JP3475941B2 - Surface-coated cemented carbide cutting tool with excellent surface lubricity against chips - Google Patents

Surface-coated cemented carbide cutting tool with excellent surface lubricity against chips

Info

Publication number
JP3475941B2
JP3475941B2 JP2001186518A JP2001186518A JP3475941B2 JP 3475941 B2 JP3475941 B2 JP 3475941B2 JP 2001186518 A JP2001186518 A JP 2001186518A JP 2001186518 A JP2001186518 A JP 2001186518A JP 3475941 B2 JP3475941 B2 JP 3475941B2
Authority
JP
Japan
Prior art keywords
cutting
carbide
powder
cemented carbide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001186518A
Other languages
Japanese (ja)
Other versions
JP2003001502A (en
Inventor
浩一 前田
裕介 田中
Original Assignee
三菱マテリアル神戸ツールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル神戸ツールズ株式会社 filed Critical 三菱マテリアル神戸ツールズ株式会社
Priority to JP2001186518A priority Critical patent/JP3475941B2/en
Publication of JP2003001502A publication Critical patent/JP2003001502A/en
Application granted granted Critical
Publication of JP3475941B2 publication Critical patent/JP3475941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、切粉に対する表
面潤滑性にすぐれ、したがって特にステンレス鋼や軟鋼
などのきわめて粘性が高く、かつ切粉が切刃表面に溶着
し易い難削材の高速切削加工に用いた場合にも、切刃に
前記切粉の高粘着性が原因のチッピング(微小欠け)な
どの発生がなく、すぐれた切削性能を長期に亘って発揮
する表面被覆超硬合金製切削工具(以下、被覆超硬工具
という)に関するものである。 【0002】 【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。 【0003】また、一般に、例えば図1に概略説明図で
示される物理蒸着装置の1種であるアークイオンプレー
ティング装置を用い、基本的に、ヒータで装置内を、例
えば雰囲気を1.3×10-3Paの真空として、500
℃の温度に加熱した状態で、アノード電極と所定組成を
有するTi−Al合金がセットされたカソード電極(蒸
発源)との間に、例えば電圧:35V、電流:100A
の条件でアーク放電を発生させ、同時に装置内に反応ガ
スとして窒素ガスを導入し、一方炭化タングステン(以
下、WCで示す)基超硬合金または炭窒化チタン(以
下、TiCNで示す)基サーメットからなる基体(以
下、これらを総称して超硬基体と云う)には、例えば−
100Vのバイアス電圧を印加した条件で、前記超硬基
体の表面に、例えば特開昭62−56565号公報に記
載されるように、TiとAlの複合窒化物[以下、(T
i,Al)Nで示す]で構成された硬質被覆層を0.8
〜15μmの平均層厚で蒸着することにより被覆超硬工
具を製造することが知られている。 【0004】 【発明が解決しようとする課題】近年の切削加工装置の
FA化はめざましく、一方で切削加工に対する省力化お
よび省エネ化、さらに低コスト化の要求は強く、これに
伴い、切削工具には1種類の工具できるだけ多くの材種
の被削材を切削加工できる汎用性が求められると共に、
切削加工も高速化の傾向にあるが、上記の従来被覆超硬
工具においては、これを鋼や鋳鉄などの通常の条件での
切削加工に用いた場合には問題はないが、これをきわめ
て粘性の高いステンレス鋼や軟鋼などの被削材の高速切
削に用いた場合には、これら被削材の切粉は、硬質被覆
層を構成する(Ti,Al)N層に対する親和性が高い
ために、切刃表面に溶着し易く、この溶着現象は切削加
工が高速化すればするほど顕著に現れるようになり、こ
の溶着現象が原因で切刃部にチッピングが発生し、この
結果比較的短時間で使用寿命に至るのが現状である。 【0005】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特にステンレス鋼や軟鋼などの
高速切削加工に用いた場合にも、切刃表面に切粉の溶着
し難い被覆超硬工具を開発すべく、特に上記の従来被覆
超硬工具に着目し、研究を行った結果、(a)例えば原
料粉末として、Ti粉末およびAl粉末、さらに酸化ジ
ルコニウム(以下、ZrO2で示す)粉末を用い、これ
ら原料粉末を所定の配合割合に配合し、混合した後、圧
粉体にプレス成形し、この圧粉体を、通常の条件、例え
ば真空雰囲気中、500〜600℃の範囲内の所定の温
度に所定時間保持の条件で焼結して、所定の組成をもっ
た焼結体を形成し、この焼結体をカソード電極(蒸発
源)として用いて、例えばアークイオンプレーティング
装置にて、反応ガスとして窒素ガスを導入して、上記超
硬基体表面に硬質被覆層を形成すると、形成された硬質
被覆層は、(Ti,Al)Nの素地にZrO2相が分散
分布した組織をもつものとなること。 【0006】(b)上記(a)で得られた被覆超硬工具
の硬質被覆層におけるZrO2相は、特にステンレス鋼
や軟鋼などの粘性の高い難削材に対する親和性がきわめ
て低く、これは高い発熱を伴なう高速切削加工でも変わ
らない性質をもつことから、前記硬質被覆層の素地を、
組成式:(Ti1-XAlX)Nで表わした場合、原子比
で、X:0.45〜0.75を満足する組成に特定した
上で、かつ前記素地に分散分布するZrO2相の割合を
オージェ分光分析装置による断面分析で0.3〜15面
積%とすると、この結果の硬質被覆層は前記素地によっ
てすぐれた靭性と高温硬さ、そして前記ZrO2相によ
ってすぐれた表面潤滑性をが保持するようになり、した
がって、この硬質被覆層を0.8〜15μmの平均層厚
で形成してなる被覆超硬工具は、特にステンレス鋼や軟
鋼などの粘性の高い難削材の切削でも切粉が切刃に溶着
することがなく、これはさらに一段と高い発熱を伴う高
速切削加工でも変わらず、この結果切刃にチッピングの
発生がなくなり、長期に亘ってすぐれた切削性能を発揮
するようになること。以上(a)および(b)に示され
る研究結果を得たのである。 【0007】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、組成式:(T
1-XAlX)N(ただし、原子比で、Xは0.45〜
0.75)を有する(Ti,Al)Nからなる素地に、
ZrO2相が、オージェ分光分析装置による断面分析で
0.3〜15面積%の割合で分散分布した組織を有する
硬質被覆層を0.8〜15μmの平均層厚で物理蒸着し
てなる、切粉に対する表面潤滑性にすぐれた被覆超硬工
具に特徴を有するものである。 【0008】なお、この発明の被覆超硬工具において、
硬質被覆層の素地を構成する(Ti,Al)Nにおける
AlはTiNに対して高温硬さを向上させるために固溶
するものであり、したがって組成式:(Ti1-XAlX
NのX値が原子比で0.45未満では所望の高温硬さを
確保することができず、一方その値が同0.75を越え
ると、TiNによってもたらされるすぐれた靭性が急激
に低下するようになり、切刃部にチッピングが発生し易
くなるという理由で、X値を原子比で0.45〜0.7
5、望ましくは0.5〜0.7と定めた。 【0009】また、硬質被覆層の素地に分散分布するZ
rO2相は、上記の通り硬質被覆層にすぐれた表面潤滑
性を付与し、特に高い発熱を伴なうステンレス鋼や軟鋼
などの粘性の高い難削材の高速切削でも切粉が切刃に溶
着するのを著しく抑制する作用をもつが、硬質被覆層に
おけるZrO2相の割合が、オージェ分光分析装置によ
る断面分析で0.3面積%未満では前記作用に所望の効
果が得られず、一方同割合が15面積%を超えると素地
によってもたらされる高靭性が急激に低下し、切刃にチ
ッピングが発生し易くなることから、ZrO2相の硬質
被覆層における割合を0.3〜15面積%、望ましくは
1〜12面積%と定めた。 【0010】さらに、硬質被覆層の平均層厚を0.8〜
15μmとしたのは、その層厚が0.8μmでは所望の
すぐれた耐摩耗性を長期に亘って確保することができ
ず、一方その層厚が15μmを越えると、切刃にチッピ
ングが発生し易くなるという理由によるものである。 【0011】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの範
囲内の所定の平均粒径を有するWC粉末、TiC粉末、
ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr
3 2 粉末、TiN粉末、TaN粉末、およびCo粉末
を用意し、これら原料粉末を、表1に示される配合組成
に配合し、ボールミルで72時間湿式混合し、乾燥した
後、100MPa の圧力で圧粉体にプレス成形し、こ
の圧粉体を6Paの真空中、温度:1400℃に1時間
保持の条件で焼結し、焼結後、切刃部分にR:0.05
のホーニング加工を施してISO規格・CNMG120
408の形状をもったWC基超硬合金製のチップ超硬基
体A1〜A10を形成した。 【0012】また、原料粉末として、いずれも0.5〜
2μmの範囲内の所定の平均粒径を有するTiCN(重
量比でTiC/TiN=50/50)粉末、Mo2 C粉
末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、
Co粉末、およびNi粉末を用意し、これら原料粉末
を、表2に示される配合組成に配合し、ボールミルで2
4時間湿式混合し、乾燥した後、100MPaの圧力で
圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰
囲気中、温度:1500℃に1時間保持の条件で焼結
し、焼結後、切刃部分にR:0.03のホーニング加工
を施してISO規格・CNMG120408の形状をも
ったTiCN系サーメット製のチップ超硬基体B1〜B
6を形成した。 【0013】さらに、原料粉末として、いずれも0.5
〜2μmの範囲内の所定の平均粒径を有するTi粉末お
よびAl粉末、さらにZrO2粉末を用い、これら原料
粉末を所定の配合組成に配合し、ボールミルで72時間
湿式混合し、乾燥した後、100MPa の圧力で圧粉
体にプレス成形し、この圧粉体を6Paの真空中、50
0〜600℃の範囲内の所定の温度に1時間保持の条件
で焼結して、Ti、Al、およびZrO2の含有割合を
所定の含有割合とした種々のカソード電極用焼結体(本
発明硬質被覆層形成用焼結体)を製造した。また、比較
の目的で、ZrO2粉末の配合を行わない以外は同一の
条件でTiおよびAlの含有割合を所定の含有割合とし
た種々のカソード電極用焼結体(従来硬質被覆層形成用
焼結体)を製造した。 【0014】ついで、これらチップ超硬基体A1〜A1
0およびB1〜B6を、アセトン中で超音波洗浄し、乾
燥した状態で、それぞれ図1に例示される通常のアーク
イオンプレーティング装置に装入し、一方カソード電極
(蒸発源)として上記の本発明硬質被覆層形成用焼結体
または従来硬質被覆層形成用焼結体を装着し、装置内を
排気して1.3×10-3Paの真空に保持しながら、ヒ
ーターで装置内を500℃に加熱した後、Arガスを装
置内に導入して2.5PaのAr雰囲気とし、この状態
で超硬基体に−800Vのバイアス電圧を印加して超硬
基体表面をArガスボンバート洗浄し、ついで装置内を
2.5Paの窒素ガス(反応ガス)の雰囲気とすると共
に、前記超硬基体に印加するバイアス電圧を−100V
に下げて、前記カソード電極とアノード電極との間にア
ーク放電を発生させ、もって前記超硬基体A1〜A10
およびB1〜B6のそれぞれの表面に、表3、4に示さ
れる目標組成および目標層厚の硬質被覆層を蒸着するこ
とにより、本発明被覆超硬工具としての本発明表面被覆
超硬合金製スローアウエイチップ(以下、本発明被覆超
硬チップと云う)1〜20、および従来被覆超硬工具と
しての従来表面被覆超硬合金製スローアウエイチップ
(以下、従来被覆超硬チップと云う)1〜19をそれぞ
れ製造した。 【0015】なお、この結果得られた本発明被覆超硬チ
ップ1〜20および従来被覆超硬チップ1〜19の硬質
被覆層について、その厚さ断面中央部をオージェ分光分
析装置を用いて、素地のX値およびZrO2相の分布割
合を測定したところ、それぞれ表3、4に示される素地
の目標X値およびZrO2相の目標割合と実質的に同じ
値を示し、また、その厚さを、走査型電子顕微鏡を用い
て断面測定したところ、いずれも同じく表3、4に示さ
れる目標層厚と実質的に同じ平均値(5点測定の平均
値)を示した。 【0016】つぎに、上記本発明被覆超硬チップ1〜2
0および従来被覆超硬チップ1〜19について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、本発明被覆超硬チップ1〜12および従来被覆超
硬チップ1〜12ついては、 被削材:JIS・SUS304の丸棒、 切削速度:200m/min.、 切り込み:2mm、 送り:0.25mm/rev.、 切削時間:10分、 の条件でのステンレス鋼の乾式高速連続切削試験、 被削材:JIS・S10Cの丸棒、 切削速度:350m/min.、 切り込み:1.5mm、 送り:0.22mm/rev.、 切削時間:10分、 の条件での軟鋼の乾式高速連続切削試験を行い、また本
発明被覆超硬チップ13〜20および従来被覆超硬チッ
プ13〜19ついては、 被削材:JIS・SUS304の丸棒、 切削速度:250m/min.、 切り込み:1.5mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件でのステンレス鋼の乾式高速連続切削試験、 被削材:JIS・S10Cの丸棒、 切削速度:400m/min.、 切り込み:2.0mm、 送り:0.25mm/rev.、 切削時間:10分、 の条件での軟鋼の乾式高速連続切削試験を行い、いずれ
の切削試験でも切刃部の逃げ面摩耗幅を測定した。この
測定結果を表3、4に示した。 【0017】 【表1】 【0018】 【表2】 【0019】 【表3】【0020】 【表4】【0021】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、および同1.8μmのCo
粉末を用意し、これら原料粉末をそれぞれ表5に示され
る配合組成に配合し、さらにワックスを加えてアセトン
中で24時間ボールミル混合し、減圧乾燥した後、10
0MPaの圧力で所定形状の各種の圧粉体にプレス成形
し、これらの圧粉体を、6Paの真空雰囲気中、7℃/
分の昇温速度で1370〜1470℃の範囲内の所定の
温度に昇温し、この温度に1時間保持後、炉冷の条件で
焼結して、直径が8mm、13mm、および26mmの
3種の超硬基体形成用丸棒焼結体を形成し、この3種の
丸棒焼結体から、研削加工にて、表5に示される組み合
わせで、切刃部の直径×長さが、それぞれ6mm×13
mm、10mm×22mm、および20mm×45mm
の寸法をもった6枚刃スクエア形状のエンドミル超硬基
体a〜hをそれぞれ製造した。 【0022】ついで、これらのエンドミル超硬基体a〜
hのそれぞれを、アセトン中で超音波洗浄し、乾燥した
状態で、同じく図1に例示される通常のアークイオンプ
レーティング装置に装入し、上記実施例1と同一の条件
で、表6、7に示される目標組成および目標層厚をもっ
た硬質被覆層を蒸着することにより、本発明被覆超硬工
具としての本発明表面被覆超硬合金製エンドミル(以
下、本発明被覆超硬エンドミルと云う)1〜16および
従来被覆超硬工具としての従来表面被覆超硬合金製エン
ドミル(以下、従来被覆超硬エンドミルと云う)1〜8
をそれぞれ製造した。 【0023】また、この結果得られた本発明被覆超硬エ
ンドミル1〜16および従来被覆超硬エンドミル1〜8
の硬質被覆層について、その厚さ断面中央部をオージェ
分光分析装置を用いて、素地のX値およびZrO2相の
分布割合を測定したところ、それぞれ表6、7に示され
る素地の目標X値およびZrO2相の目標割合と実質的
に同じ値を示し、また、その厚さを、走査型電子顕微鏡
を用いて断面測定したところ、いずれも同じく表6、7
に示される目標層厚と実質的に同じ平均値(5点測定の
平均値)を示した。 【0024】つぎに、上記本発明被覆超硬エンドミル1
〜16および従来被覆超硬エンドミル1〜8のうち、本
発明被覆超硬エンドミル1〜6および従来被覆超硬エン
ドミル1〜3ついては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SUS304の板材、 切削速度:75m/min.、 半径方向切込み:1mm、 軸方向切込み:6mm、 テーブル送り:0.2m/分、 形態:乾式(エアーブロー)、 の条件でのステンレス鋼の高速側面切削試験、本発明被
覆超硬エンドミル7〜12および従来被覆超硬エンドミ
ル4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S10Cの板材、 切削速度:300m/min.、 半径方向切込み:1.5mm、 軸方向切込み:12mm、 テーブル送り:0.5m/分、 形態:乾式(エアーブロー)、 の条件での軟鋼の高速側面切削試験、本発明被覆超硬エ
ンドミル13〜16、および従来被覆超硬エンドミル7
〜8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SUS304の板材、 切削速度:35m/min.、 軸方向切込み:5mm×10回での溝加工、 テーブル送り:0.06m/分、 形態:乾式(エアーブロー)、 の条件でのステンレス鋼の高速溝切削試験、をそれぞれ
行い、いずれの切削試験でも外周刃の逃げ面摩耗幅が使
用寿命の目安とされる0.1mmに至るまでの切削長を
測定した。この測定結果を表6、7にそれぞれ示した。 【0025】 【表5】 【0026】 【表6】【0027】 【表7】 【0028】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体a〜c形成用)、13mm(超硬
基体d〜f形成用)、および26mm(超硬基体g、h
形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼
結体から、研削加工にて、溝形成部の直径×長さがそれ
ぞれ4mm×13mm(超硬基体a’〜c’)、8mm
×22mm(超硬基体d’〜f’)、および16mm×
45mm(超硬基体g’、h’)の寸法をもったドリル
超硬基体a’〜h’をそれぞれ製造した。 【0029】ついで、これらのドリル超硬基体a’〜
h’のそれぞれを、アセトン中で超音波洗浄し、乾燥し
た状態で、同じく図1に例示される通常のアークイオン
プレーティング装置に装入し、上記実施例1と同一の条
件で、表8、9に示される目標組成および目標層厚をも
った硬質被覆層を蒸着することにより、本発明被覆超硬
工具としての本発明表面被覆超硬合金製ドリル(以下、
本発明被覆超硬ドリルと云う)1〜16、および従来被
覆超硬工具としての従来表面被覆超硬合金製ドリル(以
下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造
した。 【0030】さらに、この結果得られた本発明被覆超硬
ドリル1〜16および従来被覆超硬ドリル1〜8の硬質
被覆層についても、その厚さ断面中央部をオージェ分光
分析装置を用いて、素地のX値およびZrO2相の分布
割合を測定したところ、それぞれ表8、9に示される素
地の目標X値およびZrO2相の目標割合と実質的に同
じ値を示し、また、その厚さを、走査型電子顕微鏡を用
いて断面測定したところ、いずれも同じく表8、9に示
される目標割合および目標層厚と実質的に同じ平均値
(5点測定の平均値)を示した。 【0031】つぎに、上記本発明被覆超硬ドリル1〜1
6および従来被覆超硬ドリル1〜8のうち、本発明被覆
超硬ドリル1〜6および従来被覆超硬ドリル1〜3につ
いては、 被削材:平面寸法:100mm×250厚さ:8mmの
JIS・SUS304の板材、 切削速度:30m/min.、 送り:0.12mm/rev、 の条件でのステンレス鋼の湿式高速穴あけ切削加工試験
(水溶性切削油使用)、本発明被覆超硬ドリル7〜12
よび従来被覆超硬ドリル4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:1
6mmのJIS・SUS304板材、 切削速度:30m/min.、 送り:0.22mm/rev、 の条件でのステンレス鋼の湿式高速穴あけ切削加工試験
(水溶性切削油使用)、本発明被覆超硬ドリル13〜1
6および従来被覆超硬ドリル7、8については、 被削材:平面寸法:100mm×250mm、厚さ:3
2mmのJIS・S15Cの板材、 切削速度:60m/min.、 送り:0.3mm/rev、 の条件での軟鋼の湿式高速穴あけ切削加工試験(水溶性
切削油使用)、をそれぞれ行い、いずれの湿式高速穴あ
け切削加工試験でも先端切刃面の逃げ面摩耗幅が0.3
mmに至るまでの穴あけ加工数を測定した。この測定結
果を表8、9にそれぞれ示した。 【0032】 【表8】 【0033】 【表9】 【0034】 【発明の効果】表3〜9に示される結果から、(Ti,
Al)Nの素地にZrO2相が分散分布した組織を有す
る硬質被覆層を形成してなる本発明被覆超硬工具は、い
ずれもステンレス鋼や軟鋼の切削加工を高い発熱を伴う
高速で行っても、前記ZrO2相が高温加熱の切粉との
親和性を著しく低減し、これによって切粉が溶着するこ
とが抑制されるようになり、切刃は常にすぐれた表面潤
滑性を維持することから、切刃への切粉溶着が原因のチ
ッピングが切刃に発生することがなく、すぐれた耐摩耗
性を発揮するのに対して、(Ti,Al)Nの素地にZ
rO2相が存在しない硬質被覆層を形成してなる従来被
覆超硬工具においては、特にステンレス鋼や軟鋼の高速
切削では切粉が硬質被覆層に溶着し易く、これが原因で
切刃にチッピングが発生し、比較的短時間で使用寿命に
至ることが明らかである。上述のように、この発明の被
覆超硬工具は、各種の鋼や鋳鉄などの通常の条件での切
削加工は勿論のこと、特に粘性が高く、切粉が切刃表面
に溶着し易いステンレス鋼や軟鋼などの高速切削加工で
も切粉に対してすぐれた表面潤滑性を発揮し、汎用性の
ある切削性能を示すものであるから、切削加工装置のF
A化並びに切削加工の省力化および省エネ化、さらに低
コスト化に十分満足に対応できるものである。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a table for cutting chips.
Excellent surface lubrication and therefore especially stainless steel and mild steel
Etc., which are extremely viscous, and chips are welded to the cutting surface
Even when used for high-speed cutting of difficult-to-cut materials,
Chipping (small chipping) caused by high stickiness of the chips
Excellent cutting performance over a long period of time without any occurrence
Surface-coated cemented carbide cutting tools (hereinafter referred to as coated carbide tools)
It is about). [0002] 2. Description of the Related Art Generally, cutting tools include various types of steel and cast iron.
For turning or planing of work materials such as
The throw-away head used detachably attached to
Drills used for drilling and cutting the work material
Tools and miniature drills,
Solid type end used for groove processing, shoulder processing, etc.
Domill, etc.
Removably attached to the solid type end mill
Similarly, a slow-away end mill tool that performs cutting
Which is known. In general, for example, FIG.
Arc ion play, one of the physical vapor deposition devices shown
Using a heating device, basically the inside of the device with a heater
For example, the atmosphere is 1.3 × 10-3As a vacuum of Pa, 500
With the anode electrode and the prescribed composition heated to a temperature of
Electrode (a steam electrode) on which a Ti-Al alloy having
Source), for example, voltage: 35 V, current: 100 A
Arc discharge is generated under the conditions
Nitrogen gas is introduced as the source, while tungsten carbide (hereinafter
Below, indicated by WC) base cemented carbide or titanium carbonitride (hereinafter referred to as WC)
A substrate (hereinafter, referred to as TiCN) comprising a base cermet (hereinafter referred to as TiCN)
Below, these are collectively referred to as a super-hard substrate).
Under the condition that a bias voltage of 100 V is applied,
For example, it is described in JP-A-62-56565.
As described, a composite nitride of Ti and Al [hereinafter, (T
i, Al) N] to form a hard coating layer of 0.8
Carbide coating by vapor deposition with an average layer thickness of ~ 15μm
It is known to manufacture tools. [0004] SUMMARY OF THE INVENTION In recent years,
The adoption of FA is remarkable, while saving labor for cutting.
There is a strong demand for energy saving, energy saving, and cost reduction.
As a result, cutting tools have as many grades as possible
Versatility that can cut the work material of
Cutting also tends to be faster, but the above-mentioned conventional coated carbide
For tools, this can be done under normal conditions such as steel or cast iron.
There is no problem when used for cutting, but this is extremely important
High-speed cutting of work materials such as stainless steel and mild steel with high viscosity
When used for cutting, the chips of these materials are hard-coated
High affinity for the (Ti, Al) N layer forming the layer
Therefore, it is easy to weld on the cutting blade surface, and this welding phenomenon
The faster the process, the more noticeable it becomes.
Chipping occurs at the cutting edge due to the welding phenomenon of
As a result, at present, the service life is reached in a relatively short time. [0005] Means for Solving the Problems Accordingly, the present inventors have
From the viewpoints described above, especially for stainless steel and mild steel
Even when used for high-speed cutting, welding of chips to the cutting blade surface
In order to develop coated carbide tools that are difficult to coat,
As a result of conducting research with a focus on carbide tools, (a)
Powder, Ti powder and Al powder,
Ruconium (hereinafter ZrO)TwoUsing a powder)
The raw material powders are blended in a prescribed blending ratio, mixed,
Press molding into a powder, and then press this green compact under normal conditions, such as
For example, in a vacuum atmosphere, a predetermined temperature in the range of 500 to 600 ° C.
Each time, sinter under the condition of holding for a predetermined time, and
A sintered body is formed, and this sintered body is
Source), for example, arc ion plating
Introduce nitrogen gas as a reaction gas in the
When a hard coating layer is formed on the surface of a hard substrate,
The coating layer is made of ZrO on a (Ti, Al) N substrate.TwoPhase dispersed
To have a distributed tissue. (B) Coated carbide tool obtained in (a) above
ZrO in the hard coating layer ofTwoPhase, especially stainless steel
Affinity for highly viscous hard-to-cut materials such as steel and mild steel
Low, which is the same for high-speed cutting with high heat generation
Since the base material of the hard coating layer has
Composition formula: (Ti1-XAlX) When represented by N, atomic ratio
X: specified to a composition satisfying 0.45 to 0.75
ZrO distributed on the substrate and aboveTwoPhase proportion
0.3-15 faces by cross-sectional analysis using Auger spectrometer
%, The resulting hard coating layer depends on the substrate.
Excellent toughness and high temperature hardness, and ZrOTwoBy phase
Has excellent surface lubricity.
Accordingly, this hard coating layer has an average layer thickness of 0.8 to 15 μm.
Coated cemented carbide tools made of
Chips adhere to the cutting edge even when cutting highly viscous materials such as steel
Without the need for additional heat
Even in high-speed cutting, as a result, chipping of the cutting edge
Eliminates generation and demonstrates excellent cutting performance over a long period
To be able to As shown in (a) and (b) above,
The research results obtained were as follows. The present invention has been made based on the above research results.
And the surface of the cemented carbide substrate has a composition formula: (T
i1-XAlX) N (where X is 0.45
(Ti, Al) N having 0.75)
ZrOTwoPhase is analyzed by cross section analysis using Auger spectrometer
Has a structure distributed and distributed at a rate of 0.3 to 15 area%
Physical vapor deposition of a hard coating layer with an average layer thickness of 0.8 to 15 μm
Coated carbide with excellent surface lubricity against chips
The tool has features. [0008] In the coated carbide tool of the present invention,
In (Ti, Al) N constituting the base material of the hard coating layer
Al dissolves in TiN to improve high temperature hardness
Therefore, the composition formula: (Ti1-XAlX)
If the X value of N is less than 0.45 in atomic ratio, the desired high-temperature hardness
Could not be secured, while its value exceeded 0.75
The excellent toughness provided by TiN
And chipping easily occurs at the cutting edge
The X value is 0.45 to 0.7 in atomic ratio.
5, preferably 0.5 to 0.7. Further, Z distributed and distributed on the base material of the hard coating layer
rOTwoPhase is surface lubrication excellent in hard coating layer as described above
Stainless steel and mild steel that impart properties and generate particularly high heat
Even when cutting high-viscosity difficult-to-cut materials such as
It has the effect of significantly suppressing adhesion,
ZrOTwoThe phase ratio is determined by the Auger spectrometer.
If the cross-sectional analysis is less than 0.3 area%,
No fruit is obtained, while the same ratio exceeds 15 area%
The high toughness provided by the
ZrO is likely to occur due toTwoPhase hard
The ratio in the coating layer is 0.3 to 15 area%, preferably
It was determined as 1 to 12 area%. Further, the hard coating layer has an average thickness of 0.8 to
The reason why the thickness is set to 15 μm is that the desired thickness is 0.8 μm.
Excellent wear resistance can be secured for a long time
On the other hand, if the layer thickness exceeds 15 μm,
This is due to the fact that aging tends to occur. [0011] DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a coated carbide tool of the present invention
Will be specifically described with reference to examples. (Example 1) As raw material powders,
WC powder, TiC powder having a predetermined average particle size in the box,
ZrC powder, VC powder, TaC powder, NbC powder, Cr
ThreeC TwoPowder, TiN powder, TaN powder, and Co powder
Are prepared, and these raw material powders are mixed with the composition shown in Table 1.
And wet-mixed in a ball mill for 72 hours and dried.
Then, it is pressed into a green compact at a pressure of 100 MPa,
In vacuum of 6 Pa, temperature: 1400 ° C for 1 hour
Sinter under the condition of holding, and after sintering, R: 0.05
Honing process, ISO standard, CNMG120
WC-based cemented carbide tip cemented carbide with 408 shape
The bodies A1 to A10 were formed. In addition, as raw material powders,
TiCN (weight) having a predetermined average particle size in the range of 2 μm
TiC / TiN = 50/50 in quantitative ratio) powder, MoTwoC powder
Powder, ZrC powder, NbC powder, TaC powder, WC powder,
Prepare Co powder and Ni powder,
Was blended into the composition shown in Table 2, and 2
After 4 hours of wet mixing and drying, at a pressure of 100 MPa
It is press-molded into a green compact, and this green compact is
Sintering at ambient temperature: 1500 ℃ for 1 hour
And after sintering, honing of R: 0.03 on the cutting edge
To the shape of ISO standard CNMG120408
TiCN-based cermet chip carbide substrate B1 to B
6 was formed. Further, as raw material powders,
Ti powder having a predetermined average particle size in the range of
And Al powder, and ZrOTwoUsing powder, these raw materials
Mix the powder into the specified composition and use a ball mill for 72 hours
After wet-mixing and drying, it is compacted at a pressure of 100 MPa.
The green compact is pressed in a vacuum of 6 Pa for 50
Conditions for holding at a predetermined temperature in the range of 0 to 600 ° C. for 1 hour
And Ti, Al, and ZrOTwoContent ratio
Various sintered bodies for cathode electrodes with predetermined content ratio (this
Inventive sintered body for forming a hard coating layer) was manufactured. Also compare
For the purpose ofTwoThe same except that the powder is not blended
Under the conditions, the content ratio of Ti and Al is set to a predetermined content ratio.
Various types of sintered bodies for cathode electrodes (formerly used for forming a hard coating layer)
(Sintered body) was manufactured. Next, these chip cemented carbide substrates A1 to A1
0 and B1-B6 were ultrasonically cleaned in acetone and dried.
In the dry state, the normal arcs respectively illustrated in FIG.
Charged into the ion plating device, while the cathode electrode
The sintered body for forming a hard coating layer of the present invention as (evaporation source)
Or, mount the conventional sintered body for forming the hard coating layer and
Exhaust 1.3 x 10-3While maintaining the vacuum of Pa,
After heating the inside of the device to 500 ° C with a heater, Ar gas was
Ar atmosphere of 2.5 Pa by introducing into the chamber, this state
To apply a bias voltage of -800 V to the substrate
The substrate surface was cleaned by Ar gas bombarding, and then the inside of the device was cleaned.
When an atmosphere of 2.5 Pa nitrogen gas (reaction gas) is used,
The bias voltage applied to the super hard substrate is -100 V
To a gap between the cathode electrode and the anode electrode.
Discharges, thereby causing the super-hard substrates A1 to A10
And the surfaces of B1 to B6 are shown in Tables 3 and 4.
A hard coating layer with the target composition and target thickness
With the present invention, the surface coating of the present invention as a coated carbide tool of the present invention
Cemented carbide throwaway tips (hereinafter referred to as coated superalloys of the present invention)
1-20, which are called hard tips) and conventional coated carbide tools
Conventional surface coated cemented carbide throwaway tips
(Hereinafter referred to as conventional coated carbide tips) 1 to 19
Manufactured. The resulting coated cemented carbide chip of the present invention
Hardness of tips 1-20 and conventional coated carbide tips 1-19
The center of the thickness section of the coating layer is measured by Auger spectroscopy.
Value of the substrate and ZrOTwoPhase distribution
When the combination was measured, the substrates shown in Tables 3 and 4 respectively
Target X value and ZrOTwoSubstantially the same as the target ratio of the phase
Value and the thickness was measured using a scanning electron microscope.
Tables 3 and 4 also show cross-sectional measurements
Average value (average of 5 point measurements)
Value). Next, the coated cemented carbide tips 1-2 of the present invention will be described.
0 and the conventional coated carbide tips 1-19
Screwed to the tip of a tool steel bit with a fixing jig
In the state, the coated super hard tip 1 to 12 according to the present invention and the conventional super coated tip
For hard tips 1-12, Work material: JIS / SUS304 round bar, Cutting speed: 200 m / min. , Cut: 2mm, Feed: 0.25 mm / rev. , Cutting time: 10 minutes, Dry high-speed continuous cutting test of stainless steel under the conditions of Work material: JIS S10C round bar, Cutting speed: 350 m / min. , Cut: 1.5 mm, Feed: 0.22 mm / rev. , Cutting time: 10 minutes, Dry high-speed continuous cutting test of mild steel under the conditions of
Invention coated carbide tips 13-20 and conventional coated carbide chips
For steps 13-19, Work material: JIS / SUS304 round bar, Cutting speed: 250 m / min. , Cut: 1.5 mm, Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry high-speed continuous cutting test of stainless steel under the conditions of Work material: JIS S10C round bar, Cutting speed: 400 m / min. , Cut: 2.0 mm, Feed: 0.25 mm / rev. , Cutting time: 10 minutes, Dry high-speed continuous cutting test of mild steel under the conditions of
In the cutting test, the flank wear width of the cutting edge was also measured. this
The measurement results are shown in Tables 3 and 4. [0017] [Table 1] [0018] [Table 2] [0019] [Table 3][0020] [Table 4](Example 2) As raw material powder, average particle size:
Medium coarse WC powder with 5.5 μm, fine with 0.8 μm
WC powder, 1.3 μm TaC powder, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m CrThreeCTwo1.5 μm VC powder, 1.0 μm
μm of (Ti, W) C powder and 1.8 μm of Co
Powders are prepared, and these raw material powders are shown in Table 5 respectively.
And then add wax and acetone
After mixing in a ball mill for 24 hours and drying under reduced pressure,
Press molding into various compacts of specified shape at a pressure of 0 MPa
Then, these green compacts were placed in a vacuum atmosphere of 6 Pa at 7 ° C. /
A predetermined temperature within the range of 1370-1470 ° C.
Temperature, hold at this temperature for 1 hour, and then
Sintered to 8mm, 13mm and 26mm diameter
Three kinds of round bar sintered bodies for forming a cemented carbide substrate were formed,
Combination shown in Table 5 by grinding from round bar sintered body
In addition, the diameter x length of the cutting edge is 6 mm x 13
mm, 10 mm x 22 mm, and 20 mm x 45 mm
6-flute square end mill carbide base with dimensions
The bodies a to h were produced respectively. Next, these end mill superhard substrates a to
h was ultrasonically cleaned in acetone and dried
In the state, a normal arc ion pump also illustrated in FIG.
The same conditions as in Example 1 above were loaded into the rating device.
With the target composition and target layer thickness shown in Tables 6 and 7,
By depositing a hard coating layer,
End mill made of the surface coated cemented carbide of the present invention
Below, referred to as the coated carbide end mill of the present invention) 1 to 16 and
Conventional surface coated cemented carbide alloy as conventional coated carbide tool
Domill (hereinafter referred to as conventional coated carbide end mill) 1 to 8
Was manufactured respectively. Further, the resulting coated cemented carbide of the present invention
Mills 1-16 and conventional coated carbide end mills 1-8
Auger the center of the thickness section of the hard coating layer
Using a spectroscopic analyzer, the X value of the substrate and ZrOTwoPhase
When the distribution ratio was measured, it is shown in Tables 6 and 7, respectively.
Target X value and ZrOTwoPhase target ratio and substantive
And the thickness is measured by a scanning electron microscope.
When the cross section was measured by using
The average value is substantially the same as the target layer thickness shown in
Average). Next, the coated carbide end mill 1 of the present invention will be described.
-16 and conventional coated carbide end mills 1-8
Invention coated carbide end mills 1-6 and conventional coated carbide end mills
For Domil 1-3, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS SUS304 plate, Cutting speed: 75 m / min. , Radial depth of cut: 1mm Axial depth of cut: 6mm Table feed: 0.2m / min, Form: dry type (air blow), Speed cutting test of stainless steel under conditions of
Coated carbide end mills 7-12 and conventional coated carbide end mills
About le 4-6, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS S10C plate, Cutting speed: 300 m / min. , Radial depth of cut: 1.5mm, Axial depth of cut: 12mm, Table feed: 0.5m / min, Form: dry type (air blow), Speed cutting test of mild steel under conditions of
Mills 13 to 16 and conventional coated carbide end mill 7
For ~ 8, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS SUS304 plate, Cutting speed: 35 m / min. , Axial depth of cut: Groove processing at 5mm x 10 times, Table feed: 0.06 m / min, Form: dry type (air blow), In the conditions of stainless steel high speed groove cutting test, each
In all cutting tests, the flank wear width of the outer peripheral edge was used.
The cutting length up to 0.1 mm, which is a guide for service life,
It was measured. The measurement results are shown in Tables 6 and 7, respectively. [0025] [Table 5] [0026] [Table 6][0027] [Table 7] (Example 3)
Diameter 8 mm (for forming super hard bases a to c), 13 mm (super hard
For forming substrates d to f) and 26 mm (carbide substrates g and h)
(For forming) three kinds of round bar sintered bodies
The diameter x length of the groove forming part is
4 mm x 13 mm (carbide substrate a 'to c'), 8 mm each
× 22 mm (ultra-hard substrate d ′ to f ′) and 16 mm ×
Drill with dimensions of 45 mm (carbide substrate g ', h')
Carbide substrates a 'to h' were respectively manufactured. Next, these drill superhard substrates a 'to
h ′ is ultrasonically cleaned in acetone, dried,
In the state of the normal arc ion also illustrated in FIG.
The same plate as in Example 1 was charged in the plating apparatus.
The target composition and target layer thickness shown in Tables 8 and 9
By depositing a hard coating layer,
A drill made of the surface-coated cemented carbide of the present invention as a tool (hereinafter, referred to as a tool)
The coated carbide drills of the present invention) 1 to 16 and the conventional coated drills
Conventional surface coated cemented carbide drills as coated carbide tools
(Below, called conventional coated carbide drills) 1 to 8
did. Furthermore, the resulting coated cemented carbide of the present invention
Hardness of drills 1-16 and conventional coated carbide drills 1-8
Auger spectroscopy of the center of the thickness section of the coating layer
Using an analyzer, the X value of the substrate and ZrOTwoPhase distribution
When the ratio was measured, the elements shown in Tables 8 and 9 were obtained, respectively.
Target X value and ZrOTwoSubstantially the same as the target ratio of the phase
And the thickness is measured using a scanning electron microscope.
Tables 8 and 9 show the results of cross-sectional measurements.
Average value substantially equal to target percentage and target layer thickness
(Average value of five-point measurements). Next, the coated carbide drills 1 to 1 according to the present invention will be described.
6 and the conventional coated carbide drills 1 to 8 according to the present invention
Carbide drills 1-6 and conventional coated carbide drills 1-3
And Work material: Plane dimensions: 100 mm x 250 Thickness: 8 mm
JIS / SUS304 plate, Cutting speed: 30 m / min. , Feed: 0.12 mm / rev, -Speed high-speed drilling test of stainless steel under various conditions
(Using water-soluble cutting oil), coated carbide drill of the present invention 7-12
And conventional coated carbide drills 4-6, Work material: plane dimensions: 100 mm x 250 mm, thickness: 1
6mm JIS SUS304 plate, Cutting speed: 30 m / min. , Feed: 0.22 mm / rev, -Speed high-speed drilling test of stainless steel under various conditions
(Using water-soluble cutting oil), coated carbide drills of the present invention 13-1
6 and conventional coated carbide drills 7 and 8 Work material: Plane dimensions: 100 mm x 250 mm, thickness: 3
2mm JIS S15C plate, Cutting speed: 60 m / min. , Feed: 0.3 mm / rev, High-speed drilling test for mild steel under conditions of
Using cutting oil), and perform any wet high-speed drilling.
The flank wear width of the tip cutting edge is 0.3
The number of drilling processes up to mm was measured. This measurement result
The results are shown in Tables 8 and 9, respectively. [0032] [Table 8] [0033] [Table 9] [0034] According to the results shown in Tables 3 to 9, (Ti,
Al) NrO on base materialTwoHas a phase-dispersed structure
The coated cemented carbide tool of the present invention having a hard coating layer
Displacement also involves high heat generation in cutting stainless steel and mild steel
Even at high speeds, the ZrOTwoPhase with high-temperature heated chips
Affinity is significantly reduced, which results in
And the cutting edge always has excellent surface moisture.
Since the lubricity is maintained, the chip caused by chip welding to the cutting edge
Excellent abrasion resistance with no cutting edge on the cutting edge
While exhibiting the property, the base material of (Ti, Al) N is Z
rOTwoConventional coating with hard coating layer without phase
In the case of coated carbide tools, especially high speed stainless steel and mild steel
In cutting, chips tend to adhere to the hard coating layer, which causes
Chipping occurs on the cutting edge, shortening the service life in a relatively short time
It is clear that it will lead. As mentioned above, the subject of the present invention is
Coated carbide tools can be cut under normal conditions such as various steels and cast irons.
Not only cutting, but also the viscosity is particularly high,
High-speed cutting of stainless steel and mild steel that are easily welded to
Also exhibits excellent surface lubricity against chips,
Since it shows a certain cutting performance, F
A and cutting and labor saving and energy saving
It can respond sufficiently to cost reduction.

【図面の簡単な説明】 【図1】アークイオンプレーティング装置の概略説明図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of an arc ion plating apparatus.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−56565(JP,A) 特開 平10−152768(JP,A) 特開 昭57−39168(JP,A) 特開 平8−158052(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23B 27/14 B23B 51/00 B23C 5/16 C23C 14/06 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-56565 (JP, A) JP-A-10-152768 (JP, A) JP-A-57-39168 (JP, A) JP-A 8- 158052 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B23B 27/14 B23B 51/00 B23C 5/16 C23C 14/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、組成式:(T
1-XAlX)N(ただし、原子比で、Xは0.45〜
0.75を示す)を有するTiとAlの複合窒化物から
なる素地に、酸化ジルコニウム相が、オージェ分光分析
装置による断面分析で0.3〜15面積%の割合で分散
分布した組織を有する硬質被覆層を0.8〜15μmの
平均層厚で物理蒸着してなる、切粉に対する表面潤滑性
にすぐれた表面被覆超硬合金製切削工具。
(57) [Claim 1] A composition formula: (T) is formed on the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate.
i 1-x Al x ) N (where X is 0.45 to
(Showing 0.75) on a substrate made of a composite nitride of Ti and Al having a structure in which a zirconium oxide phase is dispersed and distributed at a ratio of 0.3 to 15 area% by cross-sectional analysis using an Auger spectrometer. A cutting tool made of a surface-coated cemented carbide having excellent surface lubricity with respect to chips, wherein the coating layer is formed by physical vapor deposition with an average layer thickness of 0.8 to 15 μm.
JP2001186518A 2001-06-20 2001-06-20 Surface-coated cemented carbide cutting tool with excellent surface lubricity against chips Expired - Fee Related JP3475941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186518A JP3475941B2 (en) 2001-06-20 2001-06-20 Surface-coated cemented carbide cutting tool with excellent surface lubricity against chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186518A JP3475941B2 (en) 2001-06-20 2001-06-20 Surface-coated cemented carbide cutting tool with excellent surface lubricity against chips

Publications (2)

Publication Number Publication Date
JP2003001502A JP2003001502A (en) 2003-01-08
JP3475941B2 true JP3475941B2 (en) 2003-12-10

Family

ID=19025947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186518A Expired - Fee Related JP3475941B2 (en) 2001-06-20 2001-06-20 Surface-coated cemented carbide cutting tool with excellent surface lubricity against chips

Country Status (1)

Country Link
JP (1) JP3475941B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320652A1 (en) 2003-05-07 2004-12-02 Kennametal Widia Gmbh & Co.Kg Tool, especially a cutting tool, comprising a substrate member onto which at least one layer is deposited by means of chemical vapor deposition (CVD) used in machining operations, e.g. metal cutting
CA2524643C (en) * 2003-05-07 2010-11-02 Kennametal Widia Gmbh & Co. Kg Tool, especially cutting tool and method for the cvd deposition of a two phase layer on a substrate body
JP2005262414A (en) * 2004-03-22 2005-09-29 Mitsubishi Materials Kobe Tools Corp Surface-coated cermet cutting tool with hard coating layer having excellent abrasion resistance by high speed double cutting work of hard-to-cut material
JP2005288668A (en) * 2004-04-06 2005-10-20 Mitsubishi Materials Kobe Tools Corp Cutting tool made of surface-coated cermet having excellent anti-chipping property of hard coating layer in high-speed heavy cutting of difficult-to-cut material
JP2006068844A (en) * 2004-09-01 2006-03-16 Hitachi Tool Engineering Ltd Hard film coated small-diameter member

Also Published As

Publication number Publication date
JP2003001502A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP3475941B2 (en) Surface-coated cemented carbide cutting tool with excellent surface lubricity against chips
JP2002239810A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2002361502A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2003127003A (en) Cemented carbide-made cutting tool with surface clad whose rigid clad layer exerts excellent wear resistance in high velocity cutting machining
JP3508754B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer for excellent chip lubrication
JP2003117705A (en) Surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP2003145313A (en) Cutting tool of surface-coated cemented carbide with hard coat layer achieving excellent abrasion-resistance in high speed cutting
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2002254204A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3693018B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP3478276B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent chipping resistance in high-speed heavy cutting
JP2003025112A (en) Surface coated cemented carbide cutting tool excellent in surface lubricity for cutting chip
JP3508746B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent wear resistance in high speed cutting
JP3508748B2 (en) Surface-coated cemented carbide cutting tool with excellent heat-resistant plastic deformation with wear-resistant coating layer
JP3573115B2 (en) Surface-coated cemented carbide cutting tool with excellent surface lubricity to chips
JP2002126911A (en) Cutting tool made of surface-covered cemented carbide excellent in surface lubricity against chip
JP2002192402A (en) Surface coated-hard metal cutting tool having superior surface lubricity to chips
JP2003001504A (en) Cemented carbide-made cutting tool with surface clad exerting excellent chipping resistivity in high velocity cutting processing
JP2003145315A (en) Cutting tool of surface-coated cemented carbide with hard coat layer achieving high abrasion resistance in high speed cutting work
JP2003019604A (en) Surface coated cemented carbide cutting tool having hard coating layer with excellent heat radiation
JP2002273605A (en) Surface coat cemented carbide made cutting tool hard coat layer of which displays excellent chipping resistance in high speed heavy cutting work
JP2002254207A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees