JP3475501B2 - Method of manufacturing saddle type deflection coil - Google Patents

Method of manufacturing saddle type deflection coil

Info

Publication number
JP3475501B2
JP3475501B2 JP16453794A JP16453794A JP3475501B2 JP 3475501 B2 JP3475501 B2 JP 3475501B2 JP 16453794 A JP16453794 A JP 16453794A JP 16453794 A JP16453794 A JP 16453794A JP 3475501 B2 JP3475501 B2 JP 3475501B2
Authority
JP
Japan
Prior art keywords
coil
winding
coil winding
saddle
type deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16453794A
Other languages
Japanese (ja)
Other versions
JPH087763A (en
Inventor
吉人 塩原
信二 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16453794A priority Critical patent/JP3475501B2/en
Publication of JPH087763A publication Critical patent/JPH087763A/en
Application granted granted Critical
Publication of JP3475501B2 publication Critical patent/JP3475501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、偏向ヨークに使用され
る鞍型偏向コイルの製造方法に関するものである。 【0002】 【従来の技術】図4に示すような鞍型偏向コイル1は、
例えば、図7に示すような金型2を用いて作製されてい
る。この金型2は内型3と外型4を有し、これを嵌合し
て隙間5を形成し、この隙間5内にコイル巻線6が巻か
れて前記図4に示すような鞍型のコイル形状が形成され
るものである。 【0003】コイル巻線6は図5に示すように、銅等の
金属導線7の外周に絶縁層8が被覆され、その絶縁層8
の外周にホットメルト材等の熱可塑性の接着層10が形成
されたものが使用されている。 【0004】図2は、金型2の隙間5内にコイル巻線6
を巻回して鞍型偏向コイル1の分布部(図4の例えばA
−A断面部)が巻回形成された状態を示しており、同図
の(a)に示すように、金型2にコイル巻線6を巻回終
了した時点では、コイルのセパレート側位置であるプレ
スライン位置11から余分にW部分だけはみ出して巻かれ
るので、通常、コイル巻線6の巻回終了時に、この状態
で、コイル巻線6の端末側から、電流を流して通電加熱
し、各コイル巻線6の接着層10を軟化溶融して隙間5の
開口端12側から押しゲージ13を押し入れてはみ出したコ
イル部分をプレスライン位置11まで押し込んでコイル形
状を整え、コイル巻線6を接着一体化することで、鞍型
偏向コイルを製造している。 【0005】この鞍型偏向コイル1の製造に際し、コイ
ル巻線6は必ずしも1本の線で巻くとは限らず、複数の
コイル巻線を一緒に巻いて金型2内に鞍型のコイル形状
を形成し、複数のコイル巻線6の端末側から同一方向に
電流を流して通電加熱を行い、各コイル巻線を接着一体
化している。 【0006】 【発明が解決しようとする課題】一般に、金型2の隙間
5内にコイル巻線6を巻回終了した図2の(a)に示す
状態では、コイル巻線6が粗の状態に巻回収容されてい
る。理想的には、同図の(b)に示すように、金型2の
隙間5内にコイル巻線6が均一に、かつ、密状態に巻回
収容されることが望ましいが、実際にコイル巻線6を巻
回した状態では、コイル巻線6が粗の巻回収容状態とな
り、特に、隙間5の先端側(コイルの窓側)にはコイル
巻線6が入り難いために、特に粗の状態となる。この状
態で、押しゲージ13を押し込むことにより、コイル巻線
6は隙間5の先端側に向けて押し込まれるために、密の
状態となり、多少、隙間5の先端側では粗になるが、ほ
ぼ同図の(b)に示すような理想に近い巻回収容状態と
なる。 【0007】ところが、コイル巻線6に通電加熱をして
コイル巻線6を接着一体化する際に、1本のコイル巻線
でコイルを巻回した場合はもちろんのこと、複数本のコ
イル巻線を一緒に巻いてコイルを形成した場合も、各コ
イル巻線に同一方向から電流を流すために、図3の
(a)に示すように、隣合うコイル巻線6a,6bに同
方向の電流が流れる結果、コイル巻線6a,6bから電
流の向きに対して右回りの同一方向の磁界が発生するこ
ととなり、この磁界により、フレミングの左手の法則に
より、互いのコイル巻線6a,6bに引き合う方向の力
Fが作用する。 【0008】この原理に基づいて、隙間5に巻回収容さ
れた全体のコイル巻線について考えると、図2の(c)
に示すように、隙間5の先端側のコイル巻線には中心側
に向かう力F1 が作用し、隙間5の開口端12側のコイル
巻線には同じく中心方向に向かう力F2 が作用し、これ
らの力F1 ,F2 により、隙間5内のコイル巻線6は中
心領域C側に寄せ集められる結果、隙間5の先端側では
コイル巻線6が特に粗の状態となり、中心領域Cでは非
常に密の状態となり、コイル巻線6の巻回終了後、押し
ゲージ13を押し込んで折角金型2の隙間5の形状に馴染
んでほぼ均一な巻回収容状態になるにもかかわらず、通
電加熱によって、コイル巻線6の分布形態が崩れてしま
うという問題が生じる。 【0009】鞍型偏向コイルの分布設計をシミュレーシ
ョン技術を用いて行うにしても、金型2の隙間5の形状
と同形状の均一なコイル巻線分布のコイルが形成される
ものとしてシミュレーションを行うことができれば非常
に有利であるが、前記の如く、コイル巻線6の通電加熱
により、コイル巻線の分布形態が崩れてしまうと、その
ようなシミュレーションによる設計技術が困難となり、
鞍型偏向コイルの新たな開発を行う上で支障となる。 【0010】また、コイル巻線6の通電加熱によりコイ
ル巻線の分布形態が崩れることで、隙間5の先端型、つ
まり、鞍型偏向コイル1の窓側が特に粗になると、その
コイル窓側部分の偏向磁界の分布がピン(ピン磁界)方
向に変化し、設計通りのバレル磁界が得られなくなり、
偏向コイルとしての製品性能が悪くなるという問題が生
じる。 【0011】本発明は上記課題を解決するためになされ
たものであり、その目的は、コイル巻線の通電加熱時の
電磁力の影響によるコイル巻線分布形態の崩れを防止
し、設計通りのコイル巻線の分布形態を得ることができ
る鞍型偏向コイルの製造方法を提供することにある。 【0012】 【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明は、金属導線の外周に絶縁層が、その絶縁層の外周
に熱可塑性の接着層がそれぞれ形成されているコイル巻
線を鞍型形状に巻いて鞍型のコイル形状とした後、コイ
ル巻線に通電し、この通電加熱によりコイル巻線の接着
層を軟化溶融して各コイル巻線を接着一体化する鞍型偏
向コイルの製造方法において、複数本のコイル巻線を一
緒に巻くことによって鞍型のコイル形状とし、この一緒
に巻いた複数本のコイル巻線の端末を等分又はほぼ等分
に分割してその分割の一方側のコイル巻線と他方側のコ
イル巻線とに互いに逆方向の電流を通電することによっ
て各コイル巻線を接着一体化することを特徴として構成
されている。 【0013】 【作用】上記構成の本発明において、複数本のコイル巻
線を一緒に巻いて鞍型のコイル形状とした後、ほぼ等分
に分割したコイル巻線の端末の一方側からは順方向の電
流を通電し、他方側の端末側には逆方向の電流を通電す
ることで、その一方側のコイル巻線と他方側のコイル巻
線から発生する磁界が互いに逆向きとなって打ち消し合
う。従って、鞍型のコイル形状に巻回形成されたコイル
巻線間に互いに引き合う電磁力の発生を防止でき、通電
加熱時に、コイル巻線がその電磁力を受けて分布形態が
崩れるということがなくなり、設計通りの巻線分布形態
の鞍型偏向コイルが作製される。 【0014】 【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、以下の実施例の説明において、従来例と同
一名称部分には同一符号を付し、その重複説明は省略す
る。本実施例は、前記図5に示した従来例と同様のコイ
ル巻線6を用いて、例えば、図7に示すような金型2の
隙間5にコイル巻線6を巻回して、鞍型の偏向コイル形
状を形成し、このコイル巻回の終了時に、コイル巻線の
通電加熱によりコイル巻線の接着被膜を熱溶解し、その
前後に前記図2の(a)に示すように、押しゲージ13を
用いて隙間5の開口端12側にはみ出したコイル部分Wを
押し込んで正規のコイル形状に成形し、一体的に接着固
定するものであるが、本実施例において特徴的なこと
は、金型2の隙間5にコイル巻線6を2本一緒にして巻
き、図1の(a)に示すように、巻き始め側の2本の端
末S1 ,S2 と巻き終り側の端末E1 ,E2 のそれぞれ
一方側から電流を流して一緒に巻いた隣合う2本のコイ
ル巻線6a,6bに互いに逆方向の電流が流れるように
したことである。 【0015】図1の(a)では、巻き始めの端末S2
と、巻き終り側の端末E1 側から電流を流し、一緒に巻
かれる2本のコイル巻線6a,6bに互いに逆向きの電
流が流れるようにしている(同じことではあるが、
1 ,S2 に逆電流を流してもよいし、図1の(b)に
示すように、どちらか一端側をショートして他端側(図
ではS1 ,S2 側)に通電してもよい)。このように、
逆向きに電流が流れると、図3の(b)に示すように、
コイル巻線6aから出る磁界とコイル巻線6bから出る
磁界は逆向きになる結果、互いの磁界は打ち消されて消
失することとなり、したがって、フレミングの左手の法
則によるコイル巻線6aと6b間に互いに引き合う力F
1 ,F2 は生じない。 【0016】したがって、金型2の隙間5に巻回収容さ
れたコイル巻線6には、図2の(c)に示すようなコイ
ル巻線6の窓側と開口端側とで中心向きの力F1 ,F2
が作用するということがなくなり、この結果、通電加熱
時に、隙間5に巻回収容されたコイル巻線の分布形態が
崩れるということがなくなり、コイル巻線6a,6bは
金型2の隙間5内に、均一な密度状態で、かつ、金型2
の隙間5と同一断面形状に巻かれることとなる。 【0017】本実施例によれば、鞍型偏向コイルの形状
は、金型2の隙間5の断面形状に等しく形成されるか
ら、金型2の隙間5の形状でもって、鞍型偏向コイルの
シミュレーションを行うことができることとなり、鞍型
偏向コイルの新製品の商品展開を図るときにも、金型の
コイル巻線巻回収容空間の断面形状を利用してシミュレ
ーションを行うことができるので、偏向コイルのシミュ
レーションによる新製品展開が極めて容易となり、コイ
ル製品の研究開発を行う上でも非常に有利となる。 【0018】また、通電加熱時の電磁力によって、金型
2の隙間5の先端側、つまり、鞍型偏向コイルの窓側の
コイル巻線分布が粗になって、偏向磁界がピン方向にず
れるということも防止でき、望ましいシミュレーション
設計通りのバレル磁界分布を得ることができ、コイル性
能に優れた鞍型偏向コイルの提供が可能となる。 【0019】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例では、2本のコイル巻線6a,6bを一緒にして
金型2の隙間5に巻回収容して鞍型偏向コイルを作製し
たが、2本以外の複数のコイル巻線6を一緒に巻いて鞍
型偏向コイルを作製してもよい。この場合、コイル巻線
を、偶数本にすれば、通電加熱を行う際、電流を順方向
に流すコイル巻線の数と、電流を逆方向に流すコイル巻
線の数とを等しくできるので、好ましくは、コイル巻線
6を偶数本一緒に巻くことが望ましい。 【0020】ただ、コイル巻線6を奇数本巻く場合にお
いても、例えば、5本一緒に巻く場合には、その端末を
2本と3本に分割でき、コイル巻線を7本一緒に巻く場
合にはそのコイル端末を3本と4本に1本違いで分割で
きるので、分割した一方型のコイル巻線から発生する磁
界と、その分割した他方側の逆向きの電流によって発生
する磁界とをほぼ打ち消し合うことができ、完全に打ち
消し合うことができなくとも、その差はコイル巻線1本
分の磁界だけなので、それによって発生する電磁力の影
響を小さくすることができ、その電磁力によるコイル巻
線分布形態の崩れによる影響を最小限に抑制でき、従来
例に比べ、格段に優れた鞍型偏向コイルの提供が可能と
なる。 【0021】また、上記実施例では金型2を用いた鞍型
偏向コイルの製造方法について説明したが、この種の偏
向ヨークの鞍型偏向コイルは、例えば、図6に示すよう
な鞍型形状のボビン14のコイル巻き溝15にコイル巻線6
を複数本一緒に巻いて鞍型形状のコイル形態とし、その
後、通電加熱し銅線を何らかの接着手段を施す必要のあ
る偏向ヨークにおいて、この状態で、前記実施例と同様
に等分(ほぼ等分を含む)したコイル巻線の端末の一方
側からは順方向の電流を流し、他方側には逆方向の電流
を流すことで、同様に、フレミングの左手の法則による
電磁力の影響のない鞍型の偏向コイルを作製することが
できる。 【0022】このように、ボビン14にコイル巻線6を巻
いて、鞍型偏向コイルを作製する場合、各コイル巻線6
に同一方向の電流を流すと、前記従来例と同様に隣合う
コイル巻線間に互いに引き合う電磁力が作用し、コイル
巻き溝15内で各コイル巻線の巻線分布が崩れて、偏向磁
界の分布形態が悪化したり、コイル巻き溝15の断面形状
に則したコイル巻線分布のコイルが形成できなくなるた
めに巻線ばらつきの大きな要因になってしまうが、前記
の如く、複数のコイル巻線6を一緒にコイル巻き溝15に
巻いて、その等分した端末側の一方側からは順方向の電
流を流し、他方側の端末には逆方向の電流を流すこと
で、電磁力によるコイル巻線分布の崩れを防止すること
ができ、前記金型2を用いた本実施例の鞍型偏向コイル
の場合と同様に、偏向磁界の分布形態の悪化を防止し、
安定した巻線のボビン巻鞍型偏向コイルの提供が可能と
なる。 【0023】さらに、コイル巻線6は必ずしも単線のも
のに限定されず、リッツ線等の複数の線から成る撚り線
を用いたものでもよく、例えば、20本撚りのリッツ線を
1本巻く場合、それを10本−10本に等分して(21本撚り
のときは11本−10本でもよい)、片方の端末と、もう一
方の端末に逆電流を供給してもよい。 【0024】 【発明の効果】本発明は、複数本のコイル巻線を一緒に
巻いて鞍型のコイル形状を形成し、然る後に、一緒に巻
いた複数本の端末を等分(又はほぼ等分)に分割し、そ
の分割した一方側のコイル巻線と他方側のコイル巻線と
に互いに逆方向の電流を通電することによって各コイル
巻線を通電加熱により接着一体化する構成としたもので
あるから、この通電加熱時に、一緒に巻いた一方側向き
の電流が流れるコイル巻線から発生する磁界と逆向きの
電流が流れるコイル巻線から発生する磁界とが打ち消し
あって消失する結果、通電加熱時にコイル巻線の全体
に、セパレート側と窓側の両方から中心側に引き寄せる
電磁力が作用することがなくなり、この電磁力によって
コイル巻線の分布形態が崩れるということがなくなる。 【0025】このように、コイル巻線分布形態が崩れる
ということがないので、設計通りのコイル巻線分布形態
の鞍型偏向コイルの作製が可能となり、これにより、設
計通りの偏向磁界分布のコイル性能の優れた鞍型偏向コ
イルの提供が可能となる。 【0026】さらに、コイル巻線分布形態の崩れがない
ので、コイル巻線を巻回する金型の隙間断面形状や、ボ
ビンのコイル巻き溝の溝断面形状に則したコイル巻線分
布形態に形成できることとなり、これらの隙間や溝の断
面形状を利用して鞍型偏向コイルのシミュレーション解
析をより正確に行うことができることとなり、これによ
り、鞍型偏向コイルの開発や解析が極めて容易となり、
鞍型偏向コイルの製品開発(商品展開)を行う上で非常
に有利となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a saddle type deflection coil used for a deflection yoke. 2. Description of the Related Art A saddle type deflection coil 1 as shown in FIG.
For example, it is manufactured using a mold 2 as shown in FIG. This mold 2 has an inner mold 3 and an outer mold 4, which are fitted to each other to form a gap 5, and a coil winding 6 is wound in the gap 5 to form a saddle type as shown in FIG. Is formed. [0005] As shown in FIG. 5, an outer periphery of a metal wire 7 such as copper is coated with an insulating layer 8.
In this case, a thermoplastic adhesive layer 10 such as a hot melt material is formed on the outer periphery. FIG. 2 shows a coil winding 6 in a gap 5 of a mold 2.
To the distribution portion of the saddle type deflection coil 1 (for example, A in FIG. 4).
(A section) is shown in a wound state. As shown in (a) of the figure, when the coil winding 6 is wound around the mold 2, the coil is at the separate side position of the coil. Since only an extra W portion protrudes from a certain press line position 11 and is wound, usually, at the end of winding of the coil winding 6, in this state, a current flows from the terminal side of the coil winding 6, and heating is performed. The adhesive layer 10 of each coil winding 6 is softened and melted, the push gauge 13 is pushed in from the opening end 12 side of the gap 5 and the protruding coil portion is pushed into the press line position 11 to adjust the coil shape, and the coil winding 6 is formed. The saddle type deflection coil is manufactured by bonding and integrating. In manufacturing the saddle type deflection coil 1, the coil winding 6 is not always wound by one wire, and a plurality of coil windings are wound together and the saddle type coil shape is formed in the mold 2. Are formed, current is applied in the same direction from the terminal side of the plurality of coil windings 6 to conduct and heat, and the respective coil windings are bonded and integrated. Generally, in the state shown in FIG. 2A in which the coil winding 6 has been wound in the gap 5 of the mold 2, the coil winding 6 is in a rough state. It is housed in a wound. Ideally, as shown in FIG. 2B, it is desirable that the coil winding 6 is uniformly and densely wound and accommodated in the gap 5 of the mold 2. In the state where the winding 6 is wound, the coil winding 6 is in a coarse winding accommodation state. In particular, since the coil winding 6 is hard to enter the leading end side (the window side of the coil) of the gap 5, it is particularly rough. State. In this state, when the push gauge 13 is pushed in, the coil winding 6 is pushed toward the leading end side of the gap 5, so that the coil winding 6 becomes dense. A winding accommodation state near ideal as shown in FIG. However, when energizing and heating the coil winding 6 to bond and integrate the coil winding 6, not only when the coil is wound with one coil winding, but also when a plurality of coil windings are wound. Even when the coils are formed by winding the wires together, as shown in FIG. 3A, in order to allow the current to flow in each coil winding from the same direction, the adjacent coil windings 6a and 6b have the same direction. As a result of the flow of the current, a magnetic field in the same direction clockwise with respect to the direction of the current is generated from the coil windings 6a and 6b, and this magnetic field causes the mutual coil windings 6a and 6b to be in accordance with Fleming's left-hand rule. A force F in the direction of attracting acts. Considering the whole coil winding wound and accommodated in the gap 5 based on this principle, FIG.
As shown in, the distal end side of the coil winding of the gap 5 and a force F 1 toward the center side, also the force F 2 is acting toward the center direction in the coil winding of the open end 12 side of the gap 5 By these forces F 1 and F 2 , the coil windings 6 in the gap 5 are gathered toward the central area C, and as a result, the coil windings 6 are particularly coarse on the tip side of the gap 5, In the case of C, the coil is in a very dense state, and after the winding of the coil winding 6 is completed, the push gauge 13 is pushed in to adjust to the shape of the gap 5 of the bent mold 2 so that a substantially uniform winding accommodation state is obtained. In addition, there arises a problem that the distribution form of the coil windings 6 is destroyed by the electric heating. Even when the distribution design of the saddle type deflection coil is performed using a simulation technique, the simulation is performed on the assumption that a coil having a uniform coil winding distribution having the same shape as the shape of the gap 5 of the mold 2 is formed. Although it is very advantageous if it can be performed, as described above, if the distribution form of the coil windings is destroyed due to the heating of the coil windings 6, the design technique by such a simulation becomes difficult,
This will hinder new development of saddle type deflection coils. When the distribution of the coil windings collapses due to the heating of the coil windings 6 and the leading end of the gap 5, that is, the window side of the saddle type deflecting coil 1 becomes particularly rough, the coil window side portion is reduced. The distribution of the deflection magnetic field changes in the pin (pin magnetic field) direction, and the barrel magnetic field as designed cannot be obtained.
There arises a problem that the product performance as a deflection coil deteriorates. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to prevent the coil winding distribution form from being collapsed by the influence of electromagnetic force at the time of energizing and heating the coil winding, and to achieve a design as designed. An object of the present invention is to provide a method of manufacturing a saddle-type deflection coil capable of obtaining a distribution form of coil windings. The present invention has the following configuration to attain the above object. That is, the present invention provides a saddle-shaped coil winding by winding a coil winding in which an insulating layer is formed on the outer periphery of a metal wire and a thermoplastic adhesive layer is formed on the outer periphery of the insulating layer. In the method of manufacturing a saddle-type deflection coil in which the coil windings are energized, and the energized heating softens and melts the adhesive layer of the coil windings to bond and integrate the coil windings, a plurality of coil windings are joined together. By winding, the ends of the plurality of coil windings wound together are divided into equal or substantially equal parts, and the coil windings on one side and the other side of the division are divided. The coil windings are bonded and integrated by applying currents in opposite directions to each other. According to the present invention having the above-described structure, a plurality of coil windings are wound together to form a saddle-shaped coil shape, and then the coil windings which are substantially equally divided are sequentially turned from one end of the terminal. By passing a current in one direction and a current in the opposite direction to the other end, the magnetic fields generated from the coil winding on one side and the coil winding on the other side cancel each other out. Fit. Therefore, it is possible to prevent the generation of an electromagnetic force attracting each other between the coil windings formed in a saddle-shaped coil shape, and it is possible to prevent the coil windings from receiving the electromagnetic force and disturbing the distribution form during energization and heating. Thus, a saddle-type deflection coil having a winding distribution form as designed is manufactured. Embodiments of the present invention will be described below with reference to the drawings. In the following description of the embodiments, the same reference numerals are given to the same parts as those in the conventional example, and the overlapping description will be omitted. In the present embodiment, for example, a coil winding 6 is wound around a gap 5 of a mold 2 as shown in FIG. At the end of the winding of the coil, the adhesive coating of the coil winding is thermally melted by energizing and heating the coil winding, and before and after that, as shown in FIG. The coil portion W protruding toward the opening end 12 side of the gap 5 is pushed into the regular coil shape by using the gauge 13 and is integrally bonded and fixed. Two coil windings 6 are wound together in the gap 5 of the mold 2, and as shown in FIG. 1A, two terminals S 1 and S 2 on the winding start side and a terminal E on the winding end side. 1, E 2 of the two coil windings 6a adjacent wound together by applying a current from each one side, each other 6b Is that as the direction of current flow. [0015] In FIG. 1 (a), the winding start terminal S 2 side, the winding current flows from the terminal E 1 side of the end side, the two coil windings 6a wound together, opposite directions 6b To allow the current to flow (same thing,
A reverse current may be supplied to S 1 and S 2 , or as shown in FIG. 1B, one end may be short-circuited and the other end (S 1 and S 2 sides in the figure) may be energized. May be). in this way,
When the current flows in the opposite direction, as shown in FIG.
As a result of the magnetic field emanating from the coil winding 6a and the magnetic field emanating from the coil winding 6b being reversed, the respective magnetic fields are canceled and disappear, and therefore, between the coil windings 6a and 6b according to Fleming's left-hand rule. Force F attracting each other
1, F 2 does not occur. Therefore, the coil winding 6 wound and accommodated in the gap 5 of the mold 2 has a force directed toward the center between the window side and the opening end side of the coil winding 6 as shown in FIG. F 1 , F 2
Does not act, and as a result, the distribution of the coil winding wound and accommodated in the gap 5 does not collapse at the time of energization heating, and the coil windings 6a and 6b are In a uniform density state, the mold 2
In the same cross-sectional shape as the gap 5. According to the present embodiment, the shape of the saddle type deflection coil is formed to be equal to the cross-sectional shape of the gap 5 of the mold 2, so that the shape of the gap 5 of the mold 2 is Simulation can be performed, and when developing new saddle-type deflection coil products, simulation can be performed using the cross-sectional shape of the coil winding winding accommodation space of the mold. It is extremely easy to develop new products by coil simulation, which is very advantageous in researching and developing coil products. Further, the distribution of coil windings on the tip side of the gap 5 of the mold 2, that is, on the window side of the saddle-type deflection coil is roughened by the electromagnetic force at the time of energization and heating, and the deflection magnetic field shifts in the pin direction. It is possible to obtain a barrel magnetic field distribution according to a desired simulation design, and to provide a saddle type deflection coil having excellent coil performance. The present invention is not limited to the above embodiment, but can take various embodiments. For example, in the above embodiment, the saddle-type deflection coil is manufactured by winding and housing the two coil windings 6a and 6b together in the gap 5 of the mold 2, but a plurality of coil windings other than the two are used. 6 may be wound together to produce a saddle type deflection coil. In this case, if the number of coil windings is set to an even number, the number of coil windings that allow current to flow in the forward direction can be equal to the number of coil windings that allow current to flow in the reverse direction when conducting heating. Preferably, an even number of coil windings 6 are wound together. However, even when an odd number of coil windings 6 are wound, for example, when five are wound together, the terminal can be divided into two and three, and when seven coil windings are wound together. Since the coil terminal can be divided into three and four coils with a difference of one, the magnetic field generated from the split one-sided coil winding and the magnetic field generated by the opposite current on the other side are divided. Even if they can almost cancel each other out, even if they cannot completely cancel each other out, the difference is only the magnetic field of one coil winding, so that the effect of the electromagnetic force generated thereby can be reduced, and the The influence of the collapse of the coil winding distribution pattern can be suppressed to a minimum, and it is possible to provide a saddle-type deflection coil that is far superior to the conventional example. In the above embodiment, a method of manufacturing a saddle-type deflection coil using the mold 2 has been described. However, a saddle-type deflection coil of this type of deflection yoke has, for example, a saddle-type deflection coil as shown in FIG. Coil 6 in the coil winding groove 15 of the bobbin 14
Are wound together to form a saddle-shaped coil form, and then, in a deflection yoke that needs to be heated and energized to apply some bonding means to the copper wire, in this state, the deflection yoke is equally divided (substantially equal) as in the previous embodiment. By passing a forward current from one end of the coil winding and a reverse current to the other end of the coil winding, there is also no effect of electromagnetic force due to Fleming's left-hand rule A saddle-type deflection coil can be manufactured. As described above, when the coil winding 6 is wound around the bobbin 14 to manufacture a saddle type deflection coil, each coil winding 6
When a current in the same direction is applied to the coil windings, an electromagnetic force attracting each other acts between adjacent coil windings in the same manner as in the above-described conventional example, and the winding distribution of each coil winding in the coil winding groove 15 is disrupted, and a deflection magnetic field is generated. The distribution pattern of the coils deteriorates, and it becomes impossible to form a coil having a coil winding distribution conforming to the cross-sectional shape of the coil winding groove 15, which is a major factor of winding variation. By winding the wire 6 together in the coil winding groove 15, a forward current flows from one side of the equally divided terminal side, and a reverse current flows to the other side of the terminal side. Distortion of the winding distribution can be prevented, and similarly to the saddle type deflection coil of the present embodiment using the mold 2, deterioration of the distribution form of the deflection magnetic field can be prevented.
It is possible to provide a bobbin wound saddle type deflection coil having a stable winding. Further, the coil winding 6 is not necessarily limited to a single wire, and may be a wire using a stranded wire composed of a plurality of wires such as a litz wire. For example, when winding one litz wire of 20 twists Alternatively, it may be equally divided into 10 to 10 wires (or 11 to 10 wires when 21 wires are twisted), and a reverse current may be supplied to one terminal and the other terminal. According to the present invention, a plurality of coil windings are wound together to form a saddle-shaped coil shape, and thereafter, the plurality of terminals wound together are equally (or substantially) divided. The coil windings on one side and the coil winding on the other side are supplied with currents in opposite directions to each other, so that the coil windings are bonded and integrated by conduction heating. Therefore, during this heating, the magnetic field generated from the coil winding in which the current flowing in one direction flows together and the magnetic field generated from the coil winding in which the current flowing in the opposite direction cancels out and disappears. In addition, the electromagnetic force that draws from both the separate side and the window side to the center side does not act on the entire coil winding during energization heating, and the distribution form of the coil winding does not collapse due to the electromagnetic force. As described above, since the coil winding distribution pattern does not collapse, it is possible to manufacture a saddle type deflection coil having the designed coil winding distribution pattern. It is possible to provide a saddle type deflection coil having excellent performance. Further, since the coil winding distribution is not distorted, the coil winding distribution is formed in accordance with the cross-sectional shape of the gap around the die for winding the coil winding and the cross-sectional shape of the coil winding groove of the bobbin. This makes it possible to more accurately perform the simulation analysis of the saddle-type deflection coil using the cross-sectional shapes of these gaps and grooves, thereby making it extremely easy to develop and analyze the saddle-type deflection coil.
This is very advantageous in the development (product development) of saddle type deflection coils.

【図面の簡単な説明】 【図1】本発明の一実施例を示す説明図である。 【図2】金型を用いて鞍型偏向コイルを製造する場合の
コイル巻線分布形態の各種状態の説明図である。 【図3】鞍型偏向コイルの隣合うコイル巻線に流れる電
流の向きと電磁力の発生状態を本実施例の場合と従来例
の場合を比較状態で示す説明図である。 【図4】一般的な鞍型偏向コイルの説明図である。 【図5】鞍型偏向コイルを形成するコイル巻線の断面図
である。 【図6】鞍型偏向コイル用ボビンの説明図である。 【図7】鞍型偏向コイルを作製する一般的な金型の説明
図である。 【符号の説明】 1 鞍型偏向コイル 2 金型 5 隙間 6,6a,6b コイル巻線
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing one embodiment of the present invention. FIG. 2 is an explanatory view of various states of a coil winding distribution mode when a saddle type deflection coil is manufactured using a mold. FIG. 3 is an explanatory diagram showing the direction of current flowing in adjacent coil windings of a saddle type deflection coil and the state of generation of an electromagnetic force in a comparison between the case of the present embodiment and the case of a conventional example. FIG. 4 is an explanatory view of a general saddle type deflection coil. FIG. 5 is a sectional view of a coil winding forming a saddle type deflection coil. FIG. 6 is an explanatory view of a bobbin for a saddle type deflection coil. FIG. 7 is an explanatory view of a general mold for producing a saddle type deflection coil. [Description of Signs] 1 Saddle-type deflection coil 2 Mold 5 Clearance 6, 6a, 6b Coil winding

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−124654(JP,A) 特開 昭63−150830(JP,A) 特開 平5−290731(JP,A) 特開 昭58−119137(JP,A) 実開 昭64−55543(JP,U) 特公 昭38−717(JP,B1) 特公 昭49−8207(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01J 9/236 H01F 41/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-124654 (JP, A) JP-A-63-150830 (JP, A) JP-A-5-290731 (JP, A) JP-A-58-1983 119137 (JP, A) Japanese Utility Model Showa 64-55543 (JP, U) Japanese Patent Publication No. 38-717 (JP, B1) Japanese Patent Publication No. 49-8207 (JP, B1) (58) Field surveyed (Int. 7 , DB name) H01J 9/236 H01F 41/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 金属導線の外周に絶縁層が、その絶縁層
の外周に熱可塑性の接着層がそれぞれ形成されているコ
イル巻線を鞍型形状に巻いて鞍型のコイル形状とした
後、コイル巻線に通電し、この通電加熱によりコイル巻
線の接着層を軟化溶融して各コイル巻線を接着一体化す
る鞍型偏向コイルの製造方法において、複数本のコイル
巻線を一緒に巻くことによって鞍型のコイル形状とし、
この一緒に巻いた複数本のコイル巻線の端末を等分又は
ほぼ等分に分割してその分割の一方側のコイル巻線と他
方側のコイル巻線とに互いに逆方向の電流を通電するこ
とによって各コイル巻線を接着一体化することを特徴と
する鞍型偏向コイルの製造方法。
(57) [Claim 1] A coil winding in which an insulating layer is formed on the outer periphery of a metal conductor and a thermoplastic adhesive layer is formed on the outer periphery of the insulating layer are wound in a saddle shape. After the saddle-shaped coil shape, the coil winding is energized, and the energized heating softens and melts the adhesive layer of the coil winding to bond and integrate each coil winding. By winding this coil winding together, it becomes a saddle-shaped coil shape,
The ends of the plurality of coil windings wound together are equally or almost equally divided, and currents in opposite directions are supplied to the coil winding on one side and the coil winding on the other side of the division. A method of manufacturing a saddle-type deflection coil, wherein the coil windings are bonded and integrated by the above method.
JP16453794A 1994-06-23 1994-06-23 Method of manufacturing saddle type deflection coil Expired - Fee Related JP3475501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16453794A JP3475501B2 (en) 1994-06-23 1994-06-23 Method of manufacturing saddle type deflection coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16453794A JP3475501B2 (en) 1994-06-23 1994-06-23 Method of manufacturing saddle type deflection coil

Publications (2)

Publication Number Publication Date
JPH087763A JPH087763A (en) 1996-01-12
JP3475501B2 true JP3475501B2 (en) 2003-12-08

Family

ID=15795048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16453794A Expired - Fee Related JP3475501B2 (en) 1994-06-23 1994-06-23 Method of manufacturing saddle type deflection coil

Country Status (1)

Country Link
JP (1) JP3475501B2 (en)

Also Published As

Publication number Publication date
JPH087763A (en) 1996-01-12

Similar Documents

Publication Publication Date Title
US5258681A (en) Magnetic slot wedges for dynamo-electric machines
JP6766697B2 (en) Coil parts
JP5224055B2 (en) Reactor coil member, method of manufacturing the same, and reactor
JP2018148080A (en) Coil component
US5864941A (en) Heater assembly method
JP3466425B2 (en) Stator
JP3475501B2 (en) Method of manufacturing saddle type deflection coil
JP2004111620A (en) Igniter transformer
JP3274578B2 (en) Laminated core for stator
JP2006141076A (en) Stator structure
US20240162761A1 (en) Stator for Dynamo-Electric Machine, Dynamo-Electric Machine, Electric Drive System, and Electrified Wheel
JPS6139439A (en) Saddle coil of electromagnetic deflecting unit
JPH11329866A (en) Cored coil and manufacture thereof
JP6984027B2 (en) Electric motor
JPS62274535A (en) Deflection yoke
JPH05242917A (en) Connecting method and structure for superconducting wire
KR100219132B1 (en) Stator of motor
JPH0437008A (en) Reactor
JPS60261337A (en) Coreless armature and manufacture thereof
JP2004080902A (en) Dynamo-electric machine
JPH07105278B2 (en) Method for manufacturing coil for charged particle deflection electromagnet
JPS63143719A (en) Manufacture of electromagnetic deflection unit
JP3100557B2 (en) Method of manufacturing deflection yoke
JP2002369427A (en) Dynamo-electric machine
JP2000150266A (en) High voltage pulse transformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees