JP3473968B2 - Continuous production equipment for fiber reinforced resin pipes - Google Patents

Continuous production equipment for fiber reinforced resin pipes

Info

Publication number
JP3473968B2
JP3473968B2 JP33853392A JP33853392A JP3473968B2 JP 3473968 B2 JP3473968 B2 JP 3473968B2 JP 33853392 A JP33853392 A JP 33853392A JP 33853392 A JP33853392 A JP 33853392A JP 3473968 B2 JP3473968 B2 JP 3473968B2
Authority
JP
Japan
Prior art keywords
laminate
core
flap
fiber
laminated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33853392A
Other languages
Japanese (ja)
Other versions
JPH06218806A (en
Inventor
智 岸
浩司郎 茂田井
信幸 細山
勝幸 盛田
浩史 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP33853392A priority Critical patent/JP3473968B2/en
Publication of JPH06218806A publication Critical patent/JPH06218806A/en
Application granted granted Critical
Publication of JP3473968B2 publication Critical patent/JP3473968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は繊維補強樹脂管の連続製
造装置に関する。 【0002】 【従来の技術】従来、繊維補強熱可塑性樹脂成形品を製
造する方法としては、「繊維補強樹脂成形体の連続賦型
方法及びその装置」と題する特開平1−286823号
公報に記載の方法のほか、一般的には、加熱され、軟化
した繊維補強樹脂板を金型を有するプレス機で加圧成形
する方法が知られている。これらの方法には、成形品の
断面形状が開断面(成形品の断面が閉曲線をなしていな
い断面形状をいう。以下同じ。)となる成形品の製造に
は適しているが、閉断面(成形品の断面が閉曲線をなし
ている断面形状をいう。以下同じ。)となる管状の成形
品を製造することができないという問題点がある。 【0003】また、合成樹脂板を管状に成形する方法と
して、フィラメントワインディング方式があるが、この
方式には複雑で高度な技術を用いるため膨大な設備投資
を要するという問題点があり、さらに、この方式は合成
樹脂板として熱硬化型複合材を用いるため、熱可塑型複
合材では断面形状が閉断面となる管状体を成形すること
ができないという問題点もある。そのため、熱可塑型複
合材による管状成形品の製造には、複数の開断面を有す
る成形品をボルトナット等で機械的に接合するか、接着
剤等で化学的に接合する等の方法を用いざるを得なかっ
た。しかし、この方法には、それぞれの成形品の辺縁に
接合部を設け、それらを接合する必要があり、製造工程
が複雑になり、生産効率が低くなるという問題点があ
る。 【0004】さらに、ボルトナット等で機械的に接合す
る場合、接合部分に負担がかかるため、補強のための部
品等を設ける必要があり、更に製造工程が複雑になる。
また、接着剤等で化学的に接合する場合、接着剤の劣化
等による接合面の界面剥離が発生する可能性があり、特
に、ポリプロピレン樹脂製品の接合に適した接着剤は提
供されていないので、使用に耐え得る管状体の製造は困
難である。 【0005】 【発明が解決しようとする課題】本発明は叙上の問題点
を解決するためなされたものであり、その目的とすると
ころは、膨大な設備投資を必要とせず、繊維補強熱可塑
性樹脂板を効率良く管状に成形し得る方法を実施する装
置を提供することにある。 【0006】 【課題を解決するための手段】叙上の目的は、重量含有
率で40%以上85%以下の強化繊維を含む繊維補強熱
可塑性樹脂板を層状に積層して成る長尺帯状の積層体を
製造する工程と、製造された積層体を、加熱装置と、成
形装置と、冷却装置と、送出ローラーと、切断装置とか
ら成る樹脂管製造ラインに送り出す工程と、加熱装置に
より積層体を軟化温度以上に加熱する工程と、加熱され
た積層体を長尺の円筒状巻芯に沿って巻付け、筒状とす
ると共に、その辺縁同士を接合し管状に成形する工程
と、管状に成形された積層体を冷却し、固化する工程
と、固化した管状の積層体を一定の長さに切断する工程
と、から成る繊維補強樹脂管の連続製造方法を実施し得
る装置によって達成される。 【0007】 【作用】叙上の如き構成であると、繊維補強樹脂管を複
雑な装置を用いず連続的に製造することが可能となる。 【0008】 【発明を実施するための最良の様態】以下図面により、
本発明の詳細を説明する。図1は本発明に係る繊維補強
樹脂管の連続製造装置の説明図、図2は図1のA1線に
於ける軸直角断面図、図3は図1のA2線に於ける軸直
角断面図、図4は図1のA3線に於ける軸直角断面図、
図5は図1のA4線に於ける軸直角断面図、図6は図1
のA5線に於ける軸直角断面図、図7は図1のA6線に
於ける軸直角断面図、図8は図1のA7線に於ける軸直
角断面図、図9は図1のA8線に於ける軸直角断面図、
図10は図1のA9線に於ける軸直角断面図である。図
中、1は繊維補強熱可塑性樹脂板の積層体、2は加熱装
置、3は成形装置、4は冷却装置、5は送出ローラー、
6は切断装置である。 【0009】先ず、図1について説明する。この繊維補
強樹脂管の連続製造装置は、繊維補強熱可塑性樹脂板を
層状に積層して成る平面かつ帯状の積層体1を略水平に
ラインに送り出し、徐々に管状に成形し、その成形物を
所望の長さに切断するものであり、そのラインにはその
進行方向に沿って順次、加熱装置2、成形装置3、冷却
装置4、送出ローラー5及び切断装置6が設けられる。
加熱装置2は、その内部を通過する帯状の積層体1をそ
の軟化温度迄加熱する。成形装置3は、加熱装置2の出
口から切断装置6の直前に到る長い円筒状の巻芯30
と、その巻芯30の周囲に設けられ、積層体1を巻芯3
0に巻きつけ、円筒状とする一連のフラップとから成
る。31、32は対をなして対称に設けられる第一フラ
ップ、33は第二フラップ、34は第三フラップであ
る。なお、第一フラップ32の一部は帯状の積層体1の
背後に隠れているが、これは第一フラップ31と鏡映対
称なものである。 【0010】巻芯30は、その周長が積層体1の幅より
短く、細長い横置円筒状の部材であり、その一端が加熱
装置2の出口側に接し、かつ、その最上部の母線が加熱
装置2の出口20から送り出される積層体1の下面中心
線に接するよう設けられる。このため、加熱装置2から
押し出された積層体1は、巻芯30の表面とフラップの
間を滑りながら冷却装置4に向かって進行する。第一フ
ラップ31、32は、加熱装置2の出口近傍では、図2
に示す如く平板状の積層体1の表面に接する水平な平板
状断面を有するが、出口から離れるにつれて、図3ない
し図5に示す如く、積層体1の断面を弓形に撓め、巻芯
30に密着させるように捩じられている。第一フラップ
31、32は、積層体1を巻芯30の上側半周面に巻付
けたところで終了する。積層体1の残余の部分は巻芯3
0の両側に鉛直に垂れ下がった状態であり、この状態で
巻付作業は第二のフラップ33に引き継がれる。 【0011】又、第二フラップ33は右ネジラセン状に
捩じられており図6及び図7に示す如く、巻芯30から
垂れ下がっている積層体1の一方の部分aを誘導し、巻
芯30の下側の表面に密着せしめるよう、全体としてラ
セン状に捩じられている。なお、本実施例において、積
層体1の一方の部分aは巻芯30の略半周に渡っている
が、この巻付幅は随意に定め得るものである。図7の状
態で、第二フラップ33による部分aの巻付けは終了
し、巻付作業は第三フラップ34に引き継がれる。第三
フラップ34は、図8ないし図10に示す如く、巻芯3
0から垂れ下がっている積層体1の他の一方の部分bを
誘導し、先に巻芯30の巻き付ける部分aの上に、重ね
て巻付け、全体として円筒状とし、その打ち重ね部を強
く巻芯30に押し付け、気密に圧着する。パイプとなっ
た積層体1は、冷却装置4に導入され、冷却固化され、
更に送出ローラー5により誘導され、切断装置6により
所望の長さに切断される。なお、巻芯30の冷却装置4
の内部にある部分には適宜抜き勾配を設けておくことが
推奨される。 【0012】上記の如く構成された本発明に係る繊維補
強樹脂管の連続製造装置に於いては、図示されていない
積層体送出装置が繊維補強熱可塑性樹脂板を層状に積層
して成る平面かつ帯状の積層体1をラインに送り出すこ
とにより、加熱装置2が積層体1を軟化させ、第一ない
し第三フラップ31、32、33、34が軟化した積層
体1を巻芯30に巻付け、重合部分を圧着して円筒状に
成形する。さらに、冷却装置4がパイプとなった積層体
1を冷却固化し、送出ローラー5が固化した積層体1を
誘導し、切断装置6が誘導された積層体1を所望の長さ
に切断する。なお、叙上の説明では、第二フラップによ
る部分aの巻付作業が終了した後、第三フラップによる
部分bの巻付作業を行うようにしたが、これは打ち重ね
部が半周に及ぶような幅広いものであるためであり、こ
の打ち重ねの幅が狭い場合には第二フラップと第三フラ
ップとの巻付け作業を略同時に進行させることが可能で
ある。本発明に係る樹脂管の製造に使用する繊維補強熱
可塑性樹脂板の原料である熱可塑性樹脂は特に限定はな
い。例としてポリスチレン、ポリ塩化ビニル、高密度ポ
リエチレン、ポリプロピレン、ポリカーボネート、ポリ
ブチレンテレフタレート、ポリエチレンテレフタレー
ト、ポリエーテルサルフォン、ポリサルフォン、ポリエ
ーテルイミド(商標:ULTEM )、ポリエーテルエーテル
ケトン、ポリフェニレンサルファイドなどが使用できる
が、強度、耐摩耗性、価格や廃棄物となったときの再生
の容易さなどの観点から、最も望ましい樹脂として、ポ
リプロピレン系樹脂が推奨される。 【0013】また、本発明の構成は叙上の実施例に限定
されるものではなく、たとえば、パイプの継目を、重ね
継ではなく、突き合せ継や、当板継などとしても良く、
また、フラップと共に、鼓形ローラーなどを併用するこ
とも推奨され、さらに、その他の各部の形状は本発明の
目的の範囲内で自由に設計変更できるものであり、本発
明はそれらすべての変更例を包摂するものである。この
ようにして製造される繊維補強樹脂管は、雨樋、U字
管、ポール等に利用される。現場での作業性にも優れ、
必要に応じて樹脂管の一部を加熱軟化することにより、
任意に管を曲折することができる。 【0014】 【発明の効果】本発明は叙上の如く構成されるから、本
発明によるときは、繊維補強熱可塑性樹脂板を効率良く
かつ簡単に管状に成形するので、合成樹脂製のパイプを
大量に生産することができる。尚、これらは熱膨張率が
小さいため寸法精度に優れ、二次加工も可能な作業性の
良いパイプである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for continuously producing fiber-reinforced resin pipes. 2. Description of the Related Art Conventionally, a method for producing a fiber-reinforced thermoplastic resin molded product is described in Japanese Patent Application Laid-Open No. 1-286823 entitled "Method and Apparatus for Continuously Forming a Fiber-Reinforced Resin Molded Product". In addition to the above method, a method is generally known in which a heated and softened fiber reinforced resin plate is pressure-formed by a press having a mold. These methods are suitable for manufacturing a molded product in which the cross-sectional shape of the molded product is an open cross-section (refer to a cross-sectional shape in which the cross-section of the molded product does not form a closed curve; the same applies hereinafter). There is a problem that it is not possible to manufacture a tubular molded product having a cross-sectional shape in which the cross-section of the molded product forms a closed curve. [0003] As a method of forming a synthetic resin plate into a tubular shape, there is a filament winding method. However, this method has a problem that a huge amount of equipment investment is required since a complicated and advanced technique is used. In the method, since a thermosetting composite material is used as a synthetic resin plate, there is also a problem that a tubular body having a closed cross section cannot be formed with a thermoplastic composite material. Therefore, in the production of a tubular molded article made of a thermoplastic composite material, a method of mechanically joining molded articles having a plurality of open sections with bolts or nuts or chemically joining them with an adhesive or the like is used. I had no choice. However, this method has a problem that it is necessary to provide a joint at the periphery of each molded article and join them, which complicates the manufacturing process and lowers the production efficiency. Further, when mechanically joined with bolts and nuts or the like, a load is applied to the joined portion, so that it is necessary to provide a part or the like for reinforcement, which further complicates the manufacturing process.
Also, when chemically bonding with an adhesive or the like, there is a possibility that interfacial peeling of the bonding surface due to deterioration of the adhesive or the like may occur, and in particular, an adhesive suitable for bonding a polypropylene resin product has not been provided. It is difficult to manufacture a tubular body that can withstand use. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a fiber-reinforced thermoplastic resin which does not require enormous capital investment. An object of the present invention is to provide an apparatus for implementing a method capable of efficiently forming a resin plate into a tubular shape. SUMMARY OF THE INVENTION An object of the present invention is to provide an elongate belt formed by laminating fiber-reinforced thermoplastic resin plates containing reinforcing fibers having a weight content of not less than 40% and not more than 85%. A step of producing a laminate, a step of sending the produced laminate to a resin pipe production line including a heating device, a molding device, a cooling device, a delivery roller, and a cutting device; Heating the laminate to a temperature equal to or higher than the softening temperature, winding the heated laminate along a long cylindrical winding core, forming a tubular shape, joining the edges thereof to form a tubular shape, The step of cooling and laminating the formed laminate, and the step of cutting the solidified tubular laminate to a predetermined length are achieved by an apparatus capable of carrying out a continuous production method of a fiber-reinforced resin pipe comprising: You. With the above construction, it becomes possible to continuously manufacture a fiber reinforced resin pipe without using a complicated apparatus. BEST MODE FOR CARRYING OUT THE INVENTION Referring to the drawings,
The details of the present invention will be described. 1 is an explanatory view of an apparatus for continuously manufacturing a fiber-reinforced resin pipe according to the present invention, FIG. 2 is a sectional view taken along a line A1 in FIG. 1, and FIG. 3 is a sectional view taken along a line A2 in FIG. FIG. 4 is a cross-sectional view taken along a line A3 in FIG.
FIG. 5 is a cross-sectional view taken along the line A4 in FIG. 1, and FIG.
1 is a sectional view taken along the line A5, FIG. 7 is a sectional view taken along the line A6 in FIG. 1, FIG. 8 is a sectional view taken along the line A7 in FIG. 1, and FIG. Sectional view at right angles to the axis,
FIG. 10 is a sectional view taken along a line A9 in FIG. In the figure, 1 is a laminate of fiber reinforced thermoplastic resin plates, 2 is a heating device, 3 is a molding device, 4 is a cooling device, 5 is a delivery roller,
6 is a cutting device. First, FIG. 1 will be described. This continuous production apparatus for fiber-reinforced resin pipes sends out a flat and band-shaped laminate 1 formed by laminating fiber-reinforced thermoplastic resin plates in a layer substantially horizontally to a line, and gradually forms it into a tube. The heating device 2, the forming device 3, the cooling device 4, the delivery roller 5, and the cutting device 6 are sequentially provided in the line along the traveling direction.
The heating device 2 heats the band-shaped laminate 1 passing therethrough to its softening temperature. The molding device 3 includes a long cylindrical core 30 extending from the outlet of the heating device 2 to just before the cutting device 6.
And the laminate 1 is provided around the core 30, and
And a series of flaps wound around zero and cylindrical. 31 and 32 are first flaps provided symmetrically in pairs, 33 is a second flap, and 34 is a third flap. In addition, although a part of the first flap 32 is hidden behind the band-shaped laminated body 1, this is mirror-symmetric with the first flap 31. The winding core 30 is a slender horizontal cylindrical member having a peripheral length shorter than the width of the laminated body 1, one end of which is in contact with the outlet side of the heating device 2, and the uppermost bus bar thereof is The laminate 1 is provided so as to be in contact with the center line of the lower surface of the laminate 1 sent out from the outlet 20 of the heating device 2. Therefore, the laminate 1 extruded from the heating device 2 advances toward the cooling device 4 while sliding between the surface of the core 30 and the flap. In the vicinity of the outlet of the heating device 2, the first flaps 31, 32
As shown in FIGS. 3 to 5, the cross section of the laminated body 1 is bent in an arcuate shape as shown in FIGS. It is twisted so as to be in close contact with. The first flaps 31 and 32 end when the laminate 1 is wound on the upper half circumferential surface of the core 30. The remaining part of the laminate 1 is a core 3
In this state, the winding operation is taken over by the second flap 33 in this state. Further, the second flap 33 is twisted in a right-hand spiral form, and as shown in FIGS. 6 and 7, guides one portion a of the laminated body 1 hanging from the winding core 30, and It is helically twisted as a whole to make it adhere to the lower surface. In this embodiment, one portion a of the laminated body 1 extends over substantially half the circumference of the core 30. However, the winding width can be arbitrarily determined. In the state of FIG. 7, the winding of the portion a by the second flap 33 ends, and the winding operation is taken over by the third flap 34. The third flap 34, as shown in FIGS.
The other one part b of the laminated body 1 hanging from 0 is guided, and is wound on the part a of the core 30 where the core 30 is to be wound first to form a cylindrical shape as a whole. It is pressed against the core 30 and air-tightly pressed. The laminated body 1 that has become a pipe is introduced into the cooling device 4 and solidified by cooling.
Further, it is guided by the delivery roller 5 and cut by the cutting device 6 to a desired length. The cooling device 4 for the core 30
It is recommended that a draft angle be provided in a portion inside the. In the continuous production apparatus of the fiber-reinforced resin pipe according to the present invention having the above-described structure, a laminate delivery device (not shown) is formed by laminating the fiber-reinforced thermoplastic resin plates in a plane. By sending the strip-shaped laminate 1 to the line, the heating device 2 softens the laminate 1, and the first to third flaps 31, 32, 33, and 34 soften the laminate 1 around the core 30, The polymerized part is pressed and formed into a cylindrical shape. Further, the cooling device 4 cools and solidifies the laminated body 1 which has become a pipe, the delivery roller 5 guides the solidified laminated body 1, and the cutting device 6 cuts the guided laminated body 1 to a desired length. In the above description, the winding operation of the portion b by the third flap is performed after the winding operation of the portion a by the second flap is completed. When the width of the punching is narrow, the winding operation of the second flap and the third flap can be performed substantially simultaneously. The thermoplastic resin used as a raw material of the fiber-reinforced thermoplastic resin plate used for manufacturing the resin tube according to the present invention is not particularly limited. For example, polystyrene, polyvinyl chloride, high-density polyethylene, polypropylene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyether sulfone, polysulfone, polyetherimide (trade name: ULTEM), polyether ether ketone, polyphenylene sulfide, etc. can be used. However, from the viewpoints of strength, abrasion resistance, price and ease of recycling when it becomes waste, a polypropylene resin is recommended as the most desirable resin. Further, the structure of the present invention is not limited to the above-described embodiment. For example, the seam of the pipe may be a butt joint or a plate joint instead of a lap joint.
It is also recommended to use a drum-shaped roller together with the flap, and furthermore, the shape of other parts can be freely changed within the scope of the object of the present invention. Is included. The fiber reinforced resin pipe manufactured in this manner is used for rain gutters, U-shaped pipes, poles, and the like. Excellent workability on site,
By heating and softening part of the resin tube as necessary,
Optionally the tube can be bent. Since the present invention is constituted as described above, according to the present invention, a fiber-reinforced thermoplastic resin plate can be efficiently and easily formed into a tubular shape. Can be produced in large quantities. These pipes are excellent in dimensional accuracy because of their low coefficient of thermal expansion, and have good workability that allows secondary processing.

【図面の簡単な説明】 【図1】本発明に係る繊維補強樹脂管の連続製造装置の
説明図である。 【図2】図1のA1線に於ける軸直角断面図である。 【図3】図1のA2線に於ける軸直角断面図である。 【図4】図1のA3線に於ける軸直角断面図である。 【図5】図1のA4線に於ける軸直角断面図である。 【図6】図1のA5線に於ける軸直角断面図である。 【図7】図1のA6線に於ける軸直角断面図である。 【図8】図1のA7線に於ける軸直角断面図である。 【図9】図1のA8線に於ける軸直角断面図である。 【図10】図1のA9線に於ける軸直角断面図である。 【符号の説明】 1・・・・・・・・・積層体 2・・・・・・・・・加熱装置 3・・・・・・・・・成形装置 30・・・・・・・・巻芯 31、32・・・・・第一フラップ 33・・・・・・・・第二フラップ 34・・・・・・・・第三フラップ 4・・・・・・・・・冷却装置 5・・・・・・・・・送出ローラー 6・・・・・・・・・切断装置 a・・・・・・・・・積層体の一方の部分 b・・・・・・・・・積層体の他の一方の部分
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a continuous production apparatus for a fiber-reinforced resin pipe according to the present invention. FIG. 2 is a cross-sectional view taken along a line A1 in FIG. FIG. 3 is a cross-sectional view taken along a line A2 in FIG. FIG. 4 is a cross-sectional view taken along a line A3 in FIG. FIG. 5 is a sectional view taken along a line A4 in FIG. 1; FIG. 6 is a sectional view taken along line A5 in FIG. 1; FIG. 7 is a sectional view taken along a line A6 in FIG. FIG. 8 is a sectional view taken along line A7 in FIG. 1; FIG. 9 is a cross-sectional view taken along a line A8 in FIG. FIG. 10 is a cross-sectional view taken along a line A9 in FIG. [Description of Signs] 1 ... Laminated body 2 ... Heating device 3 ... Forming device 30 ... Cores 31 and 32 First flap 33 Second flap 34 Third flap 4 Cooling device 5 ... Sending roller 6 ... Cutting device a ... One part b of the laminate ... The other part of the body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田辺 浩史 神奈川県横浜市栄区笠間町1190番地 三 井東圧化学株式会社内 (56)参考文献 特開 平4−201547(JP,A) 特開 昭53−39610(JP,A) 特開 昭52−141472(JP,A) 特公 昭60−30538(JP,B1) 特表 平3−503389(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 53/50 B29C 70/06 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Tanabe 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Mitsui Toatsu Chemicals Co., Ltd. (56) References JP-A-4-201547 (JP, A) JP-A Sho53 JP-A-39610 (JP, A) JP-A-52-141472 (JP, A) JP-B-60-30538 (JP, B1) JP-A-3-503389 (JP, A) (58) Fields investigated (Int. . 7, DB name) B29C 53/50 B29C 70/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 重量含有率で40%以上85%以下の強
化繊維を含む繊維補強熱可塑性樹脂板を層状に積層して
成る長尺帯状の積層体(1)を供給する装置と、 供給された積層体(1)を連続して軟化点以上の温度に
加熱する装置と、 加熱された積層体(1)を管状に成形する装置と、 管状に成形された積層体(1)を冷却し固化する装置
と、 冷却された積層体(1)を一定の長さに切断する装置
と、 から成る繊維補強樹脂管の連続製造装置に於いて、 成形装置(3)が、 積層体(1)の幅より周長が短く、加熱装置(2)から
送出される積層体(1)の下面に接して設けられる細長
い円筒状の巻芯(30)と、 巻芯(30)の周囲に配設され、巻芯(30)との間に
積層体(1)を誘導して、巻芯(30)に巻付け、管状
に成形する下記の第一乃至第三フラップとから成る上記
の繊維補強樹脂管の連続製造装置。イ)巻芯(30)に接した積層体(1)の上面に接し、
かつ、巻芯(30)と積層体との接線を挟んで対をなし
て対称に設けられ、積層体(1)の進行方向に進むにし
たがい、積層体(1)を巻芯(30)の上側半周面に密
着させ得るよう捩じられた一対の第一フラップ(31、
32)。 ロ)巻芯(30)から垂れ下がっている積層体(1)の
一方の部分(a)を誘導し、巻芯(30)の下側表面に
密着させ得るようラセン状に捩じられた第二フラップ
(33)。 ハ)巻芯(30)から垂れ下がっている積層体(1)の
他の一方の部分(b)を誘導し、少なくともその一部を
既に巻芯(30)に密着している部分(a)の上に重ね
て巻付け、その打ち重ね部を強く巻芯(30)に押し付
け得るようラセン状に捩じられた第三フラップ(3
4)。
(1) A long strip-like laminate (1) formed by laminating fiber-reinforced thermoplastic resin plates containing reinforcing fibers having a weight content of 40% or more and 85% or less. ), A device for continuously heating the supplied laminate (1) to a temperature equal to or higher than the softening point, a device for forming the heated laminate (1) into a tube, and a device for forming the tube into a tube. An apparatus for cooling and solidifying the laminated body (1), and an apparatus for cutting the cooled laminated body (1) to a predetermined length. 3) an elongated cylindrical core (30) having a shorter circumferential length than the width of the laminate (1) and provided in contact with the lower surface of the laminate (1) sent out from the heating device (2); The laminate (1) is disposed around the core (30), and the laminate (1) is guided between the core (30) and the core (30). Only, the above continuous production apparatus for fiber-reinforced resin pipe comprising a first through third flap below for molding the tubular. B) contacting the upper surface of the laminate (1) in contact with the core (30);
And form a pair with a tangent between the core (30) and the laminate.
Are provided symmetrically in the traveling direction of the laminate (1).
Accordingly, the laminate (1) is densely placed on the upper half circumferential surface of the core (30).
A pair of first flaps (31,
32). B) of the laminate (1) hanging from the core (30)
Induce one part (a) and attach it to the lower surface of the winding core (30)
Helical twisted second flap for close fit
(33). C) the laminate (1) hanging from the core (30);
Induce the other part (b) and at least part of it
Lie on the part (a) already in close contact with the core (30)
And press the stamped part against the core (30).
The third flap (3
4).
JP33853392A 1992-12-18 1992-12-18 Continuous production equipment for fiber reinforced resin pipes Expired - Fee Related JP3473968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33853392A JP3473968B2 (en) 1992-12-18 1992-12-18 Continuous production equipment for fiber reinforced resin pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33853392A JP3473968B2 (en) 1992-12-18 1992-12-18 Continuous production equipment for fiber reinforced resin pipes

Publications (2)

Publication Number Publication Date
JPH06218806A JPH06218806A (en) 1994-08-09
JP3473968B2 true JP3473968B2 (en) 2003-12-08

Family

ID=18319066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33853392A Expired - Fee Related JP3473968B2 (en) 1992-12-18 1992-12-18 Continuous production equipment for fiber reinforced resin pipes

Country Status (1)

Country Link
JP (1) JP3473968B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441860B2 (en) 1994-11-08 2003-09-02 キヤノン株式会社 Method and apparatus for manufacturing tubular film
KR100392636B1 (en) * 2000-07-04 2003-07-28 정인선 Apparatus and Method for Forming Pressure-Resistant Hose

Also Published As

Publication number Publication date
JPH06218806A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
US5252157A (en) Electrothermal fusion of large diameter pipes by electric heating wire wrapping and sleeve connector
US4353763A (en) Method for making pipes, plates or containers from plastic material
CN103317729B (en) A kind of manufacture method of online enlarging continuous winding hot forming helical bellows
PL190633B1 (en) Spirally shaped articles and method of making them
JP3473968B2 (en) Continuous production equipment for fiber reinforced resin pipes
US5862591A (en) Method for manufacturing paint rollers
CA1290233C (en) Method for continuously manufacturing synthetic resin tube
JPS63249631A (en) Manufacture of fiber reinforced synthetic resin molded article
US6258197B1 (en) Method for manufacturing pipe fitting, and pipe fitting
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
CN1114019C (en) Method for producing angular components consisting of flat-strip laminated sections
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
JPS6347129A (en) Manufacture of fiber glass reinforced plastic hollow square material
JP2900245B2 (en) Band for culvert pipe and its manufacturing equipment
EP0336721A2 (en) Method for making a thermoplastic honeycomb core
JPS60243611A (en) Wire rod carrying spiral spacer for communication and its manufacture
JP2579709B2 (en) Method for manufacturing flexible hose
JPH04201550A (en) Manufacture of fiber reinforced resin pipe
JPH01237130A (en) Continuous, length light-weight fiber reinforced composite resin pultrusion product and its manufacture
JP3014150B2 (en) Method of manufacturing fiber composite gutter
JPH074877B2 (en) Method for manufacturing fiber-reinforced resin pipe
JPH07232394A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe
JPH09242940A (en) High pressure resistant composite pipe and manufacture thereof
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees