JP3475535B2 - Charged particle beam transfer device - Google Patents

Charged particle beam transfer device

Info

Publication number
JP3475535B2
JP3475535B2 JP32909494A JP32909494A JP3475535B2 JP 3475535 B2 JP3475535 B2 JP 3475535B2 JP 32909494 A JP32909494 A JP 32909494A JP 32909494 A JP32909494 A JP 32909494A JP 3475535 B2 JP3475535 B2 JP 3475535B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
deflector
mask
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32909494A
Other languages
Japanese (ja)
Other versions
JPH08186070A (en
Inventor
護 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP32909494A priority Critical patent/JP3475535B2/en
Priority to US08/548,616 priority patent/US5689117A/en
Publication of JPH08186070A publication Critical patent/JPH08186070A/en
Priority to US08/871,971 priority patent/US5773838A/en
Priority to US08/871,966 priority patent/US5831274A/en
Application granted granted Critical
Publication of JP3475535B2 publication Critical patent/JP3475535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、荷電粒子線を用いてマ
スクのパターン像をターゲットに転写する荷電粒子線転
写装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam transfer apparatus for transferring a pattern image of a mask onto a target by using a charged particle beam.

【0002】[0002]

【従来の技術】半導体ウエハに集積回路パターンを焼き
付けるリソグラフィー装置の一種として、所定のパター
ンを備えたマスクに電子線を照射し、その照射範囲のパ
ターンの像を二段の投影レンズによりウエハに縮小転写
する電子線縮小転写装置が知られている(例えば特開平
5−160012号参照)。この種の装置では、マスク
の全範囲に一括して電子線を照射することができないの
で、光学系の視野を多数の小領域に分割し、小領域毎に
分割してパターン像を転写する(例えば米国特許第52
60151号参照)。なお、本明細書では、視野分割を
行なうときの分割前の視野を主視野、分割された一つ一
つの小領域を副視野と呼ぶ。
2. Description of the Related Art As a kind of lithography apparatus for printing an integrated circuit pattern on a semiconductor wafer, a mask having a predetermined pattern is irradiated with an electron beam, and an image of the pattern in the irradiation range is reduced to a wafer by a two-stage projection lens. An electron beam reduction transfer device for transferring is known (see, for example, Japanese Patent Laid-Open No. 5-160012). In this type of device, since it is not possible to irradiate the entire area of the mask with the electron beam collectively, the field of view of the optical system is divided into a large number of small regions, and the pattern image is transferred by dividing the small regions ( For example, US Pat. No. 52
60151). In the present specification, the field of view before division when field division is performed is called the main field of view, and each of the divided small areas is called the sub-field of view.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の装置で
は、マスクとターゲット(上記例ではウエハに相当す
る)との間を縮小率比で内分する点をクロスオーバと仮
定したとき、理論上はマスクに垂直に入射し電子線の主
光線がクロスオーバを通過する。ところが、投影レンズ
には球面収差があるため、各副視野で正焦点条件を満た
すようにレンズ条件を定めると、マスクに垂直に入射し
た電子線の主光線が必ずしもクロスオーバを通らず歪が
発生する。この歪を抑えるには、マスクに対する電子線
の垂直入射を諦め、電子線の主光線がクロスオーバを通
過するようにレンズ条件を設定する必要がある。クロス
オーバ〜ターゲット間も同様であって、ターゲットに対
する電子線の垂直性を満たすレンズ条件と、電子線がク
ロスオーバを通過するときのレンズ条件とは一致しな
い。従ってパターンの歪を小さくするには、ターゲット
に対する電子線の垂直入射を諦めざるを得ない。しかし
ながら、電子線の入射方向がターゲットの転写面と垂直
な方向から傾いていると、ターゲットの反り等で転写面
が光学系の光軸方向にずれたときパターンの転写位置が
ずれてパターン誤差となる。
In the above-mentioned conventional apparatus, it is theoretically assumed that the point where the mask and the target (corresponding to the wafer in the above example) are internally divided by the reduction ratio is a crossover. Enters the mask vertically and the chief ray of the electron beam passes through the crossover. However, since the projection lens has spherical aberration, if the lens conditions are set so that the positive focus condition is satisfied in each sub-field of view, the chief ray of the electron beam that is perpendicularly incident on the mask does not necessarily pass through the crossover and distortion occurs. To do. To suppress this distortion, it is necessary to give up the vertical incidence of the electron beam on the mask and set the lens conditions so that the principal ray of the electron beam passes through the crossover. The same applies between the crossover and the target, and the lens condition that satisfies the perpendicularity of the electron beam with respect to the target does not match the lens condition when the electron beam passes through the crossover. Therefore, in order to reduce the pattern distortion, there is no choice but to give up the vertical incidence of the electron beam on the target. However, if the incident direction of the electron beam is tilted from the direction perpendicular to the transfer surface of the target, when the transfer surface is displaced in the optical axis direction of the optical system due to the warp of the target, etc., the transfer position of the pattern is displaced, resulting in a pattern error. Become.

【0004】本発明の目的は、マスクやターゲットに対
する電子線の垂直入射条件と、電子線の主光線がクロス
オーバを通過する条件とを同時に満たすことができる荷
電粒子線転写装置を提供することにある。
An object of the present invention is to provide a charged particle beam transfer apparatus capable of simultaneously satisfying the conditions of vertical incidence of an electron beam on a mask and a target and the conditions under which a principal ray of the electron beam passes through a crossover. is there.

【0005】[0005]

【課題を解決するための手段】一実施例を示す図1、図
3および図5に対応付けて本発明を説明する。 (1)請求項1の発明は、荷電粒子線光学系の主視野を
複数の副視野(マスク側で4a,ターゲット側で10
b)に分割し、マスク4のパターン像を副視野毎に分割
してターゲット10に転写する荷電粒子線転写装置に適
用され、マスク4の前段に第1の角度調整用偏向器11
a,11bが二段配設され、複数の副視野のそれぞれで
荷電粒子線の主光線がマスク4にほぼ垂直に入射するよ
うに第1の角度調整用偏向器11a,11bのそれぞれ
の偏向角度が副視野毎に調整され、マスク4と荷電粒子
線光学系のクロスオーバCOとの間に角度調整用偏向器
12a,12bが二段配設され、複数の副視野のそれぞ
れにおいて第1の角度調整用偏向器11a,11bによ
りマスク4にほぼ垂直に入射した荷電粒子線の主光線が
クロスオーバCOを通過するように角度調整用偏向器1
2a,12bの偏向角度が副視野毎に調整される。(2)請求項4の発明は、荷電粒子線光学系の主視野を
複数の副視野(マスク側で4a,ターゲット側で10
b)に分割し、マスク4のパターン像を副視野毎に分割
してターゲット10に転写する荷電粒子線転写装置に適
用され、マスク4の前段に第1の角度調整用偏向器が配
設され、マスク4と荷電粒子線光学系のクロスオーバC
Oとの間に第2の角度調整用偏向器が配設され、複数の
副視野のそれぞれで荷電粒子線の主光線がマスク4にほ
ぼ垂直に入射してクロスオーバCOを通過するように角
度調整用偏向器の偏向角度が副視野毎に調整され、さら
に、荷電粒子線光学系の光軸AXと直交する面内で互い
に異なる第1方向(x軸方向)および第2方向(y軸方
向)のそれぞれに荷電粒子線を偏向可能な第1方向偏向
器(図示略)および第2方向偏向器が上記角度調整用偏
向器として配設され、荷電粒子線の主光線の回転方向に
関する垂直性および放射方向に関する垂直性の双方が第
1方向偏向器および第2方向偏向器で調整される。 (3)請求項5の発明は荷電粒子線光学系の主視野を複
数の副視野(マスク側で4a,ターゲット側で10b)
に分割し、マスク4のパターン像を副視野毎に分割して
ターゲット10に転写する荷電粒子線転写装置に適用さ
れ、荷電粒子線光 学系のクロスオーバCOとターゲット
10との間に角度調整用偏向器13a,13bが二段配
設され、複数の副視野のそれぞれで荷電粒子線の主光線
がターゲット10に対してほぼ垂直に入射するように、
角度調整用偏向器13a,13bの偏向角度が副視野毎
に調整される。 (4)請求項8の発明は荷電粒子線光学系の主視野を複
数の副視野(マスク側で4a,ターゲット側で10b)
に分割し、マスク4のパターン像を副視野毎に分割して
ターゲット10に転写する荷電粒子線転写装置に適用さ
れ、荷電粒子線光学系のクロスオーバCOとターゲット
10との間に角度調整用偏向器13a,13bが二段配
設され、複数の副視野のそれぞれで荷電粒子線の主光線
がターゲット10に対してほぼ垂直に入射するように、
角度調整用偏向器13a,13bの偏向角度が副視野毎
に調整され、さらに、荷電粒子線光学系の光軸AXと直
交する面内で互いに異なる第1方向および第2方向のそ
れぞれに荷電粒子線を偏向可能な第1方向偏向器(図示
略)および第2方向偏向器が上記角度調整用偏向器とし
て配設され、荷電粒子線の主光線の回転方向に関する垂
直性および放射方向に関する垂直性の双方が第1方向偏
向器および第2方向偏向器で調整される。
The present invention will be described with reference to FIGS. 1, 3 and 5 showing an embodiment . (1) In the invention of claim 1, the main visual field of the charged particle beam optical system is divided into a plurality of sub visual fields (4a on the mask side and 10 on the target side).
It is applied to a charged particle beam transfer apparatus which divides the pattern image of the mask 4 into sub-fields and transfers the pattern image to the target 10 by dividing the pattern image into the first angle adjusting deflector 11 in front of the mask 4.
a and 11b are arranged in two stages, and in each of a plurality of sub-fields of view
The chief ray of the charged particle beam enters the mask 4 almost vertically.
Each of the first angle adjusting deflectors 11a and 11b
Is adjusted deflection angle for each subfield, the angle adjustment deflector 12a between the mask 4 and the crossover CO charged particle beam optics, 12b are two-stage disposed, it of a plurality of subfields
In this case, the first angle adjusting deflectors 11a and 11b are used.
Angle adjusting deflector 1 so that the principal ray of the charged particle beam that is incident on the mask 4 almost vertically passes through the crossover CO.
The deflection angles of 2a and 12b are adjusted for each sub-field of view. (2) The invention of claim 4 provides a main field of view of the charged particle beam optical system.
Multiple sub-fields (4a on the mask side, 10 on the target side)
b), and the pattern image of the mask 4 is divided for each sub-field of view.
Suitable for charged particle beam transfer device
The first angle adjusting deflector is placed in front of the mask 4.
A crossover C between the mask 4 and the charged particle beam optical system is installed.
A second angle-adjusting deflector is arranged between O and
The chief ray of the charged particle beam is incident on the mask 4 in each of the sub-fields of view.
The angle is set so that the light enters vertically and passes through the crossover CO.
The deflection angle of the degree adjustment deflector is adjusted for each sub-field of view.
In the plane orthogonal to the optical axis AX of the charged particle beam optical system.
Different in the first direction (x-axis direction) and the second direction (y-axis direction)
Direction deflection capable of deflecting the charged particle beam in each direction
And a second direction deflector are provided for adjusting the angle.
It is arranged as a counter, and is arranged in the direction of rotation of the chief ray of the charged particle beam.
Both the verticality with respect to
It is adjusted by the one-direction deflector and the second-direction deflector. (3) In the invention of claim 5, the main field of view of the charged particle beam optical system is doubled.
Number of sub-fields (4a on mask side, 10b on target side)
And divide the pattern image of the mask 4 into subfields.
Applied to a charged particle beam transfer device that transfers to a target 10.
Is, crossover CO and the target of a charged particle beam optical science system
Two angle adjusting deflectors 13a and 13b are arranged between
The chief ray of the charged particle beam is set in each of the multiple sub-fields of view.
So as to enter the target 10 almost perpendicularly,
The deflection angles of the angle adjusting deflectors 13a and 13b are set for each sub-field of view.
Adjusted to. (4) According to the invention of claim 8, the main field of view of the charged particle beam optical system is
Number of sub-fields (4a on mask side, 10b on target side)
And divide the pattern image of the mask 4 into subfields.
Applied to a charged particle beam transfer device that transfers to a target 10.
And crossover CO of charged particle beam optical system and target
Two angle adjusting deflectors 13a and 13b are arranged between
The chief ray of the charged particle beam is set in each of the multiple sub-fields of view.
So as to enter the target 10 almost perpendicularly,
The deflection angles of the angle adjusting deflectors 13a and 13b are set for each sub-field of view.
Is adjusted to the optical axis AX of the charged particle beam optical system.
The first direction and the second direction, which are different from each other in the intersecting plane,
A first direction deflector (shown in the figure) capable of deflecting charged particle beams respectively.
And the second direction deflector is the angle adjusting deflector.
And the vertical direction of rotation of the chief ray of the charged particle beam.
Both the straightness and the perpendicularity with respect to the radial direction are the first direction deviations.
It is adjusted by the director and the second direction deflector.

【0006】[0006]

【作用】(1)請求項1の発明では、二段構成の第1の
角度調整用偏向器11a,11bによりすべての副視野
マスク4に対して荷電粒子線をほぼ垂直に入射させて
も、その後、主光線がクロスオーバCOを通過するよう
二段構成の第2の角度調整用偏向器12a,12bに
よりすべての副視野でビーム軌道を調整できる。また、
請求項2の発明では、偏向中心P1がマスク4上にある
ので、角度調整前と角度調整後とでマスク4に対する荷
電粒子線の入射位置が変化しない。 (2)請求項4の発明では、第1の角度調整用偏向器に
よりすべての副視野でマスク4に対して荷電粒子線をほ
ぼ垂直に入射させても、その後、主光線がクロスオーバ
COを通過するように第2の角度調整用偏向器によりす
べての副視野でビーム軌道を調整できる。また、二方向
の偏向器により、荷電粒子線の放射方向の垂直性と方位
角方向の垂直性の双方を同時に満たすことができる。 (3)請求項5の発明では、二段構成の角度調整用偏向
器13a,13bにより荷電粒子線の主光線がクロスオ
ーバCOを通過するようビーム軌道を設定しても、その
後、ターゲット10に対して荷電粒子線がほぼ垂直に入
射するように、すべての副視野でビーム軌道を調整でき
る。また、請求項6の発明では、偏向中心がターゲット
10上にあるので、角度調整前と角度調整後とでターゲ
ット10に対する荷電粒子線の入射位置が変化しない。 (4)請求項8の発明では、荷電粒子線の主光線がクロ
スオーバCOを通過するようビーム軌道を設定しても、
その後、ターゲット10に対して荷電粒子線がほぼ垂直
に入射するように、すべての副視野でビーム軌道を調整
できる。また、二方向の偏向器により、荷電粒子線の放
射方向の垂直性と方位角方向の垂直性の双方を同時に満
たすことができる。
(1) According to the invention of claim 1, the first embodiment of the two-stage configuration
Deflectors 11a and 11b for angle adjustment allow all sub-fields of view
Even if the charged particle beam is made to enter the mask 4 substantially perpendicularly, after that, all the sub-beams are made by the second angle adjusting deflectors 12a and 12b so that the principal ray passes through the crossover CO. The beam trajectory can be adjusted in the field of view. Also,
In the invention of claim 2, the deflection center P1 is on the mask 4.
Therefore, the load on the mask 4 before and after the angle adjustment
The incident position of the electron beam does not change. (2) In the invention of claim 4, in the first angle adjusting deflector,
In all sub fields, the charged particle beam is applied to the mask 4.
Even if it is incident vertically, the chief ray then crossovers.
The second angle adjusting deflector is used to pass CO.
The beam trajectory can be adjusted in all sub-fields of view. Also bi-directional
Of the charged particle beam's radial direction and azimuth
Both the verticality of the angular direction can be satisfied at the same time. (3) In the invention of claim 5, the angle adjusting deflection device has a two-stage structure.
The chief rays of the charged particle beam are crossed off by the vessels 13a and 13b.
Even if the beam trajectory is set to pass through the
After that, the charged particle beam enters the target 10 almost vertically.
Adjustable beam trajectory in all sub-fields of view
It In the invention of claim 6, the deflection center is the target.
Since it is on 10, target before and after angle adjustment
The incident position of the charged particle beam on the dot 10 does not change. (4) In the invention of claim 8, the chief ray of the charged particle beam is a black ray.
Even if the beam trajectory is set to pass through the over CO,
After that, the charged particle beam is almost perpendicular to the target 10.
Adjusts beam trajectories in all sub-fields so that
it can. In addition, the deflector in two directions emits a charged particle beam.
Both vertical and azimuth verticality are simultaneously satisfied.
You can do it.

【0007】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for making the present invention easy to understand. It is not limited to.

【0008】[0008]

【実施例】図1〜図7を参照して本発明の一実施例を説
明する。図1は本発明の実施例の電子線縮小転写装置の
概略を示し、1は電子銃、2は電子銃1から射出された
電子線を平行ビーム化するコンデンサレンズ、3a,3
bはコンデンサレンズ2を通過した電子線EBをマスク
4の所定位置へ導くための二段の視野選択偏向器、5は
マスク4を保持するマスクステージ、6a,6bはマス
ク4を通過した電子線を所定量偏向させる二段の転写位
置補正用偏向器、7は第1投影レンズ、8は第2投影レ
ンズ、9はウエハ10が載置されるウエハステージであ
る。マスク4の詳細は後述する。マスクステージ5は図
のx軸(図1で紙面と直交する方向)およびy軸方向に
移動可能である。ウエハステージ9はx軸およびy軸方
向への水平移動に加え、z軸方向にも昇降可能である。
なお、z軸方向は第1投影レンズ7および第2投影レン
ズ8の光軸AXの方向に一致し、x軸、y軸方向はz軸
に垂直な面内で互いに直交する。図2以降のx軸、y
軸、z軸はすべて図1と同じ取り方である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. FIG. 1 schematically shows an electron beam reduction transfer apparatus according to an embodiment of the present invention, 1 is an electron gun, 2 is a condenser lens for collimating an electron beam emitted from the electron gun 1, 3a, 3
Reference numeral b is a two-stage field-selecting deflector for guiding the electron beam EB that has passed through the condenser lens 2 to a predetermined position on the mask 4, reference numeral 5 is a mask stage that holds the mask 4, and reference numerals 6a and 6b are electron beams that have passed through the mask 4. Is a two-stage transfer position correction deflector for deflecting a predetermined amount of light, 7 is a first projection lens, 8 is a second projection lens, and 9 is a wafer stage on which a wafer 10 is mounted. Details of the mask 4 will be described later. The mask stage 5 is movable in the x-axis (the direction orthogonal to the paper surface in FIG. 1) and the y-axis direction in the figure. The wafer stage 9 can be moved vertically in the z-axis direction as well as horizontally moved in the x-axis and y-axis directions.
The z-axis direction coincides with the optical axis AX of the first projection lens 7 and the second projection lens 8, and the x-axis and y-axis directions are orthogonal to each other in a plane perpendicular to the z-axis. X axis and y after FIG. 2
The axes and the z-axis are all taken in the same way as in FIG.

【0009】上記の構成は従来の転写装置も備えるもの
であり、本実施例の装置は以下の構成に特徴を有する。
すなわち、本実施例ではマスク4の上方および下方にそ
れぞれ二段の角度調整偏向器11a,11b、12a,
12bが設けられ、ウエハステージ5の直前にも二段の
角度調整偏向器13a,13bが設けられている。これ
らの偏向器11a,11b,12a,12b,13a,
13bは、電子線をx軸方向へ偏向するものと、y軸方
向へ偏向するものの合計2組が設けられる。図ではy軸
方向に偏向するもののみを示している。2組設ける理由
は後述する。上記の偏向器11a,11b,12a,1
2b,13a,13bにより、マスク4およびウエハ1
0に対する電子線の垂直入射と、第1投影レンズ7を通
過した電子線の主光線のクロスオーバCOの通過とが同
時に満たされるよう電子線の角度が調整される。詳細は
後述する。
The above structure also includes a conventional transfer device, and the device of this embodiment is characterized by the following structure.
That is, in this embodiment, two stages of angle adjusting deflectors 11a, 11b, 12a, and 12b are provided above and below the mask 4, respectively.
12b is provided, and two-stage angle adjusting deflectors 13a and 13b are also provided immediately before the wafer stage 5. These deflectors 11a, 11b, 12a, 12b, 13a,
Two sets 13 b are provided, one for deflecting the electron beam in the x-axis direction and the other for deflecting the electron beam in the y-axis direction. In the figure, only those deflecting in the y-axis direction are shown. The reason for providing two pairs will be described later. The above deflectors 11a, 11b, 12a, 1
2b, 13a, 13b, mask 4 and wafer 1
The angle of the electron beam is adjusted so that the vertical incidence of the electron beam with respect to 0 and the passage of the crossover CO of the principal ray of the electron beam that has passed through the first projection lens 7 are simultaneously satisfied. Details will be described later.

【0010】偏向器11a,11b,12a,12b,
13a,13bの偏向感度は、制御装置20によりイン
タフェース21,22,23を介してそれぞれ個別に制
御される。制御装置20は転写装置全体の動作を制御す
るもので、上記の偏向感度の他にも、電子銃1、コンデ
ンサレンズ2、第1投影レンズ7および第2投影レンズ
8の設定状態を制御し、偏向器3a,3bおよび偏向器
6a,6bをそれぞれインターフェース24,25を介
して制御し、マスクステージ5およびウエハステージ9
のアクチュエータ26,27の動作を制御する。マスク
ステージ5のx軸およびy軸方向の位置と、ウエハステ
ージ9のx軸、y軸およびz軸方向の位置はそれぞれ位
置検出器28,29で検出され、検出された情報が制御
装置20に与えられる。30は転写条件等の各種情報を
制御装置20に入力するための入力装置、31はメモリ
である。
Deflectors 11a, 11b, 12a, 12b,
The deflection sensitivities of 13a and 13b are individually controlled by the controller 20 via the interfaces 21, 22 and 23. The control device 20 controls the operation of the entire transfer device, and controls the setting states of the electron gun 1, the condenser lens 2, the first projection lens 7 and the second projection lens 8 in addition to the above-mentioned deflection sensitivity. The deflectors 3a and 3b and the deflectors 6a and 6b are controlled via interfaces 24 and 25, respectively, and the mask stage 5 and the wafer stage 9 are controlled.
Control the operation of the actuators 26, 27. The position of the mask stage 5 in the x-axis and y-axis directions and the position of the wafer stage 9 in the x-axis, y-axis and z-axis directions are detected by position detectors 28 and 29, respectively, and the detected information is sent to the controller 20. Given. Reference numeral 30 is an input device for inputting various information such as transfer conditions to the control device 20, and 31 is a memory.

【0011】図2は、マスク4〜ウエハ10間の光学系
の概略を示す。但し、図1の偏向器6a,6bを図2で
は省略している。角度補正用偏向器12a,12bのコ
イルは第1投影レンズ7のマスク側磁極7aの内周に配
置され、角度補正用偏向器13a,13bのコイルは第
2投影レンズ8のウエハ側磁極8aの内周に配置されて
いる。ここで、マスク4〜ウエハ10の距離をL、マス
ク4からウエハ10へのパターンの縮小率を1/nとす
れば、マスク4から第1投影レンズ7によるクロスオー
バCOまでの距離La=L・n/(n+1)、クロスオ
ーバCOからウエハ10までの距離Lb=L/(n+
1)である。
FIG. 2 shows an outline of an optical system between the mask 4 and the wafer 10. However, the deflectors 6a and 6b in FIG. 1 are omitted in FIG. The coils of the angle correcting deflectors 12a and 12b are arranged on the inner circumference of the mask side magnetic pole 7a of the first projection lens 7, and the coils of the angle correcting deflectors 13a and 13b are arranged on the wafer side magnetic pole 8a of the second projection lens 8. It is located on the inner circumference. Here, if the distance between the mask 4 and the wafer 10 is L and the reduction ratio of the pattern from the mask 4 to the wafer 10 is 1 / n, the distance La from the mask 4 to the crossover CO by the first projection lens 7 is La = L. N / (n + 1), distance from crossover CO to wafer 10 Lb = L / (n +
1).

【0012】ここで、第1投影レンズ7の磁極7a,7
b間の距離をLc、磁極7aとマスク4の距離をLdと
したとき、距離Lcが大きいほどパターン転写時の歪が
小さくなり、距離Ldが大きいほどマスク4側に漏れる
レンズ磁場が小さくなって電子線の垂直性が改善され
る。すなわち、マスク4に電子線を垂直に入射させしか
も偏向器12a,12bによる後述の角度調整をしない
場合、第1投影レンズ7を通過した電子線の主光線が光
軸AXを横切る位置とクロスオーバCOとのずれ量は距
離Ldが大きくなるほど減少する。しかし、距離Lが光
学鏡筒の大きさの制約から自ずと制限され、マスク4か
らクロスオーバCOまでの距離Laも制限されるので、
距離Ldを大きくすればそれだけ距離Lcが減少し、歪
は改善されない。第2投影レンズ8側に関してもマスク
4をウエハ10に置き換えれば全く同じことが言える。
そこで、本実施例では上述した偏向器11a,11b,
12a,12b,13a,13bにより図3の原理で電
子線の角度を調整する。
Here, the magnetic poles 7a, 7 of the first projection lens 7
When the distance between b is Lc and the distance between the magnetic pole 7a and the mask 4 is Ld, the greater the distance Lc, the smaller the distortion during pattern transfer, and the greater the distance Ld, the smaller the lens magnetic field leaking to the mask 4 side. The verticality of the electron beam is improved. That is, when the electron beam is vertically incident on the mask 4 and the angle adjustment described later by the deflectors 12a and 12b is not performed, the chief ray of the electron beam passing through the first projection lens 7 crosses the position where it crosses the optical axis AX. The amount of deviation from CO decreases as the distance Ld increases. However, the distance L is naturally limited due to the restriction of the size of the optical lens barrel, and the distance La from the mask 4 to the crossover CO is also limited.
If the distance Ld is increased, the distance Lc is reduced and the distortion is not improved. The same thing can be said for the second projection lens 8 side if the mask 4 is replaced with the wafer 10.
Therefore, in the present embodiment, the above-mentioned deflectors 11a, 11b,
The angle of the electron beam is adjusted by 12a, 12b, 13a and 13b according to the principle of FIG.

【0013】図3において破線PR1は偏向器11a,
11b,12a,12bによる角度調整をしないときの
電子線の主光線、実線PR2は偏向器11a,11b,
12a,12bにて角度調整したときの電子線の主光線
をそれぞれ示す。マスク4から偏向器11b,12aま
での距離は等しくa、偏向器11bから11a、偏向器
12aから12bまでの距離は等しくbに設定されてい
る。偏向器12bの光軸方向の中心位置P2から下側で
は主光線PR1とPR2が同一軌道を描いてクロスオー
バCOを通過する。
In FIG. 3, a broken line PR1 indicates a deflector 11a,
The principal ray of the electron beam when the angles are not adjusted by 11b, 12a, 12b, and the solid line PR2 are the deflectors 11a, 11b,
The principal rays of the electron beam when the angles are adjusted by 12a and 12b are shown respectively. The distances from the mask 4 to the deflectors 11b and 12a are set equal to a, the distances from the deflectors 11b to 11a, and the deflectors 12a to 12b are set to equal b. Below the center position P2 of the deflector 12b in the optical axis direction, the principal rays PR1 and PR2 draw the same trajectory and pass through the crossover CO.

【0014】図3から明らかなように、本実施例の角度
調整をしない場合、図1の視野選択器3a,3bを通過
した主光線PR1はz軸方向(光軸AXと平行な方向)
に対して光軸AXから離れる方向へθだけ傾いてマスク
4に入射する。これに対して本実施例では、最上段の偏
向器11aでまず主光線PR2をθ2だけ外側へ曲げ、
次段の偏向器11bでθ1だけ内側へ曲げてマスク4に
垂直に主光線PR2を入射させている。このとき、マス
ク4に対する主光線PR2の入射位置を主光線PR1の
入射位置P1と一致させている。次に、マスク4を通過
した主光線PR2を偏向器12aによりθ1だけ外側へ
曲げて偏向器12bの中心位置P2で主光線PR1の軌
道と一致させ、この後、最下段の偏向器12bで主光線
PR2を内側へθ2だけ曲げて主光線PR1と同一軌道
に乗せている。このとき、偏向器12a,12bによる
主光線PR2の偏向中心はマスク4上の点P1である。
As is apparent from FIG. 3, when the angle adjustment of this embodiment is not performed, the principal ray PR1 that has passed through the field-of-view selectors 3a and 3b of FIG. 1 is in the z-axis direction (direction parallel to the optical axis AX).
The light beam is incident on the mask 4 with a tilt of θ with respect to the optical axis AX. On the other hand, in this embodiment, the principal ray PR2 is first bent outward by θ2 by the uppermost deflector 11a,
The principal ray PR2 is made to enter the mask 4 vertically by bending it inward by θ1 by the deflector 11b at the next stage. At this time, the incident position of the principal ray PR2 on the mask 4 is matched with the incident position P1 of the principal ray PR1. Next, the principal ray PR2 that has passed through the mask 4 is bent outward by θ1 by the deflector 12a so that it coincides with the trajectory of the principal ray PR1 at the center position P2 of the deflector 12b, and after that, the principal ray PR2 is deflected by the lowermost deflector 12b. The ray PR2 is bent inward by θ2 and placed on the same orbit as the principal ray PR1. At this time, the deflection center of the principal ray PR2 by the deflectors 12a and 12b is the point P1 on the mask 4.

【0015】ウエハ10側については、図3を上下に反
転し、第1投影レンズ7を第2投影レンズ8に、マスク
4をウエハ10にそれぞれ置換した場合を考えればよ
い。置換した場合の対応符号を図3に括弧書で示す。ウ
エハ10側では、第2投影レンズ8から射出された主光
線がz軸方向に対して光軸AXに近付く方向へθだけ傾
くので、まず主光線を偏向器13aでθ2だけ内側へ曲
げ、その後θ1だけ主光線を外側へ曲げればウエハ10
に対する入射角度を90゜に設定できる。このとき、ウ
エハ10への主光線の入射位置を、角度調整しない場合
の入射位置と一致させることができる。
On the wafer 10 side, it may be considered that FIG. 3 is turned upside down and the first projection lens 7 is replaced with the second projection lens 8 and the mask 4 is replaced with the wafer 10. Corresponding symbols in the case of replacement are shown in parentheses in FIG. On the wafer 10 side, the principal ray emitted from the second projection lens 8 is inclined by θ in the direction approaching the optical axis AX with respect to the z-axis direction, so the principal ray is first bent inward by the deflector 13a by θ2, and then If the chief ray is bent outward by θ1, the wafer 10
The incident angle with respect to can be set to 90 °. At this time, the incident position of the principal ray on the wafer 10 can be matched with the incident position when the angle is not adjusted.

【0016】次に、上記の角度調整を行なう場合の偏向
感度の設定方法について説明する。図3から明らかなよ
うに、
Next, a method of setting the deflection sensitivity when the above angle adjustment is performed will be described. As is clear from FIG.

【数1】θ1=θ2+θ ……(1) (a+b)・θ=θ1・b ……(2) (1)式、(2)式を連立してθを消去すると、[Equation 1] θ1 = θ2 + θ (1) (A + b) ・ θ = θ1 ・ b (2) If θ is eliminated by simultaneous equations (1) and (2),

【数2】(a+b)・(θ1−θ2)=θ1・b ∴θ2/θ1=a/(a+b) ……(3) 以上から、偏向器11aと11b,12aと12bの感
度比をそれぞれ(3)式で与えられる比に設定すればよ
い。ただし、θ1,θ2は図から明らかなように逆符号で
ある。
[Formula 2] (a + b) · (θ1−θ2) = θ1 · b ∴θ2 / θ1 = a / (a + b) (3) From the above, the sensitivity ratios of the deflectors 11a and 11b, 12a and 12b are respectively ( It may be set to the ratio given by the equation (3). However, as is clear from the figure, θ1 and θ2 have opposite signs.

【0017】(3)式ではθ,θ1,θ2が未知数なので
これらの求め方を次に説明する。まず、(2)式から、
In the equation (3), since θ, θ1 and θ2 are unknowns, a method of obtaining them will be described below. First, from equation (2),

【数3】θ1=((a+b)/b)・θ ……(4) (4)式を(3)式に代入すると、[Equation 3] θ1 = ((a + b) / b) · θ (4) Substituting equation (4) into equation (3),

【数4】 θ2=((a+b)/b)・(a/(a+b))・θ=a・θ/b ……(5) 以上から明らかなように、θ1,θ2はθが判れば計算で
求められる。
[Equation 4] θ2 = ((a + b) / b) · (a / (a + b)) · θ = a · θ / b (5) As is clear from the above, θ1 and θ2 are calculated if θ is known. Required by.

【0018】角度θはウエハ面での主光線の入射角度を
実測する。その計測は例えば図4のように行なう。ま
ず、十字マーカCMを設けた試料TPをウエハステージ
9(図1)に載置する。次に、電子線の軌道を一定に保
った上で試料TPをz軸方向にΔzだけ離れた二つの位
置でx軸方向およびy軸方向に移動させ、試料TPから
発生する反射電子を検出して十字マークCMの中心O
1,O2が主光線PRと一致する位置を検出する。中心
O1,O2の座標(x1,y1,z1)、(x2,y
2,z2)はステージ9の位置から求められ、これらの
x座標、y座標、z座標の差Δx,Δy,Δzから主光
線PRの傾きθが算出できる。なお、図に二点鎖線で示
す十字マークCM´は主光線PRの傾きθ=0の場合を
示す。主光線PRが図3の主光線PR1のようにクロス
オーバCOを通過していれば、得られた傾きθは主光線
PRのウエハ10に対する入射位置が座標O1またはO
2にあるときに収差が最も小さくなる条件を示す。
For the angle θ, the incident angle of the chief ray on the wafer surface is measured. The measurement is performed, for example, as shown in FIG. First, the sample TP provided with the cross marker CM is placed on the wafer stage 9 (FIG. 1). Next, while keeping the orbit of the electron beam constant, the sample TP is moved in the x-axis direction and the y-axis direction at two positions separated by Δz in the z-axis direction to detect backscattered electrons generated from the sample TP. The center of the cross mark CM
The position where 1, O2 coincides with the principal ray PR is detected. Coordinates (x1, y1, z1) of the centers O1, O2, (x2, y
2, z2) is obtained from the position of the stage 9, and the inclination θ of the principal ray PR can be calculated from the differences Δx, Δy, Δz of these x-coordinates, y-coordinates, and z-coordinates. A cross mark CM ′ shown by a chain double-dashed line in the figure shows the case where the inclination θ of the principal ray PR is θ = 0. If the principal ray PR passes through the crossover CO like the principal ray PR1 in FIG. 3, the obtained inclination θ is such that the incident position of the principal ray PR on the wafer 10 is the coordinates O1 or O.
When the value is 2, the condition that the aberration is minimized is shown.

【0019】ここで、図4の例では主光線PRがx軸方
向から角度φだけ傾いている。その一方、偏向器による
角度調整方向は上述した通りx軸方向、y軸方向にそれ
ぞれ限定されている。このため、実際の偏向感度を求め
るには、上記のθをそれぞれx軸方向の傾き(Δx/Δ
z)とy軸方向の傾き(Δy/Δz)に置き換え、それ
ぞれの軸毎に得られたθを上記(4)式および(5)式
に代入する。これにより、電子線の方位角方向の垂直性
と放射方向の垂直性の双方を同時に満たすことができ
る。
Here, in the example of FIG. 4, the chief ray PR is inclined by an angle φ from the x-axis direction. On the other hand, the angle adjustment directions by the deflector are limited to the x-axis direction and the y-axis direction, respectively, as described above. Therefore, in order to obtain the actual deflection sensitivity, the above-mentioned θ is set to the inclination (Δx / Δ) in the x-axis direction.
z) and the inclination in the y-axis direction (Δy / Δz), and θ obtained for each axis is substituted into the above equations (4) and (5). This makes it possible to satisfy both the azimuth perpendicularity and the emission perpendicularity of the electron beam at the same time.

【0020】以上のようにしてマスク4およびウエハ1
0に対する電子線の垂直入射条件と、主光線がクロスオ
ーバCOを通過する条件とを同時に満たすときの偏向器
11a,11b,12a,12b,13a,13bのそ
れぞれの偏向感度が、ウエハ10への電子線の入射位置
と対応付けて決定される。得られた偏向感度と入射位置
との関係は図1のメモリ31に予め記憶される。なお、
偏向感度の最適値はウエハ10に対する電子線の入射位
置に応じて変化するので、実際の転写時の入射位置のす
べてについて予め偏向感度が求められる。
As described above, the mask 4 and the wafer 1
The deflection sensitivities of the deflectors 11a, 11b, 12a, 12b, 13a, and 13b when the conditions of vertical incidence of the electron beam with respect to 0 and the condition of the principal ray passing through the crossover CO are simultaneously satisfied are as follows. It is determined in association with the incident position of the electron beam. The obtained relationship between the deflection sensitivity and the incident position is stored in advance in the memory 31 of FIG. In addition,
Since the optimum value of the deflection sensitivity changes depending on the incident position of the electron beam on the wafer 10, the deflection sensitivity is obtained in advance for all the incident positions during the actual transfer.

【0021】次に本実施例の転写装置による転写手順を
説明する。図5は転写時のマスク4とウエハ10との関
係を模式的に示したものである。レンズや偏向器は図示
を省略した。図5(a)から明らかなように、マスク4
は、複数の矩形状の小領域4aとこれらを格子状に区切
る境界領域4bとを有する。小領域4aには、ウエハ1
0の1チップ(1個の半導体)分の領域(以下、チップ
領域と呼ぶ)10aに転写すべきパターン(詳細は図示
略)が分割して形成される。なお、電子線転写用のマス
クには、図6(a)に示すように電子線の透過率が高い
薄膜MB上に、電子線の散乱角の大きい散乱体SCを配
置してパターンを形成するものと、図6(b)に示すよ
うに電子線を遮断する基板BPにパターンに応じた開口
OPを設けるものとが存在するが、本実施例ではいずれ
を用いてもよい。いずれの場合でも、境界領域4bは電
子線を遮断しあるいは大きく散乱させる材料により一様
に構成される。また、ウエハ10の外観形状は図5
(b)に示した通りであり、図5(a)ではウエハ10
の一部(図5(b)のVa部)を拡大して示している。
Next, a transfer procedure by the transfer device of this embodiment will be described. FIG. 5 schematically shows the relationship between the mask 4 and the wafer 10 during transfer. Illustration of the lens and the deflector is omitted. As is clear from FIG. 5A, the mask 4
Has a plurality of rectangular small areas 4a and a boundary area 4b that divides these into small areas. In the small area 4a, the wafer 1
A pattern (details not shown) to be transferred is divided and formed in an area (hereinafter, referred to as a chip area) 10a corresponding to 0 of one chip (one semiconductor). In the mask for electron beam transfer, as shown in FIG. 6A, a pattern is formed by arranging a scatterer SC having a large electron beam scattering angle on a thin film MB having a high electron beam transmittance. Some of them are provided with an opening OP corresponding to a pattern in the substrate BP which shields the electron beam as shown in FIG. 6B, but any of them may be used in the present embodiment. In any case, the boundary region 4b is uniformly composed of a material that blocks or largely scatters the electron beam. The external shape of the wafer 10 is shown in FIG.
As shown in FIG. 5B, the wafer 10 is shown in FIG.
A part (Va portion in FIG. 5B) of FIG.

【0022】図1の電子銃1から射出された電子線EB
は小領域4aよりも僅かに大きい断面正方形状に成形さ
れ、視野選択偏向器3a,3bにより所定量偏向されて
マスク4の小領域4aの一つに導かれる。小領域4aに
形成されたパターンの像が図1の投影レンズ7,8によ
りウエハ10のチップ領域10a内の単位領域10bに
縮小転写される。すなわち、本実施例では小領域4aが
マスク側の副視野、単位領域10bがウエハ側の副視野
に相当する。ここで小領域4aの選択は以下の順で行な
われる。
Electron beam EB emitted from the electron gun 1 of FIG.
Is shaped into a square cross section slightly larger than the small area 4a, is deflected by a predetermined amount by the field-of-view selection deflectors 3a and 3b, and is guided to one of the small areas 4a of the mask 4. The image of the pattern formed in the small area 4a is reduced and transferred to the unit area 10b in the chip area 10a of the wafer 10 by the projection lenses 7 and 8 in FIG. That is, in this embodiment, the small region 4a corresponds to the mask-side sub-field of view, and the unit region 10b corresponds to the wafer-side sub-field of view. Here, the small area 4a is selected in the following order.

【0023】すなわち、転写時にはマスク4およびウエ
ハ10が矢印Fm,Fwで示すようにx軸方向へ互いに
逆向きに連続移動せしめられる。この連続移動によりy
軸方向に並ぶ小領域4aの特定の列が所定の転写開始位
置に達すると、電子線EBがy軸方向へ小領域4aの並
びピッチずつステップ的に走査されてy軸方向に並ぶ小
領域4aに電子線EBが順次照射される。電子線の走査
に同期して、図1の偏向器6a,6bによりマスク4の
境界領域4aのy軸方向の幅に相当する量だけ電子線E
Bがy軸方向に偏向され、y軸方向に並ぶ一列の小領域
4aのパターンの像がウエハ10でy軸方向に連続して
転写される。一列の小領域4aのパターンの転写が終了
し、y軸方向に隣接する次の小領域4aの列が上述した
転写開始位置に達するとその列の転写が開始され、以下
同様にして1枚のマスク4に形成されたすべての小領域
4aに対応するパターン像がウエハ10のチップ領域1
0aに転写される。
That is, during transfer, the mask 4 and the wafer 10 are continuously moved in opposite directions in the x-axis direction as indicated by arrows Fm and Fw. This continuous movement causes y
When a specific row of the small regions 4a arranged in the axial direction reaches a predetermined transfer start position, the electron beam EB is stepwise scanned in the y-axis direction by the arrangement pitch of the small regions 4a to form the small regions 4a arranged in the y-axis direction. The electron beam EB is sequentially irradiated to the. In synchronization with the scanning of the electron beam, the deflector 6a, 6b of FIG. 1 is used to deflect the electron beam E by an amount corresponding to the width of the boundary region 4a of the mask 4 in the y-axis direction.
B is deflected in the y-axis direction, and the image of the pattern of the row of small regions 4a arranged in the y-axis direction is continuously transferred on the wafer 10 in the y-axis direction. When the transfer of the pattern of the small area 4a in one row is completed and the row of the next small area 4a adjacent in the y-axis direction reaches the above-mentioned transfer start position, the transfer of that row is started, and the like below. The pattern image corresponding to all the small areas 4a formed on the mask 4 is the chip area 1 of the wafer 10.
It is transcribed to 0a.

【0024】図7は上記の手順でウエハ1枚分の転写を
行なうときの制御装置20の制御手順を示すフローチャ
ートである。ウエハ10がウエハステージ9に装着され
て転写開始が指示されると、制御装置20はステップS
1で転写対象のチップ領域10aを選択し、その領域1
0aが所定の転写位置にくるようウエハステージ9を駆
動する。次いでステップS2でマスクステージ5および
ウエハステージ9によるマスク4およびウエハ10の連
続移動を開始する。続くステップS3では副視野選択、
すなわち電子線を照射すべき小領域4aを選択する。な
お、上述した領域10aや小領域4aの選択順序は予め
入力装置30から制御装置20に与えられている。
FIG. 7 is a flow chart showing the control procedure of the control device 20 when transferring one wafer by the above procedure. When the wafer 10 is mounted on the wafer stage 9 and the transfer start is instructed, the controller 20 proceeds to step S
1 selects the chip area 10a to be transferred, and
The wafer stage 9 is driven so that 0a comes to a predetermined transfer position. Next, in step S2, continuous movement of the mask 4 and the wafer 10 by the mask stage 5 and the wafer stage 9 is started. In the subsequent step S3, the sub-field of view is selected,
That is, the small area 4a to be irradiated with the electron beam is selected. The selection order of the area 10a and the small area 4a described above is given in advance from the input device 30 to the control device 20.

【0025】副視野選択後はステップS4へ進み、副視
野に応じて光学条件を設定する。この光学条件にはレン
ズ7,8や偏向器3a,3b、6a,6bの励磁条件の
他、上述した角度調整用偏向器11a,11b,12
a,12b,13a,13bの励磁条件の設定も含まれ
る。すなわち、転写対象の小領域4aが判れば、それに
対応するウエハ10の被転写領域10bの位置が判るの
で、その位置に対応する偏向感度をメモリ31から読み
込んでそれらの値に偏向感度を設定する。光学条件の設
定後はステップS5へ進んで転写を開始する。一つの小
領域4aの転写が終了するとステップS6へ進み、1つ
のチップ領域10aの転写が終了したか否か判断する。
終了していないときはステップS3へ戻ってチップ領域
10a内の未転写領域から次に転写すべき領域を特定す
る。1チップ分の転写が終了した後はステップS7へ進
み、ウエハ10のチップ領域10aのすべてについて転
写が終了したか否か判断する。終了していなければステ
ップS1へ戻り、未転写のチップ領域を次の転写領域に
選ぶ。全てのチップ領域の転写が終了したとき図示の処
理を終える。
After selecting the sub-field of view, the process proceeds to step S4, and the optical condition is set according to the sub-field of view. These optical conditions include the excitation conditions of the lenses 7 and 8 and the deflectors 3a, 3b, 6a and 6b, as well as the angle adjusting deflectors 11a, 11b and 12 described above.
It also includes setting of excitation conditions for a, 12b, 13a, and 13b. That is, if the small area 4a to be transferred is known, the position of the transferred area 10b of the wafer 10 corresponding to the small area 4a is known. Therefore, the deflection sensitivities corresponding to the positions are read from the memory 31 and the deflection sensitivities are set to those values. . After setting the optical conditions, the process proceeds to step S5 to start the transfer. When the transfer of one small area 4a is completed, the process proceeds to step S6, and it is determined whether the transfer of one chip area 10a is completed.
If not completed, the process returns to step S3, and the area to be transferred next is specified from the untransferred area in the chip area 10a. After the transfer for one chip is completed, the process proceeds to step S7, and it is determined whether the transfer is completed for all the chip areas 10a of the wafer 10. If not completed, the process returns to step S1 and the untransferred chip area is selected as the next transfer area. When the transfer of all the chip areas is completed, the illustrated process is completed.

【0026】以上説明したように、本実施例では、マス
ク4およびウエハ10に対する電子線の垂直入射条件
と、主光線がクロスオーバCOを通過する条件とがすべ
ての副視野について両立するので、マスク4やウエハ1
0が反り等でz軸方向に変動してもパターン誤差が生じ
ず、常に最小の歪でパターンを転写できる。投影レンズ
7,8の磁極7a,8aをマスク4およびウエハ10に
十分に近付けても垂直入射を実現できるので、レンズ
7,8自身を低収差に設計できる。マスク4側の二段の
偏向器12a,12bとウエハ10側の二段の偏向器1
3a,13bによりマスク4およびウエハ10の位置を
偏向中心として角度調整を行なうので、角度調整前と角
度調整後とで電子線の入射位置が変化しない。すなわ
ち、図8に示すように、マスク4に垂直に入射した電子
線を一段の偏向器12bのみでクロスオーバCOを通過
するよう偏向させたときは、マスク4に対する電子線の
角度調整前の入射位置P1と角度調整後の入射位置P1
´とがαだけずれるので、マスク4を偏向方向にαだけ
移動させて入射位置を補正する必要があり、その分スル
ープットが低下するおそれがある。ただし、入射位置の
ずれαを短時間で補正できれば一段の偏向器でも十分で
ある。
As described above, in the present embodiment, the conditions for the vertical incidence of the electron beam on the mask 4 and the wafer 10 and the condition for the chief ray to pass through the crossover CO are compatible with each other for all sub-fields of view. 4 and wafer 1
Even if 0 changes in the z-axis direction due to warpage or the like, no pattern error occurs, and the pattern can always be transferred with a minimum distortion. Even if the magnetic poles 7a and 8a of the projection lenses 7 and 8 are brought sufficiently close to the mask 4 and the wafer 10, vertical incidence can be realized, so that the lenses 7 and 8 themselves can be designed with low aberration. Two-stage deflectors 12a and 12b on the mask 4 side and two-stage deflector 1 on the wafer 10 side
Since the angles are adjusted with the positions of the mask 4 and the wafer 10 as deflection centers by 3a and 13b, the incident position of the electron beam does not change before and after the angle adjustment. That is, as shown in FIG. 8, when the electron beam vertically incident on the mask 4 is deflected so as to pass through the crossover CO by only the one-stage deflector 12b, the electron beam is incident on the mask 4 before the angle adjustment. Position P1 and incident position P1 after angle adjustment
Since ′ is shifted by α, it is necessary to move the mask 4 by α in the deflection direction to correct the incident position, and the throughput may be reduced accordingly. However, if the deviation α of the incident position can be corrected in a short time, a one-stage deflector is sufficient.

【0027】なお、図6(a)に示す薄膜支持構造のマ
スクを使用し、その薄膜MBを単結晶材料で構成し、か
つ単結晶材料の平均自由行路が最も大きくなる結晶方位
と光軸AXの方向とを一致させた場合には、本実施例と
の組合せにより薄膜MBを通過する荷電粒子線の散乱を
最小限に抑えることができる。
The mask having the thin film support structure shown in FIG. 6 (a) is used, the thin film MB is made of a single crystal material, and the crystal orientation and the optical axis AX at which the average free path of the single crystal material is the largest. In the case where the directions are matched, the scattering of the charged particle beam passing through the thin film MB can be minimized by the combination with the present embodiment.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
二段構成の角度調整用偏向器にて荷電粒子線を偏向する
ことで、荷電粒子線の主光線がクロスオーバを通過する
条件を維持しつつマスクやターゲット側でビーム軌道を
所望の状態に調整できるので、マスクやターゲットに対
する荷電粒子線の垂直入射と、荷電粒子線の主光線のク
ロスオーバの通過とを両立させて高精度に転写を行なえ
る。また、すべての副視野において上記の二つの条件を
両立させることができる。さらに、ビーム軌道の調整前
と調整後でマスクやターゲットに対する荷電粒子線の入
射位置を一定の保つことができる。さらにまた、マスク
やターゲットに入射する荷電粒子線の放射方向の垂直性
および方位角方向の垂直性の双方を、すべての副視野に
おいて調整できる。
As described above, according to the present invention,
By deflecting the charged particle beam with a two-stage angle adjustment deflector, the beam trajectory is adjusted to the desired state on the mask and target side while maintaining the condition that the chief ray of the charged particle beam passes through the crossover. Therefore, it is possible to perform the transfer with high accuracy by making the vertical incidence of the charged particle beam on the mask and the target compatible with the passage of the crossover of the chief ray of the charged particle beam. Further , the above two conditions can be compatible with each other in all the sub-fields of view. Further , the incident position of the charged particle beam on the mask and the target can be kept constant before and after the adjustment of the beam trajectory. Furthermore, both the radiation direction perpendicularity and the azimuth direction perpendicularity of the charged particle beam incident on the mask and the target can be adjusted in all sub-fields of view.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る転写装置の概略を示す
図。
FIG. 1 is a diagram showing an outline of a transfer device according to an embodiment of the present invention.

【図2】図1の投影レンズの周囲を拡大して示す図。FIG. 2 is an enlarged view showing the periphery of the projection lens of FIG.

【図3】実施例の装置における角度調整の原理を示す
図。
FIG. 3 is a diagram showing the principle of angle adjustment in the apparatus of the embodiment.

【図4】ビームの傾きθを求める手順を説明するための
図。
FIG. 4 is a diagram for explaining a procedure for obtaining a beam inclination θ.

【図5】図1の装置における転写時のマスクとウエハと
の関係を模式的に示す図。
5 is a diagram schematically showing a relationship between a mask and a wafer during transfer in the apparatus of FIG.

【図6】マスクの種類を示す図。FIG. 6 is a diagram showing mask types.

【図7】図5に示す要領で転写を行なうときの制御装置
の制御手順を示すフローチャート。
FIG. 7 is a flowchart showing a control procedure of the control device when performing transfer in the manner shown in FIG.

【図8】一段の偏向器で入射角度を調整する例を示す
図。
FIG. 8 is a diagram showing an example of adjusting an incident angle with a single-stage deflector.

【符号の説明】[Explanation of symbols]

4 マスク 10 ウエハ(ターゲット) 11a,11b,12a,12b,13a,13b 角
度調整用偏向器 CO クロスオーバ PR,PR1,PR2 主光線
4 Mask 10 Wafer (Target) 11a, 11b, 12a, 12b, 13a, 13b Angle Adjusting Deflector CO Crossovers PR, PR1, PR2 Chief rays

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/30 541V (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 7/20 504 G03F 7/20 521 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI H01L 21/30 541V (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/027 G03F 7/20 504 G03F 7 / 20 521

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】荷電粒子線光学系の主視野を複数の副視野
に分割し、マスクのパターン像を前記副視野毎に分割し
てターゲットに転写する荷電粒子線転写装置において、前記マスクの前段に第1の角度調整用偏向器が二段配設
され、 前記複数の副視野のそれぞれで前記荷電粒子線の主光線
が前記マスクにほぼ垂直に入射するように前記第1の角
度調整用偏向器のそれぞれの偏向角度が前記副視野毎に
調整され、 前記マスクと前記荷電粒子線光学系のクロスオーバとの
間に第2の角度調整用偏向器が二段配設され、 複数の副視野のそれぞれにおいて前記第1の角度調整用
偏向器により前記マスクにほぼ垂直に入射した荷電粒子
線の主光線が前記クロスオーバを通過するように前記第
2の角度調整用偏向器の偏向角度が前記副視野毎にそれ
ぞれ調整されることを特徴とする荷電粒子線転写装置。
1. A dividing a main field of view of a charged particle beam optical system into a plurality of subfields, a charged particle beam transfer device by dividing the pattern image of the mask for each of the sub-field is transferred to the target, the front stage of the mask The first angle adjusting deflector is arranged in two stages
Is, the plurality of principal rays of the charged particle beam in each sub-field
So that the light enters the mask approximately perpendicularly to the first angle.
Deflection angle for each degree adjustment deflector
The mask and the crossover of the charged particle beam optics
Two second angle adjusting deflectors are arranged between them, and the first angle adjusting deflector is provided in each of the plurality of sub-fields of view.
Charged particles incident on the mask almost perpendicularly by a deflector
The chief ray of the line is moved so that it passes through the crossover.
The deflection angle of the angle-adjusting deflector 2 is different for each sub-field of view.
A charged particle beam transfer device characterized in that each is adjusted.
【請求項2】請求項に記載の荷電粒子線転写装置にお
いて、前記荷電粒子線の主光線の偏向中心が前記マスクの位置
と一致するように前記第1および第2の前記角度調整用
偏向器の偏向角度が調整されることを特徴とする荷電粒
子線転写装置。
2. The charged particle beam transfer apparatus according to claim 1 , wherein the deflection center of the chief ray of the charged particle beam is at the position of the mask.
For adjusting the first and second angles to match
Charged particles characterized in that the deflection angle of the deflector is adjusted
Child line transfer device.
【請求項3】請求項1または2に記載の荷電粒子線転写
装置において、 前記第1および第2の角度調整用偏向器のそれぞれは、
荷電粒子線光学系の光軸と直交する面内で互いに異なる
第1方向および第2方向のそれぞれに前記荷電粒子線を
偏向可能な第1方向偏向器および第2方向偏向器を有
し、 前記荷電粒子線の主光線の回転方向に関する垂直性およ
び放射方向に関する垂直性の双方が、前記第1方向偏向
器および前記第2方向偏向器で調整されることを特徴と
する荷電粒子線転写装置。
3. The charged particle beam transfer according to claim 1 or 2.
In the device, each of the first and second angle adjusting deflectors includes:
Different in the plane orthogonal to the optical axis of the charged particle beam optical system
The charged particle beam is applied in each of the first direction and the second direction.
Has a first direction deflector and a second direction deflector capable of deflecting
And, Oyo vertical with respect to the rotational direction of the principal ray of the charged particle beam
And the perpendicularity with respect to the radial direction both cause the first direction deflection.
And a second direction deflector,
Charged particle beam transfer device.
【請求項4】荷電粒子線光学系の主視野を複数の副視野
に分割し、マスクのパターン像を前 記副視野毎に分割し
てターゲットに転写する荷電粒子線転写装置において、 前記マスクの前段に第1の角度調整用偏向器が配設さ
れ、前記マスクと前記荷電粒子線光学系のクロスオーバ
との間に第2の角度調整用偏向器が配設され、 前記複数の副視野のそれぞれで前記荷電粒子線の主光線
が前記マスクにほぼ垂直に入射して前記クロスオーバを
通過するように、前記第1および第2の角度調整用偏向
器の偏向角度が前記副視野毎に調整されるとともに、 前記第1および第2の角度調整用偏向器のそれぞれは、
荷電粒子線光学系の光軸と直交する面内で互いに異なる
第1方向および第2方向のそれぞれに前記荷電粒子線を
偏向可能な第1方向偏向器および第2方向偏向器を有
し、 前記荷電粒子線の主光線の回転方向に関する垂直性およ
び放射方向に関する垂直性の双方が、前記第1方向偏向
器および前記第2方向偏向器で調整される ことを特徴と
する荷電粒子線転写装置。
4. A main field of view of a charged particle beam optical system comprising a plurality of sub fields of view.
Divided into, dividing the pattern image of the mask before each Symbol subfield
In a charged particle beam transfer apparatus for transferring a target to a target by a first angle adjusting deflector arranged in front of the mask.
Crossover between the mask and the charged particle beam optical system.
And a second deflector for adjusting the angle between the sub-fields and the main beam of the charged particle beam in each of the plurality of sub-fields of view.
Is incident on the mask almost perpendicularly to cause the crossover.
The first and second angle adjusting deflections so as to pass through
The deflection angle of the device is adjusted for each sub-field of view, and each of the first and second angle adjusting deflectors is
Different in the plane orthogonal to the optical axis of the charged particle beam optical system
The charged particle beam is applied in each of the first direction and the second direction.
Has a first direction deflector and a second direction deflector capable of deflecting
And, Oyo vertical with respect to the rotational direction of the principal ray of the charged particle beam
And the perpendicularity with respect to the radial direction both cause the first direction deflection.
And a second direction deflector for adjusting the charged particle beam transfer apparatus.
【請求項5】荷電粒子線光学系の主視野を複数の副視野
に分割し、マスクのパターン像を前記副視野毎に分割し
てターゲットに転写する荷電粒子線転写装置において、 前記荷電粒子線光学系のクロスオーバと前記ターゲット
との間に角度調整用偏向器が二段配設され、 前記複数の副視野のそれぞれで前記荷電粒子線の主光線
が前記ターゲットに対してほぼ垂直に入射するように、
前記二段の角度調整用偏向器の偏向角度が前記副視野毎
に調整されることを特徴とする荷電粒子線転写装置。
5. A charged particle beam transfer apparatus in which a main field of view of a charged particle beam optical system is divided into a plurality of subfields of view, and a pattern image of a mask is divided into subfields and transferred to a target. Two angle adjusting deflectors are arranged between the crossover of the optical system and the target, and the chief ray of the charged particle beam is made to enter the target substantially perpendicularly in each of the plurality of sub-fields of view. like,
A charged particle beam transfer apparatus, wherein a deflection angle of the two-stage angle adjusting deflector is adjusted for each sub-field of view.
【請求項6】請求項5に記載の荷電粒子線転写装置にお6. The charged particle beam transfer apparatus according to claim 5.
いて、And 前記荷電粒子線の主光線の偏向中心が前記ターゲットのThe deflection center of the chief ray of the charged particle beam is the target
位置と一致するように前記二段の角度調整用偏向器のそThe two-stage angle adjusting deflector is aligned so that it is aligned with the position.
れぞれの偏向角度が調整されることを特徴とする荷電粒Charged particles characterized in that each deflection angle is adjusted
子線転写装置。Child line transfer device.
【請求項7】請求項5に記載の荷電粒子線転写装置にお
いて、前記角度調整用偏向器のそれぞれは、 荷電粒子線光学系
の光軸と直交する面内で互いに異なる第1方向および第
2方向のそれぞれに前記荷電粒子線を偏向可能な第1方
向偏向器および第2方向偏向器を有し、 前記荷電粒子線の主光線の回転方向に関する垂直性およ
び放射方向に関する垂直性の双方が、前記第1方向偏向
器および前記第2方向偏向器で調整されることを特徴と
する荷電粒子線転写装置。
7. The charged particle beam transfer apparatus according to claim 5, wherein each of the angle adjusting deflectors has a first direction and a second direction which are different from each other in a plane orthogonal to the optical axis of the charged particle beam optical system. having said first direction deflector deflectable the charged particle beam and a second deflection device in each direction, both vertically with respect to perpendicularity and radially about the rotational direction of the principal ray of the charged particle beam, A charged particle beam transfer apparatus which is adjusted by the first direction deflector and the second direction deflector.
【請求項8】荷電粒子線光学系の主視野を複数の副視野8. A main field of view of a charged particle beam optical system comprising a plurality of sub fields of view.
に分割し、マスクのパターン像を前記副視野毎に分割しThe mask pattern image is divided into sub-fields.
てターゲットに転写する荷電粒子線転写装置において、In a charged particle beam transfer device that transfers to a target by 前記荷電粒子線光学系のクロスオーバと前記ターゲットCrossover of the charged particle beam optical system and the target
との間に角度調整用偏向器が配設され、An angle adjusting deflector is arranged between 前記複数の副視野のそれぞれで前記荷電粒子線の主光線The chief ray of the charged particle beam in each of the plurality of sub-fields of view.
が前記ターゲットに対してほぼ垂直に入射するように、So as to be incident almost perpendicularly to the target,
前記角度調整用偏向器の偏向角度が前記副視野毎に調整The deflection angle of the angle adjusting deflector is adjusted for each sub-field of view.
されるとともに、As well as 前記角度調整用偏向器のそれぞれは、荷電粒子線光学系Each of the angle adjusting deflectors is a charged particle beam optical system.
の光軸と直交する面内で互いに異なる第1方向および第In a plane orthogonal to the optical axis of
2方向のそれぞれに前記荷電粒子線を偏向可能な第1方First method capable of deflecting the charged particle beam in each of two directions
向偏向器および第2方向偏向器を有し、A directional deflector and a second directional deflector, 前記荷電粒子線の主光線の回転方向に関する垂直性およThe perpendicularity and the direction of rotation of the chief ray of the charged particle beam
び放射方向に関する垂直性の双方が、前記第1方向偏向And the perpendicularity with respect to the radial direction both cause the first direction deflection.
器および前記第2方向偏向器で調整されることを特徴とAnd a second direction deflector,
する荷電粒子線転写装置。Charged particle beam transfer device.
JP32909494A 1994-11-22 1994-12-28 Charged particle beam transfer device Expired - Fee Related JP3475535B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32909494A JP3475535B2 (en) 1994-12-28 1994-12-28 Charged particle beam transfer device
US08/548,616 US5689117A (en) 1994-11-22 1995-10-26 Apparatus for image transfer with charged particle beam, and deflector and mask used with such apparatus
US08/871,971 US5773838A (en) 1994-11-22 1997-06-10 Apparatus for image transfer with charged particle beam, and deflector and mask used with such apparatus
US08/871,966 US5831274A (en) 1994-11-22 1997-06-10 Apparatus for image transfer with charged particle beam, and deflector and mask used with such apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32909494A JP3475535B2 (en) 1994-12-28 1994-12-28 Charged particle beam transfer device

Publications (2)

Publication Number Publication Date
JPH08186070A JPH08186070A (en) 1996-07-16
JP3475535B2 true JP3475535B2 (en) 2003-12-08

Family

ID=18217549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32909494A Expired - Fee Related JP3475535B2 (en) 1994-11-22 1994-12-28 Charged particle beam transfer device

Country Status (1)

Country Link
JP (1) JP3475535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323390A (en) 1999-05-12 2000-11-24 Nikon Corp Charged-particle beam aligner
JP2001189257A (en) 1999-12-28 2001-07-10 Nikon Corp Adjustment method for charged particle illumination optical system

Also Published As

Publication number Publication date
JPH08186070A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
KR0160167B1 (en) Electron beam lithography system for writing pattern on the wafer
JP3927620B2 (en) Electron beam exposure method and device manufacturing method using the same
EP0794552B1 (en) Electron beam exposure apparatus and method, and device manufacturing method
US5892224A (en) Apparatus and methods for inspecting wafers and masks using multiple charged-particle beams
US7786454B2 (en) Optics for generation of high current density patterned charged particle beams
JP4679978B2 (en) Charged particle beam application equipment
US20050214958A1 (en) Electron beam apparatus, a device manufacturing method using the same apparatus, a pattern evaluation method, a device manufacturing method using the same method, and a resist pattern or processed wafer evaluation method
US6320187B1 (en) Magnification and rotation calibration patterns for particle beam projection system
JP2007115999A (en) Process and device for charged particle beam exposure employing character projection (cp) method, and program
US6657210B1 (en) Electron beam exposure method, a method of constructing exposure control data, and a computer-readable medium
US5912467A (en) Method and apparatus for measurement of pattern formation characteristics
US20110168923A1 (en) Demagnification measurement method for charged particle beam exposure apparatus, stage phase measurement method for charged particle beam exposure apparatus, control method for charged particle beam exposure apparatus, and charged particle beam exposure apparatus
US6027843A (en) Charged-particle-beam microlithography methods including correction of imaging faults
JP3475535B2 (en) Charged particle beam transfer device
US5650628A (en) Simultaneous deflections in charged-particle beams
JP3647143B2 (en) Electron beam exposure apparatus and exposure method therefor
JP3355604B2 (en) Curved axis setup for charged particle lithography
JP3832914B2 (en) Electron beam exposure apparatus and device manufacturing method using the apparatus
JP3529997B2 (en) Charged particle beam optical element, charged particle beam exposure apparatus and adjustment method thereof
US6388261B1 (en) Charged-particle-beam microlithography apparatus and methods exhibiting reduced astigmatisms and linear distortion
JPH06338445A (en) Electron-beam lithography apparatus
JPH0414490B2 (en)
JP3673608B2 (en) Electron beam illumination apparatus and electron beam exposure apparatus equipped with the apparatus
JP2004134503A (en) Electron beam exposure system and method therefor
JP3330644B2 (en) Charged particle beam exposure method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees