JP3472837B2 - Solar cell and method of manufacturing the same - Google Patents

Solar cell and method of manufacturing the same

Info

Publication number
JP3472837B2
JP3472837B2 JP2002067331A JP2002067331A JP3472837B2 JP 3472837 B2 JP3472837 B2 JP 3472837B2 JP 2002067331 A JP2002067331 A JP 2002067331A JP 2002067331 A JP2002067331 A JP 2002067331A JP 3472837 B2 JP3472837 B2 JP 3472837B2
Authority
JP
Japan
Prior art keywords
solar cell
thin film
substrate
sige
polycrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002067331A
Other languages
Japanese (ja)
Other versions
JP2003273373A (en
Inventor
一雄 中嶋
徳隆 宇佐美
航三 藤原
徹 宇治原
Original Assignee
東北大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北大学長 filed Critical 東北大学長
Priority to JP2002067331A priority Critical patent/JP3472837B2/en
Publication of JP2003273373A publication Critical patent/JP2003273373A/en
Application granted granted Critical
Publication of JP3472837B2 publication Critical patent/JP3472837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高効率で低コスト
の太陽電池とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly efficient and low cost solar cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】低コストの実用型太陽電池として、融液
からの凝固成長法の1種であるキャスト法で成長したS
iバルク多結晶が用いられている。Siバルク多結晶
は、キャスト法を用いて成長させることができるので、
製造コストが低いという利点を有する。しかし、Siバ
ルク多結晶のみでは太陽光のスペクトルの長波長側が吸
収できず、またキャスト法を成長技術の主体にしている
ため、バルク多結晶の欠陥が多く、そのためにSiバル
ク多結晶を用いた太陽電池を高効率化することは難し
い。
2. Description of the Related Art As a low-cost practical solar cell, S grown by a casting method, which is one of the solidification growth methods from a melt, is used.
i-bulk polycrystals are used. Since Si bulk polycrystals can be grown using the casting method,
It has the advantage of low manufacturing costs. However, since only the Si bulk polycrystal cannot absorb the long wavelength side of the sunlight spectrum, and since the casting method is the main growth technique, there are many defects in the bulk polycrystal. Therefore, the Si bulk polycrystal was used. It is difficult to make solar cells highly efficient.

【0003】一方、高効率の太陽電池結晶として、Si
基板やGe基板にGaAs等の化合物半導体の薄膜を積
層させたヘテロ構造のタンデム型太陽電池が使われる。
しかしヘテロ構造のタンデム型太陽電池は、構造が複雑
で成長にも高度の技術が必要である。このため、製造コ
ストが高く、汎用性のある太陽電池としては使用でき
ず、その結果、宇宙用などの限定された用途にのみ使用
されている。
On the other hand, Si is used as a highly efficient solar cell crystal.
A heterostructure tandem solar cell in which a compound semiconductor thin film such as GaAs is laminated on a substrate or a Ge substrate is used.
However, the tandem solar cell with a heterostructure has a complicated structure and requires advanced technology for growth. Therefore, it cannot be used as a versatile solar cell because of its high manufacturing cost, and as a result, it is used only for limited applications such as space applications.

【0004】[0004]

【発明が解決しようとする課題】以上説明したように、
従来は、高効率と低コストを両立できる太陽電池はな
く、用途により使い分けられているのが現状である。し
かし、太陽電池をクリーンエネルギーとして大々的に活
用するために、高効率と低コストを両立できる技術が渇
望されていた。
As described above,
Conventionally, there is no solar cell that can achieve both high efficiency and low cost, and the present situation is that the solar cell is used properly according to the application. However, in order to make extensive use of solar cells as clean energy, there has been a strong demand for a technology that can achieve both high efficiency and low cost.

【0005】本発明は、高効率と低コストとを両立でき
る太陽電池及びその製造方法を提供するものである。
The present invention provides a solar cell capable of achieving both high efficiency and low cost, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、 (1) ミクロ的な組成分布が不均一な多元系多結晶か
らなる基板と、この基板上に薄膜結晶を堆積成長させて
なる堆積成長層との2層ヘテロ構造を備えた太陽電池。 (2) 多結晶基板は、SiGe系、薄膜結晶の堆積成
長層はSiである(1)に記載の太陽電池。 (3) 多結晶基板はInGaAs系、薄膜結晶の堆積
成長層はGaInP系である(1)に記載の太陽電池。 (4) 多結晶基板は、SiCを主体としたSiC−S
i系又はSiを主体としたSi−SiC系、薄膜結晶の
堆積成長層はSi又はSiC系である(1)に記載の太
陽電池。
Means for Solving the Problems The present invention comprises (1) a substrate made of a multi-element polycrystal having a non-uniform microscopic composition distribution, and a deposition growth layer formed by depositing and growing thin film crystals on the substrate. A solar cell having the two-layer heterostructure of. (2) The solar cell according to (1), wherein the polycrystalline substrate is a SiGe system and the thin film crystal deposition growth layer is Si. (3) The solar cell according to (1), wherein the polycrystalline substrate is an InGaAs system and the thin film crystal deposition growth layer is a GaInP system. (4) The polycrystalline substrate is SiC-S mainly composed of SiC.
The solar cell according to (1), wherein the i-based or Si-SiC based mainly on Si, and the deposition growth layer of the thin film crystal is Si or SiC based.

【0007】(5) 多結晶基板は、GaAsSb系、
薄膜結晶の体積成長層はGaAs系である(1)に記載
の太陽電池。
(5) The polycrystalline substrate is a GaAsSb type,
The solar cell according to (1), wherein the thin film crystal volume growth layer is a GaAs system.

【0008】(6) 多結晶基板は、柱状晶の結晶構造
を有する(1)〜(5)のいずれかに記載の太陽電池。
(6) The solar cell according to any one of (1) to (5), wherein the polycrystalline substrate has a columnar crystal structure.

【0009】(7) 融液成長法で多元系多結晶からな
る基板を作製する際に、その成長条件を制御することに
より所望のミクロ的な組成分布となるように調整する工
程と、得られた基板上にエピタキシャル成長法で薄膜結
晶を堆積成長させて2層ヘテロ構造とする工程とを備え
た太陽電池の製造方法である。この明細書の記載におい
て「ミクロ的な組成分布が不均一」とは、マクロ的には
所定の組成を有していても、ミクロ的には任意の組成分
布を有することを意味する。例えば、横軸に所定の組成
の含有量、縦軸にその組成の含有割合(含有量)をとっ
た時に、正規分布のような組成分布の形状でも、正規分
布から外れる組成分布の形状でも,任意の組成分布の形
状を取りうる。
(7) When a substrate made of a multi-source polycrystal is produced by a melt growth method, a step of adjusting the growth conditions to obtain a desired micro-compositional distribution is obtained. And a step of depositing and growing a thin film crystal on the substrate by an epitaxial growth method to form a two-layer heterostructure. In the description of this specification, “heterogeneous microscopic composition distribution” means that the composition has a predetermined composition macroscopically, but has an arbitrary compositional distribution microscopically. For example, when the content of a predetermined composition is plotted on the horizontal axis and the content ratio (content) of the composition is plotted on the vertical axis, the shape of the composition distribution such as a normal distribution or the shape of the composition distribution deviating from the normal distribution, It can take the form of any composition distribution.

【0010】[0010]

【発明の実施の形態】本発明は、SiGe等の多元系多
結晶をベースにヘテロ構造を構成した、高効率の太陽電
池を得ようとするものである。SiGe等の多元系多結
晶はミクロ的な組成分布の不均一性を持ちかつマクロ的
には均一な組成分布を有する。この多元系多結晶を基板
として、その上に多元系多結晶よりエネルギーバンドギ
ャップの大きなSi等の薄膜結晶を堆積させてヘテロ構
造を作製することにより、太陽光のスペクトルを広い範
囲で吸収できる高効率のヘテロ構造結晶を有する太陽電
池を製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is intended to obtain a high-efficiency solar cell having a heterostructure based on a multi-element polycrystal such as SiGe. A multi-element polycrystal such as SiGe has a non-uniform composition distribution in a microscopic manner and a uniform composition distribution in a macroscopic manner. By using this multi-element polycrystal as a substrate and depositing a thin film crystal of Si or the like having a larger energy band gap than the multi-element polycrystal on the substrate to form a heterostructure, the spectrum of sunlight can be absorbed in a wide range. Solar cells with efficient heterostructure crystals can be manufactured.

【0011】以下、SiGe2元系多結晶−Si薄膜多
結晶の太陽電池を例にとって具体的に説明する。まず、
Si多結晶にGeを加えたSiGe2元系の多結晶を基
板とする。このSiGe多結晶をキャスト法等の融液成
長法で作製し、その組成分布を成長条件(冷却速度な
ど)を制御することによって自在に調製する。この多結
晶は、従来のような均一ミクロ組成を有する結晶ではな
く、新規な任意のミクロ分散的組成分布を有するSiG
e多結晶である。ミクロ的な組成分布を制御することに
より、SiGe多結晶の吸収係数等の物性値の波長依存
性をも自在に制御して、太陽光を最も効率的に吸収し発
電できる結晶組織・構造を設計することができる。すな
わち、広範な波長に対する吸収係数の分布を持たせて、
具体的には、長波長側の吸収係数がGe組成の分布から
期待された吸収係数より大きくした、SiGe等の多結
晶基板を作製することができる。
Hereinafter, a SiGe binary polycrystal-Si thin film polycrystal solar cell will be specifically described as an example. First,
A SiGe binary binary polycrystal obtained by adding Ge to a Si polycrystal is used as a substrate. This SiGe polycrystal is produced by a melt growth method such as a casting method, and its composition distribution is freely adjusted by controlling the growth conditions (cooling rate etc.). This polycrystal is not a conventional crystal having a uniform micro composition, but a SiG having a novel arbitrary micro-dispersive composition distribution.
e Polycrystal. By controlling the microscopic composition distribution, the wavelength dependence of the physical properties such as the absorption coefficient of SiGe polycrystal can also be freely controlled, and the crystal structure / structure that can absorb sunlight most efficiently and generate electricity can be designed. can do. That is, by giving a distribution of absorption coefficient over a wide range of wavelengths,
Specifically, it is possible to manufacture a polycrystalline substrate such as SiGe having an absorption coefficient on the long wavelength side larger than that expected from the distribution of Ge composition.

【0012】このように、本発明に係るミクロ分散的組
成分布を有するSiGe多結晶は、長波長側の吸収係数
がGe組成の分布から期待された吸収係数より大きいた
め、高価なGeをSi結晶中に少量混入させただけで、
吸収係数の波長依存性に十分な効果を与えることができ
る。このため、ミクロ分散的組成分布を有するSiGe
多結晶は、高効率太陽電池用結晶基板として極めて有効
である。この場合、多結晶構造はキャリアーの拡散長を
長くするため柱状晶が望ましい。
As described above, in the SiGe polycrystal having the microdispersive composition distribution according to the present invention, the absorption coefficient on the long wavelength side is larger than the absorption coefficient expected from the distribution of the Ge composition. Just mix it in a small amount,
A sufficient effect can be given to the wavelength dependence of the absorption coefficient. Therefore, SiGe having a microdispersive composition distribution
Polycrystals are extremely effective as crystal substrates for high efficiency solar cells. In this case, the polycrystalline structure is preferably a columnar crystal because it prolongs the diffusion length of carriers.

【0013】次に、得られたSiGe多結晶を基板とし
て2層ヘテロ構造化する。すなわち、この多元系多結晶
よりもエネルギーバンドギャップの大きなSi等の薄膜
結晶を堆積成長させて堆積成長層とする。ここで、電圧
低下を防止するため、pn接合がSi薄膜結晶中に有る
ことが望ましい。また、Si/SiGeヘテロ界面には
ミスフィット転位が入らないようにSiGe多結晶の組
成制御や結晶粒のサイズ、サイズ分布の制御が行われ
る。また、最も欠陥を減らせるエピタキシャル成長法に
より、最も電界のかかるSi多結晶薄膜を成長させるこ
とが高効率化する上で好ましい。この方法により、良質
で大粒径を有する欠陥の少ない薄膜結晶を得ることがで
きる。
Next, the obtained SiGe polycrystal is used as a substrate to form a two-layer heterostructure. That is, a thin film crystal of Si or the like having an energy bandgap larger than that of the multi-source polycrystal is deposited and grown to form a deposited growth layer. Here, in order to prevent a voltage drop, it is desirable that the pn junction be present in the Si thin film crystal. Further, the composition control of the SiGe polycrystal and the size and size distribution of the crystal grains are controlled so that misfit dislocations do not enter the Si / SiGe hetero interface. Further, it is preferable to grow the Si polycrystalline thin film to which the highest electric field is applied, by the epitaxial growth method capable of reducing the defects most in order to improve the efficiency. By this method, it is possible to obtain a thin film crystal having good quality, large grain size, and few defects.

【0014】このようにして、ミクロ分散的組成分布を
有するSiGe多結晶を基板に用い、その上にSi薄膜
多結晶をエピタキシャル成長したSi/SiGeヘテロ
構造を本発明の太陽電池が得られる。
Thus, the Si / SiGe heterostructure in which the SiGe polycrystal having the micro-dispersive composition distribution is used as the substrate and the Si thin film polycrystal is epitaxially grown thereon can be obtained the solar cell of the present invention.

【0015】このヘテロ構造の太陽電池では、Si層を
透過した太陽光も下部のSiGe層で吸収させてキャリ
アー生成に寄与させることができ、SiGe層から拡散
してきたこれらキャリアーにSi層内のpn接合部の電
位差で駆動力を与え、電流として有効に活用できる。
In this heterostructure solar cell, sunlight passing through the Si layer can also be absorbed in the lower SiGe layer to contribute to the generation of carriers, and the carriers diffused from the SiGe layer can have pn in the Si layer. The driving force is given by the potential difference at the junction, and it can be effectively utilized as a current.

【0016】以上、本発明は、タンデム型のような複雑
な構造を用いることなく、最も効率の高い組成分布と最
適化されたヘテロ構造の組合せにより、高効率太陽電池
を実現できる。さらに、Si/SiGe系に限らずIn
GaAs系等の多元系多結晶にも容易に適応できる実用
性の高い技術である。
As described above, the present invention can realize a high-efficiency solar cell by using the combination of the composition distribution with the highest efficiency and the optimized heterostructure without using a complicated structure such as a tandem type. In addition to the Si / SiGe system, In
It is a highly practical technology that can be easily applied to multi-element polycrystals such as GaAs.

【0017】[0017]

【実施例】以下,本発明の実施例をSi/SiGeヘテ
ロ構造太陽電池に基づいて説明するが、本発明はこの実
施例に限定されるものではなく、本発明の要旨を変更し
ない限りにおいて種々の変更、修正などが可能なことは
いうまでもない。
EXAMPLES Examples of the present invention will be described below based on a Si / SiGe heterostructure solar cell, but the present invention is not limited to these examples, and various modifications can be made without changing the gist of the present invention. It goes without saying that changes and modifications can be made.

【0018】Bドープのp型Si結晶とGe結晶を原料
として、それぞれ16.6gと37.1g混合して融解
し、組成50%のSi−Ge2元系の均一組成の融液を
用意した。これをブリッジマン型のキャスト成長炉を用
いて、10℃/minの冷却速度で一方向に凝固成長さ
せて、ミクロ分散的組成分布を有する柱状のSiGe多
結晶を作製した。この時、冷却速度を変化させることに
より、ミクロ的に各種組成分布を持った結晶を得ること
ができる。この結晶組織や組成分布状態は、融液組成や
冷却速度などの成長条件により調製できる。図1に、約
0.5の同一の平均組成であるが、異なったミクロ分散
的組成分布を有するSi0.5Ge0.5多結晶の吸収係数の
波長依存性を示す。この測定に用いたSiGe多結晶は
柱状晶ではなく、Si−richの針状組織とGe−r
ichのマトリックス部分を持つ多結晶である。図1か
ら分かるように、平均的には同じ組成の結晶(Si:G
e=1:1)でも、明らかにミクロ的な組成分布の違い
により吸収係数の波長依存性は異なり、組成分布の形状
に対応した吸収係数の波長依存性が得られることが分か
る。
Using B-doped p-type Si crystal and Ge crystal as raw materials, 16.6 g and 37.1 g were mixed and melted to prepare a melt of 50% Si—Ge binary system having a uniform composition. This was unidirectionally solidified and grown at a cooling rate of 10 ° C./min using a Bridgman type cast growth furnace to produce a columnar SiGe polycrystal having a microdispersive composition distribution. At this time, by changing the cooling rate, it is possible to obtain crystals having various composition distributions microscopically. This crystal structure and composition distribution state can be prepared by growth conditions such as melt composition and cooling rate. FIG. 1 shows the wavelength dependence of the absorption coefficient of Si 0.5 Ge 0.5 polycrystals having the same average composition of about 0.5 but different microdispersive composition distributions. The SiGe polycrystal used for this measurement is not a columnar crystal, but has a Si-rich needle-like structure and Ge-r.
It is a polycrystal having a matrix portion of ich. As can be seen from FIG. 1, crystals (Si: G) having the same composition on average
Even with e = 1: 1), it is apparent that the wavelength dependence of the absorption coefficient differs due to the difference in the microscopic composition distribution, and the wavelength dependence of the absorption coefficient corresponding to the shape of the composition distribution is obtained.

【0019】さらに、高効率にするために、ミクロ的組
成分布を持ったこれらのSiGe柱状多結晶を、柱状晶
に垂直方向にスライスして板状結晶を作製して基板とし
て用い、その上にBドープのp型Si薄膜結晶を堆積成
長させた2層ヘテロ構造を作製した。このSi薄膜結晶
の成長は、分子線エピタキシャル成長(MBE)を用い
た。Si薄膜結晶の表面から、Pを拡散させて、Si薄
膜結晶の表面側をn型にした。これにより、Si薄膜結
晶内にpn接合を作成した。図2に、このようにして作
製したSi/SiGeヘテロ構造太陽電池の構造の概略
を示す。図中、10は、p−SiGe多結晶基板、20
は、Si多結晶薄膜である、p−SiGe多結晶基板1
0とSi多結晶薄膜20との間にはヘテロ界面30があ
り、Si多結晶薄膜はp−Si層とn−Si層とを有
し、それら層間にpn接合面を形成している。図3に、
AM1.5の太陽光を、Si/SiGeヘテロ構造太陽
電池に照射した場合の、短絡電流の波長依存性の計算結
果を示す。ヘテロ構造を用いることにより、短絡電流の
値は、Si多結晶のみの場合の倍程度になる。バンドギ
ャップの小さいSiGeを用いることで、開放電圧の低
下が起きるものの、構造の最適化により、従来のSi多
結晶太陽電池よりも変換効率が向上することが予想でき
る(図4参照)。このSi/SiGeヘテロ構造結晶
に、通常のプロセスを用いて太陽電池を作製した。
Further, for high efficiency, these SiGe columnar polycrystals having a microscopic composition distribution are sliced in the direction perpendicular to the columnar crystals to prepare a plate crystal, which is used as a substrate. A two-layer heterostructure was produced by depositing and growing a B-doped p-type Si thin film crystal. Molecular beam epitaxial growth (MBE) was used for the growth of this Si thin film crystal. P was diffused from the surface of the Si thin film crystal to make the surface side of the Si thin film crystal n-type. This created a pn junction in the Si thin film crystal. FIG. 2 schematically shows the structure of the Si / SiGe heterostructure solar cell thus manufactured. In the figure, 10 is a p-SiGe polycrystalline substrate, 20
Is a p-SiGe polycrystalline substrate 1 which is a Si polycrystalline thin film.
There is a hetero interface 30 between 0 and the Si polycrystalline thin film 20, the Si polycrystalline thin film has a p-Si layer and an n-Si layer, and a pn junction surface is formed between these layers. In Figure 3,
The calculation result of the wavelength dependence of a short circuit current at the time of irradiating a Si / SiGe heterostructure solar cell with sunlight of AM1.5 is shown. By using the heterostructure, the value of the short circuit current is about double that in the case of only Si polycrystal. Although the use of SiGe having a small band gap causes a decrease in open circuit voltage, it can be expected that the conversion efficiency will be improved as compared with the conventional Si polycrystalline solar cell by optimizing the structure (see FIG. 4). A solar cell was produced from this Si / SiGe heterostructure crystal by using a normal process.

【0020】上記実施例はSiGe系で行ったが、In
As−GaAs系のような全率固溶型の状態図を有する
結晶系にも適用できる。InGaAs多結晶基板にGa
InP薄膜結晶を堆積させたヘテロ構造を用いるとより
高効率化が達成できる。この他、材料の組み合わせとし
てGaSb−GaAsのようなIII−V族の3元系やI
nAs−GaP−GaAs−GaSbのような4元系を
用いることも可能である。さらに、基板にSiCを主体
としたSiC−Si系又はSiを主体としたSi−Si
C系を用い、薄膜堆積層にSi又はSiCを用いること
も可能である。
Although the above embodiment was carried out using a SiGe system,
It can also be applied to a crystal system having an all-solid-state phase diagram such as an As-GaAs system. Ga on InGaAs polycrystalline substrate
Higher efficiency can be achieved by using a heterostructure in which an InP thin film crystal is deposited. In addition, as a material combination, a III-V group ternary system such as GaSb-GaAs or I
It is also possible to use a quaternary system such as nAs-GaP-GaAs-GaSb. Further, the substrate is a SiC-Si system mainly composed of SiC or a Si-Si mainly composed of Si.
It is also possible to use C system and use Si or SiC for the thin film deposition layer.

【0021】この実施例によれば、図4に示したよう
に、本発明によるミクロ分散的組成分布を有するSiG
e多結晶を用いたSi/SiGeヘテロ構造太陽電池の
変換効率を、均一組成のSiGe結晶を用いた場合より
も大きくできた。さらにこの値は、同一条件におけるS
i多結晶太陽電池の変換効率よりも大きい。
According to this embodiment, as shown in FIG. 4, SiG having a microdispersive composition distribution according to the present invention is used.
The conversion efficiency of the Si / SiGe heterostructure solar cell using the e-polycrystal could be made higher than that using the SiGe crystal of uniform composition. Furthermore, this value is S under the same conditions.
Greater than the conversion efficiency of i-polycrystalline solar cells.

【0022】この実施例から明らかなように、本発明に
よるミクロ的組成分布を、成長条件によって変化させる
ことによって、図1に示したように太陽光のスペクトル
に対する感度分布を制御できる。このため、最適の組成
分布を持ったSiGe多結晶を基板として用いることが
でき、この上にSi薄膜結晶を成長したヘテロ構造を用
いると、高効率の太陽電池を作製できる。この他、本発
明のヘテロ構造太陽電池は次ぎの効果がある。SiとS
iGeの2種類の結晶が効率良く太陽光のスペクトルを
吸収できる。SiGe多結晶は柱状組織を持つため、S
iGe結晶中で発生したキャリアーは、粒界に阻害され
ることなく、Si層中のpn接合部へ拡散できる。pn
接合がSi層中にあるため、電圧の低下が少ない。Si
層はエピタキシャル成長法で作製されるため欠陥が少な
い。Ge−richの部分でも、多結晶であるため粒サ
イズが有限であり、界面にかかる応力は少なく、ミスフ
ィット転位が入りにくい。さらに、Si/SiGeヘテ
ロ界面ではSiGeの方が伝導帯のポテンシャルが高
く、Siに歪が入るとこの傾向がより顕著になり、少数
キャリヤである電子がポテンシャル障壁に阻害されるこ
となく、SiGe側からSi側に拡散することができ
る。本発明は構成上このような特徴を持つため、太陽光
のスペクトルを有効に吸収でき、キャリアーが途中で消
滅することなく拡散でき、電圧の低下を極力抑えた、電
流の大きい、高効率太陽電池が作製できる。
As is apparent from this example, by changing the microscopic composition distribution according to the present invention depending on the growth conditions, the sensitivity distribution for the spectrum of sunlight can be controlled as shown in FIG. Therefore, a SiGe polycrystal having an optimal composition distribution can be used as a substrate, and a heterostructure having a Si thin film crystal grown thereon can be used to manufacture a highly efficient solar cell. In addition, the heterostructure solar cell of the present invention has the following effects. Si and S
Two types of crystals of iGe can efficiently absorb the spectrum of sunlight. Since SiGe polycrystal has a columnar structure, S
The carriers generated in the iGe crystal can diffuse to the pn junction in the Si layer without being blocked by the grain boundaries. pn
Since the junction is in the Si layer, the voltage drop is small. Si
Since the layer is formed by the epitaxial growth method, it has few defects. Even in the Ge-rich portion, since it is polycrystalline, the grain size is finite, the stress applied to the interface is small, and misfit dislocations are hard to enter. Furthermore, at the Si / SiGe hetero interface, SiGe has a higher potential in the conduction band, and when strain is introduced into Si, this tendency becomes more prominent, and electrons that are minority carriers are not blocked by the potential barrier. Can be diffused to the Si side. Since the present invention has such features in the structure, it can effectively absorb the spectrum of sunlight, diffuse carriers without disappearing in the middle, suppress the drop of voltage as much as possible, have high current, and are highly efficient solar cells. Can be produced.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
タンデム型のような複雑な構造を用いることなく、最も
効率の高い組成分布と最適化されたヘテロ構造の組合せ
により、低コストで高効率太陽電池を実現できる。さら
に、Si/SiGe系に限らずInGaAs系等の多元
系多結晶にも容易に適応できるという顕著な効果を発揮
する。
As described above, according to the present invention,
A high-efficiency solar cell can be realized at low cost by combining the most efficient composition distribution and the optimized heterostructure without using a complicated structure such as a tandem type. Further, not only the Si / SiGe system, but also a remarkable effect that it can be easily applied to a multi-element polycrystal such as InGaAs system.

【図面の簡単な説明】[Brief description of drawings]

【図1】異なったミクロ分散的組成分布を有する同一平
均組成を持ったSiGe多結晶の吸収係数の波長依存性
を示すグラフ。
FIG. 1 is a graph showing the wavelength dependence of the absorption coefficient of SiGe polycrystals having the same average composition but different microdispersive composition distributions.

【図2】本発明によるSi/SiGeヘテロ構造太陽電
池の断面模式図。
FIG. 2 is a schematic sectional view of a Si / SiGe heterostructure solar cell according to the present invention.

【図3】AM1.5の太陽光照射下でのSi/SiGe
ヘテロ構造太陽電池の短絡電流の波長依存性を示すグラ
フ。
FIG. 3 Si / SiGe under AM1.5 sunlight irradiation
The graph which shows the wavelength dependence of the short circuit current of a heterostructure solar cell.

【図4】ミクロ分散的組成分布を有するSiGe多結晶
を用いたSi/SiGeヘテロ構造太陽電池の変換効率
のSi膜厚依存性。比較のための、均一組成を有するS
iGe結晶を用いたSi/SiGeヘテロ構造太陽電池
の変換効率を示すグラフ。
FIG. 4 shows Si film thickness dependence of conversion efficiency of a Si / SiGe heterostructure solar cell using a SiGe polycrystal having a microdispersive composition distribution. For comparison, S with uniform composition
The graph which shows the conversion efficiency of the Si / SiGe heterostructure solar cell which used the iGe crystal.

【符号の説明】[Explanation of symbols]

10...p−SiGe多結晶基板 20...Si多結晶薄膜 30...ヘテロ界面 10. . . p-SiGe polycrystalline substrate 20. . . Si polycrystalline thin film 30. . . Hetero interface

フロントページの続き (56)参考文献 特開 昭53−104157(JP,A) 特開 平4−249374(JP,A) 特開 平4−87326(JP,A) 特開 平6−224455(JP,A) 特開 平10−135494(JP,A) 特開 平4−168769(JP,A) 特開 平3−184324(JP,A) 特開2002−9312(JP,A) P.Geiger et al,Mu lticrystalline SiG e Solar Cells with Ge Content above 10 at %,Proc. 16th E uropean Photovolta ic Solar Energy Co nference,英国,2000年,p. 150−153 (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 C01B 33/00 - 33/193 C30B 1/00 - 35/00 Continuation of the front page (56) Reference JP-A-53-104157 (JP, A) JP-A-4-249374 (JP, A) JP-A-4-87326 (JP, A) JP-A-6-224455 (JP , A) JP 10-135494 (JP, A) JP 4-168769 (JP, A) JP 3-184324 (JP, A) JP 2002-9312 (JP, A) P. Geiger et al, Multicrystalline SiGe Solar Cells with Ge Content above 10 at%, Proc. 16th European Photovoltaic Solar Energy Conference, UK, 2000, p. 150-153 (58) Fields investigated (Int.Cl. 7 , DB name) H01L 31/04-31/078 C01B 33/00-33 / 193 C30B 1/00-35/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ミクロ的な組成分布が不均一な多元系多
結晶からなる基板と、この基板上に薄膜結晶を堆積成長
させてなる堆積成長層との2層ヘテロ構造を備えた太陽
電池。
1. A solar cell having a two-layer heterostructure comprising a substrate composed of a multi-element polycrystal having a non-uniform microscopic composition distribution and a deposition growth layer formed by depositing and growing a thin film crystal on the substrate.
【請求項2】 多結晶基板は、SiGe系、薄膜結晶の
堆積成長層はSiである請求項1に記載の太陽電池。
2. The solar cell according to claim 1, wherein the polycrystalline substrate is SiGe-based, and the thin film crystal deposition growth layer is Si.
【請求項3】 多結晶基板はInGaAs系、薄膜結晶
の堆積成長層はGaInP系である請求項1に記載の太
陽電池。
3. The solar cell according to claim 1, wherein the polycrystalline substrate is an InGaAs system and the thin film crystal deposition growth layer is a GaInP system.
【請求項4】 多結晶基板は、SiCを主体としたSi
C−Si系又はSiを主体としたSi−SiC系、薄膜
結晶の堆積成長層はSi又はSiC系である請求項1に
記載の太陽電池。
4. The polycrystalline substrate is composed mainly of SiC.
The solar cell according to claim 1, wherein the C-Si system or the Si-SiC system mainly composed of Si, and the deposition growth layer of the thin film crystal is Si or the SiC system.
【請求項5】 多結晶基板は、GaAsSb系、薄膜結
晶の体積成長層はGaAs系である請求項1に記載の太
陽電池。
5. The solar cell according to claim 1, wherein the polycrystalline substrate is a GaAsSb system and the thin film crystal volume growth layer is a GaAs system.
【請求項6】 多結晶基板は、柱状晶の結晶構造を有す
る請求項1〜5のいずれかに記載の太陽電池。
6. The solar cell according to claim 1, wherein the polycrystalline substrate has a columnar crystal structure.
【請求項7】 融液成長法で多元系多結晶からなる基板
を作製する際に、その成長条件を制御することにより所
望のミクロ的な組成分布となるように調整する工程と、
得られた基板上にエピタキシャル成長法で薄膜結晶を堆
積成長させて2層ヘテロ構造とする工程とを備えた太陽
電池の製造方法。
7. A step of adjusting a growth condition to obtain a desired micro-composition distribution when a substrate made of a multi-source polycrystal is manufactured by a melt growth method,
And a step of depositing and growing a thin film crystal on the obtained substrate by an epitaxial growth method to form a two-layer heterostructure.
JP2002067331A 2002-03-12 2002-03-12 Solar cell and method of manufacturing the same Expired - Lifetime JP3472837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067331A JP3472837B2 (en) 2002-03-12 2002-03-12 Solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067331A JP3472837B2 (en) 2002-03-12 2002-03-12 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003273373A JP2003273373A (en) 2003-09-26
JP3472837B2 true JP3472837B2 (en) 2003-12-02

Family

ID=29198751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067331A Expired - Lifetime JP3472837B2 (en) 2002-03-12 2002-03-12 Solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3472837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920241B2 (en) 2007-02-27 2011-04-05 Sony Corporation Liquid crystal display device and display apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647915B2 (en) 2010-12-21 2014-02-11 Ut-Battelle, Llc Hetero-junction photovoltaic device and method of fabricating the device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P.Geiger et al,Multicrystalline SiGe Solar Cells with Ge Content above 10 at %,Proc. 16th European Photovoltaic Solar Energy Conference,英国,2000年,p.150−153

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920241B2 (en) 2007-02-27 2011-04-05 Sony Corporation Liquid crystal display device and display apparatus

Also Published As

Publication number Publication date
JP2003273373A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US7122733B2 (en) Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
JP3223102B2 (en) Solar cell and method for manufacturing the same
AU2012300694C1 (en) Photovoltaic device
US7217882B2 (en) Broad spectrum solar cell
US8119904B2 (en) Silicon wafer based structure for heterostructure solar cells
Geisz et al. Lattice-mismatched GaAsP solar cells grown on silicon by OMVPE
EP2399300B1 (en) Method for forming a photovoltaic cell
JPH04296060A (en) Solar cell
JP2008177539A (en) Graded hybrid amorphous silicon nanowire solar cells
US5437734A (en) Solar cell
US7279632B2 (en) Multi-element polycrystal for solar cells and method of manufacturing the same
JP2005159312A (en) Base material of polycrystalline silicon substrate for solar battery, and the polycrystalline silicon substrate for solar battery
Hudait et al. 0.6-eV bandgap In/sub 0.69/Ga/sub 0.31/As thermophotovoltaic devices grown on InAs/sub y/P/sub 1-y/step-graded buffers by molecular beam epitaxy
JP3472837B2 (en) Solar cell and method of manufacturing the same
CN105355668A (en) In(0.3)Ga(0.7)As cell with amorphous buffer layer structure and preparation method thereof
Kurtz et al. Requirements for a 20%-efficient polycrystalline GaAs solar cell
Razykov Photovoltaic solar electricity: State of the art and future prospects
JP3472830B2 (en) Multi-component polycrystalline solar cell and method for producing the same
JP5548908B2 (en) Manufacturing method of multi-junction solar cell
KR100913114B1 (en) Bulk silicon solar cell having improved high temperature characteristics and manufacturing method thereof
JPH06291341A (en) Solar cell
Mumtaz et al. GaAsSbN for Multi-Junction Solar Cells
JPH11103080A (en) Solar cell
Wilt et al. GaAs photovoltaics on polycrystalline Ge substrates
JPH0582812A (en) Solar cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3472837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term