the test piece of the example, and was 49% of that of the example.

【0034】上記実施例及び比較例から次のことが言え
る。吸音特性については、125以上400Hz以下の
周波数領域において比較例が実施例より優れていると言
えるが、400Hz以上の周波数領域の吸音特性及び圧
縮強度については実施例の方が明らかに比較例より優れ
ている。これは気孔の総面積は実施例の方が小さく、気
孔以外の部分、すなわち、マトリックス層は実施例の方
が多くなり、その結果圧縮強度が大きくなるからであ
る。
The following can be said from the above examples and comparative examples. Regarding the sound absorption characteristics, it can be said that the comparative example is superior to the examples in the frequency range of 125 to 400 Hz, but the examples are clearly superior to the comparative examples in the sound absorption characteristics and the compression strength in the frequency range of 400 Hz or more. ing. This is because the total area of the pores is smaller in the embodiment, and the portion other than the pores, that is, the matrix layer is larger in the embodiment, and as a result, the compressive strength is increased.

【0035】また、気孔の総面積が小さいにもかかわら
ず実施例の吸音特性が特定の周波数領域で比較例のそれ
より優れているのは、実施例の吸音材では連続気孔が多
いからである。このことは、実施例の圧縮強度を比較例
のそれと同程度にすれば、実施例の吸音特性をさらに向
上させることができることを意味する。
In addition, the sound absorbing characteristic of the embodiment is superior to that of the comparative example in a specific frequency range despite that the total area of the pores is small, because the sound absorbing material of the embodiment has many continuous pores. . This means that the sound absorption characteristics of the example can be further improved by setting the compressive strength of the example to the same level as that of the comparative example.

【0036】[0036]

【発明の効果】以上詳述したように、本発明は、ケイ酸
カルシウム系吸音材の吸音特性をほとんど低下させるこ
となく機械的特性をより向上させることができるという
優れた効果を発揮する。
As described in detail above, the present invention exhibits an excellent effect that the mechanical characteristics can be further improved without substantially lowering the sound absorbing characteristics of the calcium silicate-based sound absorbing material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る吸音材の製造工程における反応系
内の気泡の動向を説明する概念図である。
FIG. 1 is a conceptual diagram illustrating a tendency of bubbles in a reaction system in a manufacturing process of a sound absorbing material according to the present invention.

【図2】前記吸音材の一部を破断して示す部分断面図で
ある。
FIG. 2 is a partial cross-sectional view showing a part of the sound absorbing material in a cutaway manner.

【図3】連続気孔が発生する過程を説明する概念図であ
る。
FIG. 3 is a conceptual diagram illustrating a process of generating continuous pores.

【図4】実施例で得られた吸音材をその連続気孔が配向
する方向と直交する方向に沿って切断して得た断面を走
査型電子顕微鏡で撮影して示した写真である。
FIG. 4 is a photograph showing a cross section obtained by cutting the sound absorbing material obtained in the example along a direction orthogonal to the direction in which the continuous pores are oriented, by photographing with a scanning electron microscope.

【図5】従来の吸音材を実施例と同様に切断して得た断
面を走査型電子顕微鏡で撮影して示した写真である。
FIG. 5 is a photograph showing a cross section obtained by cutting a conventional sound absorbing material in the same manner as in the example, by photographing with a scanning electron microscope.

【符号の説明】[Explanation of symbols]

1 気泡 2 気泡 3 数珠状気泡 4 吸音材 5 気孔 6 連通孔 7 連続気孔 A 吸音材の断面積 B 連続気孔の断面積 R 反応系 1 air bubble 2 bubbles 3 beads beads 4 Sound absorbing material 5 pores 6 communication holes 7 continuous pores A cross section of sound absorbing material B Cross-sectional area of continuous pores R reaction system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 憲樹 愛知県尾張旭市下井町下井2035番地 小 野田エー・エル・シー株式会社 材料研 究所内 (56)参考文献 特開 平3−83873(JP,A) 特開 昭52−37403(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 38/00 - 38/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenki Matsuo 2035 Shimoi, Shimoi-cho, Owariasahi-shi, Aichi Onoda ALC Co., Ltd. Material Research Laboratory (56) Reference JP-A-3-83873 (JP, 83873) A) JP-A-52-37403 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 38/00-38/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ケイ酸質原料と石灰質原料とを吸音材製
造の主原料とする水スラリーを発泡材としての金属アル
ミニウム、増粘剤及び界面活性剤の存在下で型枠の中で
発泡と硬化をさせて、半可塑化した硬化物を得る工程
(半可塑物製造工程)と、その工程で得られた硬化物を
高温、高圧下で水蒸気養生する工程(養生工程)を経て
製造される吸音材であって、 ほぼ球形をなす気孔(5)を多数包含する嵩比重が0.
2〜0.5のケイ酸カルシウム水和物からなり、前記気
孔のうち相隣接する複数個の気孔が、部分的に合体し
て、それらの間にできた連通孔(6)を介して連続的に
繋がる連続気孔(7)になっているとともに、多数個の
前記連続気孔が、前記半可塑物製造工程での発泡時にお
ける水平方向を向いて配列している吸音材。
1. A water slurry containing a siliceous raw material and a calcareous raw material as main raw materials for producing a sound absorbing material is foamed in a mold in the presence of metallic aluminum as a foaming material, a thickener and a surfactant. It is manufactured through a process of curing to obtain a semi-plasticized cured product (semi-plasticized product manufacturing process) and a process of curing the cured product obtained in that process with steam at high temperature and high pressure (curing process). It is a sound-absorbing material and has a bulk specific gravity of 0, which includes a large number of substantially spherical pores (5).
2 to 0.5 of calcium silicate hydrate, a plurality of pores adjacent to each other among the pores are partially united, and continuous through a communication hole (6) formed between them. The sound absorbing material has continuous pores (7) that are continuously connected to each other, and a large number of the continuous pores are arranged in the horizontal direction at the time of foaming in the semi-plastic material manufacturing process.
【請求項2】 前記水平方向と直交する方向に沿った切
断面(A)において前記連続気孔(7)が占める断面
(B)は、面積比(B/A)にして0.2〜0.7の範
囲にある請求項1記載の吸音材。
2. A cross section (B) occupied by the continuous pores (7) in a cut surface (A) along a direction orthogonal to the horizontal direction has an area ratio (B / A) of 0.2 to 0. The sound absorbing material according to claim 1, which is in the range of 7.
JP22704495A 1995-08-10 1995-08-10 Sound absorbing material Expired - Lifetime JP3476975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22704495A JP3476975B2 (en) 1995-08-10 1995-08-10 Sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22704495A JP3476975B2 (en) 1995-08-10 1995-08-10 Sound absorbing material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003194291A Division JP3516676B2 (en) 2003-07-09 2003-07-09 Manufacturing method of sound absorbing material

Publications (2)

Publication Number Publication Date
JPH0952778A JPH0952778A (en) 1997-02-25
JP3476975B2 true JP3476975B2 (en) 2003-12-10

Family

ID=16854653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22704495A Expired - Lifetime JP3476975B2 (en) 1995-08-10 1995-08-10 Sound absorbing material

Country Status (1)

Country Link
JP (1) JP3476975B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567063B2 (en) * 1997-05-22 2004-09-15 クリオン株式会社 Sound absorbing panel
US20030072934A1 (en) * 2001-08-31 2003-04-17 Rem Koolhaas Panel for architectural design

Also Published As

Publication number Publication date
JPH0952778A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
JP6525992B2 (en) Concrete element containing sound absorbing material
CA2111979A1 (en) Foamed Cementitious Composition and Method of Making
CN113800864B (en) High-stability ultralight pumping foam concrete and preparation method thereof
JP2000514032A (en) Sound absorbing cementitious composition and its manufacturing method
JP3476975B2 (en) Sound absorbing material
JP3516676B2 (en) Manufacturing method of sound absorbing material
JP3801673B2 (en) Porous sound absorbing material
JPH10194813A (en) Lightweight concrete
KR101722983B1 (en) Composition for foam concrete with high insulation for reducing of floor impact sound, manufacturing method of foam concrete using the same and foam concrete with high insulation for reducing of floor impact sound manufactured using the same
JP5513789B2 (en) Insulation
JP2581896B2 (en) Lightweight mortar composition for filling using papermaking waste material as main raw material
JP2007131488A (en) Calcium silicate hydrate solidification product and its synthesis method
JP3099667B2 (en) Sound absorbing and insulating panel and method of manufacturing the same
KR102388626B1 (en) Light weight concrete composition and method the same
JPH11199346A (en) Floating block
JPH09301784A (en) Production of porous sound-absorbing material
JP2863106B2 (en) Manufacturing method of lightweight multilayer solidified material
JP3132712B2 (en) Method for producing lightweight coal solidified material
JP4666551B2 (en) Method for producing porous sound absorbing material
JPH09221850A (en) Sound absorbing/insulating alc panel
Mohammed et al. Effect of Source Type on Pore Structure and Properties of Aerated Geopolymer Concrete
JPH11303304A (en) Lightweight cellular concrete panel
JPH08283082A (en) Porous ceramic and sound absorbing body using the same
JP2891909B2 (en) Lightweight multilayer sound absorbing material
JP3043673U (en) Blocks for masonry walls

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term