JP3471010B2 - Modified polysiloxane compound and method for producing the same - Google Patents

Modified polysiloxane compound and method for producing the same

Info

Publication number
JP3471010B2
JP3471010B2 JP50989292A JP50989292A JP3471010B2 JP 3471010 B2 JP3471010 B2 JP 3471010B2 JP 50989292 A JP50989292 A JP 50989292A JP 50989292 A JP50989292 A JP 50989292A JP 3471010 B2 JP3471010 B2 JP 3471010B2
Authority
JP
Japan
Prior art keywords
group
compound
reaction
general formula
modified polysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50989292A
Other languages
Japanese (ja)
Inventor
博雄 村本
英夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Application granted granted Critical
Publication of JP3471010B2 publication Critical patent/JP3471010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【技術分野】【Technical field】

本発明は、変性ポリシロキサン化合物及びその製造方
法に係り、詳しくは、p−アルケニルフェノール単位と
オルガノシロキサン単位とを必須構成単位としてブロッ
ク共重合させて得られるフェノール骨格導入の変性ポリ
シロキサン化合物及びその製造方法に関する。 本発明の変性ポリシロキサン化合物は、分子量、構造
が制御され、かつ分子内に反応性の高いフェノール性水
酸基を有するため、感光性樹脂や各種熱硬化性樹脂、熱
可塑性樹脂の改質剤などとして広範な技術分野での利用
が期待される。
The present invention relates to a modified polysiloxane compound and a method for producing the modified polysiloxane compound, and more specifically, to a modified polysiloxane compound having a phenol skeleton and obtained by block-copolymerizing a p-alkenylphenol unit and an organosiloxane unit as an essential constituent unit. It relates to a manufacturing method. The modified polysiloxane compound of the present invention has a controlled molecular weight and structure, and has a highly reactive phenolic hydroxyl group in the molecule. Therefore, it is used as a modifier for photosensitive resins, various thermosetting resins, and thermoplastic resins. It is expected to be used in a wide range of technical fields.

【背景技術】[Background technology]

オルガノポリシロキサン化合物は、熱安定性、撥水
性、消泡性、離型性等の界面特性に優れているため、種
々の分野で多用されている。特に、近年においては、そ
の特異な界面特性を生かして皮膜形成剤としての用途が
拡大する半面、各種の樹脂に対してオルガノポリシロキ
サン化合物が有する温度特性や界面特性を付与するため
の改質剤としての応用も積極的に展開されている。 すなわち、従来から塗料、成形品等の合成樹脂の性能
改良のため、例えば、ジメチルポリシロキサン、メチル
フェニルポリシロキサン、脂肪酸変性ポリシロキサン、
ポリエーテル変性ポリシロキサン等が使用されている。
しかしながら、これらは樹脂との相溶性が不十分であっ
たり、耐熱性が不十分であるために使用範囲が限定され
ていた。 これらの欠点を改良するために、各種の反応性ポリシ
ロキサン化合物、例えば、分子末端にエポキシ基、アミ
ノ基、ヒドロキシル基、(メタ)アクリル基等の官能基
を有する低分子量ジメチルシロキサン化合物が市販され
ている。また、それらと他の樹脂との反応物、例えば、
末端エポキシ基含有ポリシロキサンとフェノール樹脂と
の反応物(特開昭61−73725号公報、特開昭62−174222
号公報等)、末端ハイドロジエン基含有ポリシロキサン
とアルケニル基含有エポキシ樹脂との反応物(特開昭62
−212417号公報等)が提案されている。
BACKGROUND OF THE INVENTION Organopolysiloxane compounds are widely used in various fields because they have excellent interfacial properties such as thermal stability, water repellency, defoaming properties, and releasability. In particular, in recent years, the use as a film-forming agent has been expanded by taking advantage of its unique interface characteristics, while a modifier for imparting the temperature characteristics and interface characteristics of the organopolysiloxane compound to various resins. The application as is being actively developed. That is, for improving the performance of synthetic resins such as paints and molded articles, for example, dimethylpolysiloxane, methylphenylpolysiloxane, fatty acid-modified polysiloxane,
Polyether-modified polysiloxane or the like is used.
However, their compatibility with resins is insufficient, and their heat resistance is insufficient, so that their use range is limited. In order to improve these drawbacks, various reactive polysiloxane compounds, for example, a low molecular weight dimethylsiloxane compound having a functional group such as an epoxy group, an amino group, a hydroxyl group and a (meth) acryl group at the molecular end is commercially available. ing. Also, reaction products of them with other resins, for example,
Reaction product of polysiloxane containing terminal epoxy group and phenol resin (JP-A-61-73725, JP-A-62-174222)
(Japanese Patent Laid-Open Publication No. 62-242242), a reaction product of a polysiloxane containing a terminal hydrogen group and an epoxy resin containing an alkenyl group (JP-A-62-62
-212417 gazette) is proposed.

【発明の開示】DISCLOSURE OF THE INVENTION

近年、超LSIの製造に必要なサブミクロンの解像能力
を有するレジスト材料として、種々の熱硬化性樹脂や熱
可塑性樹脂の機械的特性、耐湿性、表面特性等の改質剤
として、また、分離膜や生体適合性高分子材料として、
構造が制御されかつ分子内に任意の数の官能基を有する
ポリシロキサン化合物が渇望されている。 前記した方法において、市販されている分子内に官能
基を有する低分子量ジメチルシロキサン化合物を用いる
方法は、他樹脂との相溶性が十分でないため、成形加工
性や機械的強度の低下をもたらす欠点を有する。また、
末端に官能基を有するポリシロキサンと他の樹脂との反
応物を用いる方法は、変性反応中に異常な増粘やゲル化
等の好ましくない現象を起こし易く、かつ未反応成分が
残留し、結果として相溶性の低下をもたらすこと等の問
題があった。 本発明は、分子量、構造が制御され、かつ分子量分布
の狭いフェノール骨格を導入した変性ポリシロキサン化
合物を提供することを目的とする。 本発明者らは、前記目的を達成すべく鋭意検討した結
果、p−アルケニルフェノールのフェノール性水酸基を
飽和脂肪族系保護基により保護した化合物、又はこれと
共重合可能な化合物とをアニオン重合法により重合し、
次いで環状シロキサン化合物を加えて共重合した後、飽
和脂肪族系保護基を脱離させる方法により分子量分布が
狭く、かつ構造の制御されたフェノール骨格を導入した
変性ポリシロキサン化合物が容易に製造できることを見
出し、本発明を完成した。 本発明は、下記の一般式〔I〕 X(Y)n・・・〔I〕 (ここに、Xは下記一般式〔II〕で表されるp−アルケ
ニルフェノール単位を必須構成単位とする重合体ブロッ
ク、Yは下記一般式〔III〕で表されるオルガノシロキ
サンを繰り返し単位とする重合体ブロックであり、nは
1又は2である。) で表され、XとYとの重量比が1/99≦X/Y≦90/10,数平
均分子量が、1,000〜100,000である変性ポリシロキサン
化合物、 (式中、R1は、水素原子又はメチル基を表し、R2は水素
原子を表す。) (式中、R3及びR4は、それぞれ炭素数1〜20の直鎖又は
分枝のアルキル基、シクロアルキル基、アリール基又は
アラルキル基を表す。式中、R3及びR4は互いに同一又は
異なっていてもよい。) 又は、Xがp−アルケニルフェノール単位と一種又は
2種以上の共役ジエン及び/又は一種又は二種以上のビ
ニル化合物の繰り返し単位からなるランダム又はブロッ
ク共重合体である前記一般式〔I〕で表される変性ポリ
シロキサン化合物及びその製造方法である。 すなわち、本発明の変性ポリシロキサン化合物は、ア
ニオン重合開始剤の存在下、下記一般式〔IV〕で表され
るフェノール残基の水酸基が飽和脂肪族系保護基により
保護された化合物を単独重合,又はこれと共重合可能な
化合物とを共重合させ、次いで環状シロキサン化合物を
加えて共重合させた後、飽和脂肪族系保護基を脱離処理
して製造されることを特徴とする。 (式中、R5は水素原子又はメチル基を表し、R6は炭素数
1〜6の直鎖又は分枝のアルキル基を表す。) 以下、本発明を更に詳しく説明する。 本発明の前記の一般式〔I〕中のXは、前記一般式
〔II〕で表されるp−アルケニルフェノール単位を必須
構成単位とする重合体ブロックであり、更に詳しくは、
一種又は二種以上のp−アルケニルフェノールを繰り返
し単位とする重合体ブロック、又は、p−アルケニルフ
ェノール単位と一種又は二種以上の共役ジエン及び/又
は一種又は二種以上のビニル化合物の繰り返し単位から
なるランダム共重合体又はブロック共重合体からなるブ
ロックであり、また、下記一般式〔V〕で示されるもの
も含まれる。 (式中、R1,R2は前出と同じ意味を表し、a及びbは重
合度に応じた任意の自然数である。) 本発明の上記の一般式〔I〕中のYは、前記一般式
〔III〕で表されるオルガノシロキサンを繰り返し単位
とする重合体ブロックであり、一般式〔I〕で表される
化合物の分子鎖を構成するブロックの少なくとも一方は
Yであり、一般式〔I〕で表される化合物は、X−Y又
はY−X−Yで表される。 本発明に用いる前記一般式〔IV〕で示される化合物と
しては、例えば、p−n−ブトキシスチレン、p−sec
−ブトキシスチレン、p−tert−ブトキシスチレン、p
−tert−ブトキシ−α−メチルスチレン等が例示され、
特にp−tert−ブトキシスチレン及びp−tert−ブトキ
シ−α−メチルスチレンが好ましい。 本発明に用いる前記一般式〔IV〕と共重合可能な共役
ジエン又はビニル化合物としては、1,3−ブタジエン、
イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−
ペンタジエン、1,3−ヘキサジエン等の共役ジエン類;
スチレン、p−メチルスチレン、α−メチルスチレン、
p−tert−ブチルスチレン、ビニルナフタリン、ジビニ
ルベンゼン、1,1−ジフェニルエチレン等のビニル芳香
族化合物;(メタ)アクリル酸メチル、(メタ)アクリ
ル酸エチル、(メタ)アクリル酸ブチル等の(メタ)ア
クリル酸エステル類;2−ビニルピリジン、4−ビニルピ
リジン等のビニルピリジン類;アクリルニトリル等が挙
げられ、それらは一種又は二種以上の混合物として使用
される。 本発明の前記一般式〔IV〕で示される化合物、又は一
般式〔IV〕で示される化合物と前記共重合可能な化合物
とは、真空下又は窒素、アルゴン等の不活性ガス雰囲気
下、有機溶媒中において、アルカリ金属及び/又は有機
アルカリ金属化合物を重合開始剤とし、−100℃〜150℃
の温度でアニオン重合を行うことにより分子量が制御さ
れ、かつ分子量分布の狭い重合体を得ることができる。 アニオン重合開始剤のアルカリ金属としては、リチウ
ム、ナトリウム、カリウム等であり、また有機アルカリ
金属化合物として、前記アルカリ金属のアルキル化物、
アリル化物、アリール化物等が使用される。有機アルカ
リ金属化合物の具体例として、エチルリチウム、n−ブ
チルリチウム、sec−ブチルリチウム、tert−ブチルリ
チウム、エチルナトリウム、ブタジエニルジリチウム、
ブタジエニルジナトリウム、リチウムビフェニル、リチ
ウムナフタレン、リチウムフルオレン、ナトリウムビフ
ェニル、ナトリウムナフタレン、ナトリウムトリフェニ
ル、α−メチルスチレンナトリウムジアニオン等が挙げ
られ、これらは一種又は二種以上の混合物として使用さ
れる。 有機溶媒として、n−ヘキサン、n−ヘプタン等の脂
肪族炭化水素類;シクロヘキサン、シクロペンタン等の
脂環族炭化水素類;ベンゼン、トルエン等の芳香族炭化
水素類;ジエチルエーテル、ジオキサン、テトラヒドロ
フラン等のエーテル類等の通常アニオン重合において使
用される有機溶媒が一種又は二種以上の混合溶媒として
使用される。 前記アニオン重合によって得られる共重合体の形態
は、前記一般式〔IV〕で示される化合物と前記モノマー
との混合物を反応系に加えて重合することによりランダ
ム共重合体が、どちらか一方の一部を予め重合してお
き、その後両者の混合物を加えて重合を継続することに
より部分ブロック共重合体を得、また前記一般式〔IV〕
で示される化合物と前記モノマーとを反応系に逐次添加
して重合を行うことにより完全ブロック共重合体が合成
される。 前記一般式〔IV〕で示される化合物の単独重合後、又
は、前記モノマー類との共重合反応後、反応系に環状シ
ロキサン化合物を加え、前記例示したと同様の条件下に
おいてアニオン重合反応を継続することにより、前記一
般式〔IV〕で示される化合物の連鎖と、又は、前記一般
式〔IV〕で示される化合物及び前記モノマー類からなる
連鎖と、ポリシロキサン連鎖とからなるブロック共重合
体(以下、前駆体と記す)が製造される。 ここで用いられる前記環状シロキサン化合物として
は、下記一般式〔VI〕で示される化合物である。 (ここに、R7、R8は、それぞれ炭素数1〜20の直鎖又は
分枝のアルキル基、シクロアルキル基、アリール基又は
アラルキル基であり、cは3〜7の正整数である。又、
R7、R8は互いに同一又は異なっていてもよい。) 前記一般式〔VI〕で示される化合物の具体例として
は、例えば、ヘキサメチルシクロトリシロキサン、オク
タメチルシクロテトラシロキサン、デカメチルシクロペ
ンタシロキサン、ドデカメチルシクロヘキサシロキサ
ン、ヘキサエチルシクロトリシロキサン、オクタエチル
シクロテトラシロキサン、ヘキサフェニルシクロトリシ
ロキサン等であり、これらは一種又は二種以上の混合物
として使用することができる。 この逐次的に行なれるアニオン重合反応において、反
応温度、反応溶媒等の重合条件は、設定した範囲内で適
宜変更して行うことができる。 また、本発明の変性ポリシロキサン化合物は、前記し
た方法以外の方法、例えば、前記〔IV〕で表される化合
物の単独重合後、又は、前記モノマー類との共重合反応
後、反応系に前記重合体の成長末端と反応し得る官能基
を有するオルガノシロキサン化合物を加え、前記例示し
たと同様の条件下においてカップリング反応を行うこと
により、前記一般式〔IV〕で示される化合物の連鎖と、
又は、前記一般式〔IV〕で示される化合物および前記モ
ノマー類からなる連鎖と、ポリシロキサン連鎖とからな
る前駆体が製造される。 ここで用いられるオルガノシロキサン化合物として
は、前記重合体の成長末端とカップリング反応可能な官
能基を有するものであれば特に構造に制限はなく、具体
例を挙げると下記一般式〔VII〕や〔VIII〕で示される
化合物等が用いられる。 (式中、R9、R10は、それぞれ炭素数1〜20の直鎖又は
分枝のアルキル基、シクロアルキル基、アリール基又は
アラルキル基であり、X1,X2は、ハロゲン原子、エポキ
シ基、カルボニル基、クロロカルボニル基、又は、ハロ
ゲン原子、エポキシ基、カルボニル基、クロロカルボニ
ル基等を含有する炭素数1〜20の炭化水素基を表し、但
し、dは1以上の整数を表す。) (式中、R9,R10,X1及びdは前記と同じ意味を表し、R11
は、炭素数1〜20の直鎖又は分枝のアルキル基、シクロ
アルキル基、アリール基又はアラルキル基を示す。) 前記一般式〔VII〕や〔VIII〕で示される化合物の具
体例としては、例えば、市販のα,ω−ビス(クロロメ
チル)ポリジメチルシロキサン、1−(3−クロロプロ
ピル)−1,1,3,3,3−ペンタメチルジシロキサン、α,
ω−ビス(3−グリシドキシプロピル)ポリジメチルシ
ロキサン、α,ω−ジクロロポリジメチルシロキサン等
が挙げられる。 この逐次的に行われる重合反応及びカップリング反応
において、反応温度、反応溶媒等の条件は、設定した範
囲内で適宜変更して行うことができる。 このようにして得られた前駆体から飽和脂肪族系保護
基を脱離させ、p−アルケニルフェノール骨格を生成せ
しめる反応は、前記重合反応で例示した溶媒や四塩化炭
素等の塩素系溶媒の存在下、塩化水素ガスを加えて150
℃以下、好ましくは室温〜100℃の温度で行うことがで
きる。 上述の方法により、本発明の分子量、構造が制御さ
れ、かつ分子量分布の狭いフェノール骨格を導入した変
性ポリシロキサン化合物が製造される。
In recent years, as a resist material having a submicron resolution capability necessary for the production of VLSI, as a modifier of mechanical properties, moisture resistance, surface properties, etc. of various thermosetting resins and thermoplastic resins, As a separation membrane or biocompatible polymer material,
A polysiloxane compound having a controlled structure and having an arbitrary number of functional groups in a molecule is craving. In the above-mentioned method, the method of using a low molecular weight dimethylsiloxane compound having a functional group in the molecule, which is commercially available, has a drawback that the moldability and the mechanical strength are deteriorated because the compatibility with other resins is not sufficient. Have. Also,
The method using a reaction product of a polysiloxane having a functional group at the terminal and another resin tends to cause an unfavorable phenomenon such as abnormal thickening or gelation during the modification reaction, and unreacted components remain, resulting in As a result, there is a problem that the compatibility is lowered. An object of the present invention is to provide a modified polysiloxane compound having a phenol skeleton having a controlled molecular weight and structure and a narrow molecular weight distribution. As a result of intensive studies to achieve the above object, the present inventors have conducted an anionic polymerization method on a compound obtained by protecting the phenolic hydroxyl group of p-alkenylphenol with a saturated aliphatic protective group, or a compound copolymerizable therewith. Polymerized by
Then, after adding a cyclic siloxane compound and copolymerizing it, it is possible to easily produce a modified polysiloxane compound having a narrow molecular weight distribution and introducing a phenol skeleton whose structure is controlled by a method of eliminating a saturated aliphatic protective group. Heading, completed the present invention. The present invention provides a compound represented by the following general formula [I] X (Y) n ... [I] (where X is a p-alkenylphenol unit represented by the following general formula [II] as an essential structural unit. The unit block, Y is a polymer block having an organosiloxane represented by the following general formula [III] as a repeating unit, and n is 1 or 2.), and the weight ratio of X and Y is 1 / 99 ≦ X / Y ≦ 90/10, modified polysiloxane compound having a number average molecular weight of 1,000 to 100,000, (In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a hydrogen atom.) (In the formula, R 3 and R 4 each represent a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group. In the formula, R 3 and R 4 are the same as each other. Or may be different.) Or, X is a random or block copolymer comprising a p-alkenylphenol unit and a repeating unit of one or more conjugated dienes and / or one or more vinyl compounds. It is a modified polysiloxane compound represented by the general formula [I] and a method for producing the same. That is, the modified polysiloxane compound of the present invention is obtained by homopolymerizing a compound in which the hydroxyl group of the phenol residue represented by the following general formula [IV] is protected by a saturated aliphatic protecting group in the presence of an anionic polymerization initiator, Alternatively, it is produced by copolymerizing it with a copolymerizable compound, then adding a cyclic siloxane compound and copolymerizing, and then removing the saturated aliphatic protective group. (In the formula, R 5 represents a hydrogen atom or a methyl group, and R 6 represents a linear or branched alkyl group having 1 to 6 carbon atoms.) Hereinafter, the present invention will be described in more detail. X in the above general formula [I] of the present invention is a polymer block having a p-alkenylphenol unit represented by the above general formula [II] as an essential constituent unit, and more specifically,
From a polymer block having one or more p-alkenylphenol repeating units, or from a repeating unit of a p-alkenylphenol unit and one or more conjugated dienes and / or one or more vinyl compounds And a block composed of a random copolymer or a block copolymer, and also includes a block represented by the following general formula [V]. (In the formula, R 1 and R 2 have the same meanings as described above, and a and b are arbitrary natural numbers depending on the degree of polymerization.) In the above general formula [I] of the present invention, Y is It is a polymer block having an organosiloxane represented by the general formula [III] as a repeating unit, and at least one of the blocks constituting the molecular chain of the compound represented by the general formula [I] is Y. The compound represented by I] is represented by X-Y or Y-X-Y. Examples of the compound represented by the general formula [IV] used in the present invention include pn-butoxystyrene and p-sec.
-Butoxystyrene, p-tert-butoxystyrene, p
-Tert-butoxy-α-methylstyrene and the like are exemplified,
Particularly, p-tert-butoxystyrene and p-tert-butoxy-α-methylstyrene are preferable. As the conjugated diene or vinyl compound copolymerizable with the general formula (IV) used in the present invention, 1,3-butadiene,
Isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-
Conjugated dienes such as pentadiene and 1,3-hexadiene;
Styrene, p-methylstyrene, α-methylstyrene,
Vinyl aromatic compounds such as p-tert-butylstyrene, vinylnaphthalene, divinylbenzene, and 1,1-diphenylethylene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, etc. ) Acrylic acid esters; vinyl pyridines such as 2-vinyl pyridine and 4-vinyl pyridine; acrylonitrile and the like, and they are used as one kind or as a mixture of two or more kinds. The compound represented by the general formula [IV] of the present invention, or the compound represented by the general formula [IV] and the copolymerizable compound are under vacuum or an inert gas atmosphere such as nitrogen or argon under an organic solvent. In, the alkali metal and / or organic alkali metal compound as a polymerization initiator, -100 ℃ ~ 150 ℃
By conducting anionic polymerization at the temperature of 1, the polymer having a controlled molecular weight and a narrow molecular weight distribution can be obtained. The alkali metal of the anionic polymerization initiator is lithium, sodium, potassium or the like, and as the organic alkali metal compound, an alkylated product of the alkali metal,
Allyl compounds, aryl compounds and the like are used. Specific examples of the organic alkali metal compound include ethyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, ethyl sodium, butadienyl dilithium,
Butadienyl disodium, lithium biphenyl, lithium naphthalene, lithium fluorene, sodium biphenyl, sodium naphthalene, sodium triphenyl, α-methylstyrene sodium dianion and the like can be mentioned, and these are used alone or as a mixture of two or more kinds. Organic solvents include aliphatic hydrocarbons such as n-hexane and n-heptane; alicyclic hydrocarbons such as cyclohexane and cyclopentane; aromatic hydrocarbons such as benzene and toluene; diethyl ether, dioxane, tetrahydrofuran and the like. The organic solvents usually used in anionic polymerization, such as ethers, are used as one kind or as a mixed solvent of two or more kinds. The morphology of the copolymer obtained by the anionic polymerization is a random copolymer obtained by adding a mixture of the compound represented by the general formula [IV] and the monomer to a reaction system and polymerizing the mixture. Part is prepolymerized, then a mixture of both is added to obtain a partial block copolymer by continuing the polymerization, and also the general formula [IV]
A complete block copolymer is synthesized by sequentially adding the compound represented by and the above monomer to the reaction system to carry out polymerization. After homopolymerization of the compound represented by the general formula [IV], or after copolymerization reaction with the monomers, a cyclic siloxane compound is added to the reaction system, and anionic polymerization reaction is continued under the same conditions as those exemplified above. By doing so, with a chain of the compound represented by the general formula [IV], or a chain composed of the compound represented by the general formula [IV] and the monomers, and a block copolymer composed of a polysiloxane chain ( Hereinafter, referred to as a precursor) is produced. The cyclic siloxane compound used here is a compound represented by the following general formula [VI]. (Here, each of R 7 and R 8 is a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group, and c is a positive integer of 3 to 7. or,
R 7 and R 8 may be the same or different from each other. ) Specific examples of the compound represented by the general formula [VI] include, for example, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, hexaethylcyclotrisiloxane, octa Examples thereof include ethylcyclotetrasiloxane and hexaphenylcyclotrisiloxane, which can be used alone or as a mixture of two or more kinds. In this sequential anionic polymerization reaction, the polymerization conditions such as reaction temperature and reaction solvent can be appropriately changed within the set range. In addition, the modified polysiloxane compound of the present invention is a method other than the above-mentioned method, for example, after homopolymerization of the compound represented by the above [IV], or after a copolymerization reaction with the above-mentioned monomers, the above-mentioned reaction system is added to the reaction system. A chain of the compound represented by the general formula [IV] is added by adding an organosiloxane compound having a functional group capable of reacting with the growth end of the polymer, and performing a coupling reaction under the same conditions as those exemplified above.
Alternatively, a precursor composed of a chain composed of the compound represented by the general formula [IV] and the monomers and a polysiloxane chain is produced. The organosiloxane compound used here is not particularly limited in structure as long as it has a functional group capable of coupling reaction with the growth end of the polymer, and specific examples include the following general formula [VII] and [VII] VIII] and the like are used. (In the formula, R 9 and R 10 are each a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group, and X 1 and X 2 are halogen atoms and epoxy. A group, a carbonyl group, a chlorocarbonyl group, or a hydrocarbon group having 1 to 20 carbon atoms containing a halogen atom, an epoxy group, a carbonyl group, a chlorocarbonyl group or the like, provided that d is an integer of 1 or more. ) (In the formula, R 9 , R 10 , X 1 and d have the same meanings as described above, and R 11
Represents a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group. ) Specific examples of the compounds represented by the general formulas [VII] and [VIII] include, for example, commercially available α, ω-bis (chloromethyl) polydimethylsiloxane and 1- (3-chloropropyl) -1,1. , 3,3,3-pentamethyldisiloxane, α,
Examples include ω-bis (3-glycidoxypropyl) polydimethylsiloxane and α, ω-dichloropolydimethylsiloxane. In this sequential polymerization reaction and coupling reaction, the conditions such as the reaction temperature and the reaction solvent can be appropriately changed within the set range. The reaction for removing the saturated aliphatic protective group from the precursor thus obtained to form the p-alkenylphenol skeleton is carried out in the presence of a solvent exemplified in the above-mentioned polymerization reaction or a chlorine-based solvent such as carbon tetrachloride. Under, add hydrogen chloride gas to 150
It can be carried out at a temperature of not higher than 0 ° C, preferably room temperature to 100 ° C. According to the method described above, the modified polysiloxane compound of the present invention in which the molecular weight and structure are controlled and a phenol skeleton having a narrow molecular weight distribution is introduced can be produced.

【発明を実施するための最良の形態】BEST MODE FOR CARRYING OUT THE INVENTION

本発明を実施例及び比較例により、更に具体的に説明
する。ただし、本発明の範囲は、下記実施例により何ら
制限を受けるものではない。 なお、以下の例中において、「%」は、特に断りのな
い限り重量基準である。 また、下記一般式〔IX〕〜〔XV〕中のm,n,l,k,pは、
それぞれ対応する自然数を示す。 (実施例1) 窒素雰囲気下において、sec−ブチルリチウム0.01モ
ルを含むテトラヒドロフラン(以下、THFと記す)溶液6
50gに、−70℃で攪拌しながらp−tert−ブトキシスチ
レン(商品名・ホクコーPTBST、北興化学(株)製、以
下PTBSTと記す)0.25モルを含むTHF溶液130gを1時間か
けて添加し、更に3時間反応を継続した後、その反応液
にヘキサメチルシクロトリシロキサン(以下、D3と記
す)0.45モルを含むTHF溶液200gを1時間かけて添加
し、更に反応温度を30℃に保ち8時間反応を継続した。
次いで、反応液に水を加えて反応を停止後、分液して有
機層から溶媒を減圧留去して前駆体Aを得た。 得られた前駆体Aは、VPO法により測定した数平均分
子量(Mn)=15100、元素分析により測定したSi含有量
=25.3%でいずれも設定値とよく一致し、また、GPC溶
出曲線は単峰性ピークを示し、かつ重量平均分子量(M
w)/数平均分量(Mn)=1.15であった。この結果から
共重合が予想どおり行われ、ポリ−PTBST−ポリジメチ
ルシロキサン共重合体が生成したことを確認した。 得られた前駆体A10gをメチルエチルケトンに溶解して
10%溶液とし、室温で塩化水素ガスを30分間吹き込んだ
後、水を添加、分液し、有機層から溶媒を減圧留去して
コポリマーP−1を得た。 この反応に用いた前駆体AとコポリマーP−1につい
て、1H−NMRを測定、対比したところ、前者におけるter
t−ブチル基由来の1.31ppmのピークが後者においては消
失しており、また後者のVPO法によるMnは13000で設定値
とよく一致し、またGPC溶出曲線はMw/Mn=1.18の単分散
ポリマーであった。 以上より、前駆体Aからの脱ブチル化反応は何ら副反
応を生起することなく、予想どおり進行し、目的とする
ポリ−p−ビニルフェノール−ポリジメチルシロキサン
共重合体が得られたことを確認した。 実施例1で得られたコポリマーP−1の推定構造式を
下記〔IX〕に示す。 また、各種スペクトルデータを以下に示す。1 H−NMR〔δ(ppm),内部標準:THF,溶媒:THF−d8〕:0
〜0.3(Si−CH3),1.3〜1.7(CH2),1.8〜2.1(CH),6.
3〜6.8(C6H4),7.7〜7.9(OH)13 C−NMR〔δ(ppm),内部標準:THF,溶媒:THF−d8〕:
1.4(Si−CH3),35〜50(CH2,CH),116〜156(C6H429 Si−NMR〔δ(ppm),内部標準:TMS,溶媒:THF−d8,緩
和試薬:Fe(acac)〕:4.8(CH−Si(CH3−O),
−22.5〜−21.6(O−Si(CH3−O),−14.9(O
−Si(CH3−OH) 4)IR(cm-1):3150〜3400(OH),3020〜3100(C
6H4),1260(Si−CH3),1020〜1120(Si−O) (実施例2) 窒素雰囲気下において、金属ナトリウム0.02モルを含
むナトリウム−ケロシン分散体を溶解したTHF溶液300g
に、−40℃で攪拌しながらp−tert−ブチル−α−メチ
ルスチレン(以下PTBMSTと記す)0.05モルを含むTHF溶
液30gを1時間かけて添加し、更に2時間反応を継続し
た後、その反応液にD3 0.15モルを含むTHF溶液90gを1
時間かけて添加し、更に反応温度を30℃として8時間反
応を継続した。次いで反応液にトリメチルシリルクロラ
イドを加えて反応を停止した後、更に水を加えて分液
し、有機層から溶媒を減圧留去して前駆体Bを得た。 得られた前駆体Bは、Mn=4300、Si含有量=30.0%で
いずれも設定値とよく一致し、また、GPC溶出曲線は単
峰性ピークを示し、かつMw/Mn=1.25であった。この結
果から共重合が予想どおり行われポリジメチルシロキサ
ン−ポリ−PTBMST−ポリジメチルシロキサン共重合体が
得られたことを確認した。 得られた前駆体B10gを実施例1と同様に処理してコポリ
マーP−2を得た。 この反応に用いた前駆体BとコポリマーP−2につい
て、1H−NMRを測定して対比したところ、前者におけるt
ert−ブチル基由来の1.31ppmのピークが後者おいては消
失しており、また、後者のMn=4000で設定値とよく一致
し、また、GPC溶出曲線は、Mw/Mn=1.25の単分散ポリマ
ーであった。 以上より、前駆体Bからの脱ブチル化反応は何ら副反
応を生起することなく、予想どおり進行し、目的とする
ポリジメチルシロキサン−ポリ−p−イソプロペニルフ
ェノール−ポリジメチルシロキサン共重合体が得られた
ことを確認した。実施例2で得られたコポリマーP−2
の推定構造式を下記〔X〕に示す。 また、1H−NMRスペクトルデータを以下に示す。1 H−NMR〔δ(ppm),内部標準:THF,溶媒:THF−d8〕:0
〜0.3(Si−CH3),0.0〜0.8(C−CH3),1.0〜1.9(C
H2),6.2〜7.1(C6H4),7.8〜8.1(OH) (実施例3) 窒素雰囲気下において、sec−ブチルリチウム0.01モ
ルを含むTHF溶液1000gに、−70℃で攪拌しながらPTBST
0.25モルを含むTHF溶液130gを1時間かけて添加し、更
に3時間反応を継続した後、スチレン0.28モルを含むTH
F溶液を1時間かけて添加、更に3時間反応を継続し
た。その反応液に、D3 0.67モルを含むTHF溶液を1時間
かけて添加し、更に反応温度を30℃として8時間反応を
継続した。次いで、反応液にトリメチルシリルクロライ
ドを加えて反応を停止した後、分液し、有機層から溶媒
を減圧留去して前駆体Cを得た。 得られた前駆体Cは、Mn=23100、Si含有量=24.5%
で設定値とよく一致し、また、GPC溶出曲線は単峰性ピ
ークを示し、かつ、Mw/Mn=1.2であった。この結果から
共重合が予想どおり行われ、ポリ−PTBST−ポリスチレ
ン−ポリジメチルシロキサン共重合体が生成したことを
確認した。 得られた前駆体C10gを実施例1と同様に処理してコポ
リマーP−3を得た。この反応に用いた前駆体Cとコポ
リマーP−3について、1H−NMRを測定して対比したと
ころ、前者におけるp−tert−ブチル基由来の1.31ppm
のピークが後者においては消失しており、またMn=2080
0で設定値とよく一致し、また、GPC溶出曲線はMw/Mn=
1.30の単分散ポリマーであった。 以上より、前駆体Cからの脱ブチル化反応は何ら副反
応を生起することなく、予想どおり進行し、目的とする
ポリ−p−ビニルフェノール−ポリスチレン−ポリジメ
チルシロキサン共重合体が得られたことを確認した。 実施例3で得られたコポリマーP−3の推定構造式を
下記〔XI〕に示す。 また、1H−NMRスペクトルデータを以下に示す。1 H−NMR〔δ(ppm),内部標準:THF,溶媒:THF−d8〕:0
〜0.3(Si−CH3),1.3〜2.0(CH2),1.8〜2.5(CH),6.
3〜7.5(C6H4,C6H5) (実施例4) 窒素雰囲気下において、ナトリウム0.02モルを含むナ
トリウム−ケロシン分散体を溶解したTHF溶液600gに、
−60℃で攪拌しながらPTBMST0.53モル及びブタジエン1.
10モルを溶解したTHF溶液480gを2時間かけて添加し、
更に2時間反応を継続した後、その反応液にD3 0.20モ
ルを含むTHF溶液90gを1時間かけて添加し、更に反応温
度を30℃として8時間反応を継続した。次いで、反応液
を大量のメタノール中に投入し、析出したポリマーを減
圧乾燥して前駆体Dを得た。 得られた前駆体Dは、Mn=21000、Si含有量=8.1%で
設定値とよく一致し、GPC溶出曲線は単峰性ピークを示
し、かつMw/Mn=1.28であった。この結果から共重合が
予想どおり行われ、ポリジメチルシロキサン−(ポリPT
BMST/ポリブタジエン)−ポリジメチルシロキサン共重
合体が生成したことを確認した。 得られた前駆体D10gを実施例1と同様に処理してコポ
リマーP−4を得た。 この反応に用いた前駆体DとコポリマーP−4につい
て、1H−NMRを測定して対比したところ、前者におけるt
ert−ブチル基由来の1.31ppm付近のピークが後者におい
ては消失しており、また後者のMn=17500で設定値とよ
く一致し、またGPC溶出曲線はMw/Mn=1.28の単分散ポリ
マーであった。 以上より、前駆体Dからの脱ブチル化反応は何ら副反
応を生起することなく、予想どおり進行し、目的とする
ポリジメチルシロキサン−(ポリ−p−イソプロペニル
フェノール/ポリブタジエン)−ポリジメチルシロキサ
ン共重合体が得らたことを確認した。 実施例4で得られたコポリマーP−4の推定構造式を
下記〔XII〕に示す。 (式中、p−イソプロペニルフェノールブロック及びブ
タジエンブロックはランダムに共重合していることを示
す。) また、1H−NMRスペクトルデータを以下に示す。1 H−NMR〔δ(ppm),内部標準:THF,溶媒:THF−d8〕:0
〜0.3(Si−CH3),0.0〜0.8(C−CH3),1.0〜1.9(C
H2),1.8〜2.2(CH),4.8〜5.0(CH=CH2),5.2〜5.6
(CH=CH2),7.8〜8.1(C6H4) (実施例6) 窒素雰囲気下において、α−メチルスチレン0.15モル
を含むTHF溶液550gに、25℃で攪拌しながらn−ブチル
リチウム0.01モルを含むヘキサン溶液5gを30分かけて添
加し、さらに1時間反応を継続した。その反応液を−70
℃まで冷却し、さらに3時間反応を継続した後、PTBST
0.15モル及びスチレン0.10モルを含むTHF溶液100gを1
時間かけて添加し、さらに3時間反応を継続した。次い
で、反応液にD3 0.45モルを含むTHF溶液300gを1時間か
けて添加し、反応温度を30℃として更に8時間反応を継
続した。反応液に水を加えて反応を停止後、分液して有
機層から溶媒を減圧留去して前駆体Fを得た。 得られた前駆体Fは、Mn=15700,Si含有量=24.2%で
設定値とよく一致し、GPC溶出曲線は単峰性ピークを示
し、かつMw/Mn=1.28であった。この結果から共重合が
予想通り行われ、ポリ−α−メチルスチレン−(ポリス
チレン/ポリPTBST)−ポリジメチルシロキサン共重合
体が生成したことを確認した。 得られた前駆体F10gを実施例1と同様に処理してコポ
リマーP−6を得た。 この反応に用いた前駆体FとコポリマーP−6につい
て、1H−NMRを測定して対比したところ、前者におけるt
et−ブチル基由来の1.31ppm付近のピークが後者におい
ては消失しており、また後者のMnは15000で設定値とよ
く一致し、GPC溶出曲線はMw/Mn=1.28の単分散ポリマー
であった。 以上より、前駆体Fからの脱ブチル化反応は何ら副反
応を生起することなく、予想通りに進行し、目的とする
ポリ−α−メチルスチレン−(ポリスチレン/ポリ−p
−ビニルフェノール)ポリジメチルシロキサン重合体が
得られたことを確認した。 実施例6で得られたコポリマーP−6の推定構造式を
下記〔XIV〕に示す。 (式中、スチレンブロック及びp−ビニルフェノールブ
ロックはランダムに共重合している。) また、1H−NMRスペクトルデータを以下に示す。1 H−NMR〔δ(ppm),内部標準:THF,溶媒:THF−d8〕:0
〜0.3(Si−CH3),0.0〜0.8(C−CH3),1.3〜2.0(C
H2),1.8〜2.5(CH),6.3〜7.5(C6H4,C6H5) (実施例7) 窒素雰囲気下において、n−ブチルリチウム0.01モル
を含むTHF溶液600gに、−70℃で攪拌しながらPTBST0.15
モル及びブタジエン0.20モルを含むTHF溶液100gを1時
間かけて添加し、さらに3時間反応を継続した。次い
で、反応液にD3 0.45モルを含むTHF溶液300gを1時間
かけて添加し、反応温度を30℃として8時間反応を継続
した。反応液に水を加えて反応を停止したのち、分液し
て有機層から溶媒を減圧留去して前駆体Gを得た。 得られた前駆体Gは、Mn=15200,Si含有量=24.1%で
あり、設定値とよく一致し、GPC溶出曲線は単峰性ピー
クを示し、かつMw/Mn=1.17であった。この結果から共
重合が予想通り行われ、(ポリブタジエン/ポリPTBS
T)−ポリジメチルシロキサン共重合体が生成したこと
を確認した。 得られた前駆体G10gを実施例1と同様にしてコポリマ
ーP−7を得た。この反応に用いられた前駆体Gとコポ
リマーP−7について1H−NMRを測定して対比したとこ
ろ、前者におけるt−ブチル基由来の1.31ppm付近のピ
ークが後者においては消失しており、また後者のMnは14
500で設定値とよく一致し、GPC溶出曲線はMw/Mn=1.17
の単分散性ポリマーであった。 以上より、前駆体Gからの脱ブチル化反応は何ら副反
応を生成することなく予想通りに進行し、目的とする、
(ポリブタジエン/ポリ−p−ビニルフェノール)−ポ
リジメチルシロキサン共重合体が得られたことを確認し
た。 実施例7で得られたコポリマーP−7の推定構造式を
下記〔XV〕に示す。 (式中、ブタジエンブロック及びp−ビニルフェノール
ブロックはランダムに共重合していることを示す。) また、1H−NMRスペクトルデータを以下に示す。1 H−NMR〔δ(ppm),内部標準:THF,溶媒:THF−d8〕:0
〜0.3(Si−CH3),1.0〜1.9(CH2),1.8〜2.2(CH),4.
8〜5.0(CH=CH2),7.8〜8.1(C6H4
The present invention will be described more specifically with reference to Examples and Comparative Examples. However, the scope of the present invention is not limited by the following examples. In the following examples, "%" is based on weight unless otherwise specified. Further, m, n, l, k, p in the following general formulas [IX] to [XV] are
The corresponding natural numbers are shown. Example 1 Tetrahydrofuran (hereinafter referred to as THF) solution 6 containing 0.01 mol of sec-butyllithium under a nitrogen atmosphere 6
To 50 g, 130 g of a THF solution containing 0.25 mol of p-tert-butoxystyrene (trade name, Hokuko PTBST, manufactured by Hokuko Kagaku Co., Ltd., hereinafter referred to as PTBST) while stirring at -70 ° C was added over 1 hour, After continuing the reaction for another 3 hours, 200 g of a THF solution containing 0.45 mol of hexamethylcyclotrisiloxane (hereinafter referred to as D3) was added to the reaction solution over 1 hour, and the reaction temperature was kept at 30 ° C for 8 hours. The reaction was continued.
Next, water was added to the reaction solution to stop the reaction, and then liquid separation was performed, and the solvent was distilled off from the organic layer under reduced pressure to obtain a precursor A. The obtained precursor A had a number average molecular weight (Mn) of 15100 measured by the VPO method and a Si content of 25.3% measured by elemental analysis, which were all in good agreement with the set values. It shows a peak with a weight average molecular weight (M
w) / number average quantity (Mn) = 1.15. From this result, it was confirmed that the copolymerization was performed as expected and a poly-PTBST-polydimethylsiloxane copolymer was produced. 10 g of the obtained precursor A was dissolved in methyl ethyl ketone.
A 10% solution was prepared, and hydrogen chloride gas was blown into the solution at room temperature for 30 minutes, water was added to the solution, the solution was separated, and the solvent was distilled off from the organic layer under reduced pressure to obtain a copolymer P-1. 1 H-NMR of the precursor A and the copolymer P-1 used in this reaction were measured and compared.
The peak of 1.31 ppm derived from t-butyl group disappeared in the latter, and the Mn by the VPO method of the latter was 13000, which was in good agreement with the set value, and the GPC elution curve was a monodisperse polymer with Mw / Mn = 1.18. Met. From the above, it was confirmed that the debutylation reaction from the precursor A proceeded as expected without causing any side reaction, and the target poly-p-vinylphenol-polydimethylsiloxane copolymer was obtained. did. The estimated structural formula of the copolymer P-1 obtained in Example 1 is shown in [IX] below. Further, various spectrum data are shown below. 1 H-NMR [δ (ppm), internal standard: THF, solvent: THF-d 8 ]: 0
~ 0.3 (Si-CH 3 ), 1.3 to 1.7 (CH 2 ), 1.8 to 2.1 (CH), 6.
3 to 6.8 (C 6 H 4 ), 7.7 to 7.9 (OH) 13 C-NMR [δ (ppm), internal standard: THF, solvent: THF-d 8 ]:
1.4 (Si-CH 3), 35~50 (CH 2, CH), 116~156 (C 6 H 4) 29 Si-NMR [δ (ppm), internal standard: TMS, solvent: THF-d 8, mitigation reagents: Fe (acac) 3]: 4.8 (CH-Si (CH 3) 2 -O),
-22.5~-21.6 (O-Si ( CH 3) 2 -O), - 14.9 (O
-Si (CH 3) 2 -OH) 4) IR (cm -1): 3150~3400 (OH), 3020~3100 (C
6 H 4 ), 1260 (Si—CH 3 ), 1020 to 1120 (Si—O) (Example 2) 300 g of a THF solution in which a sodium-kerosene dispersion containing 0.02 mol of metallic sodium was dissolved under a nitrogen atmosphere.
While stirring at −40 ° C., 30 g of a THF solution containing 0.05 mol of p-tert-butyl-α-methylstyrene (hereinafter referred to as PTBMST) was added over 1 hour, and the reaction was further continued for 2 hours. 90 g of THF solution containing 0.15 mol of D3 in the reaction solution 1
The mixture was added over a period of time, and the reaction temperature was raised to 30 ° C. to continue the reaction for 8 hours. Then, trimethylsilyl chloride was added to the reaction solution to stop the reaction, water was further added to separate the layers, and the solvent was distilled off from the organic layer under reduced pressure to obtain a precursor B. The obtained precursor B had Mn = 4300 and Si content = 30.0%, which were in good agreement with the set values, and the GPC elution curve showed a unimodal peak and Mw / Mn = 1.25. . From this result, it was confirmed that the copolymerization was performed as expected and a polydimethylsiloxane-poly-PTBMST-polydimethylsiloxane copolymer was obtained. 10 g of the obtained precursor B was treated in the same manner as in Example 1 to obtain a copolymer P-2. The precursor B and the copolymer P-2 used in this reaction were measured and compared by 1 H-NMR.
The 1.31 ppm peak derived from the ert-butyl group disappeared in the latter, and the latter had a good match with the set value at Mn = 4000.The GPC elution curve shows a monodisperse distribution of Mw / Mn = 1.25. It was a polymer. From the above, the debutylation reaction from the precursor B proceeds as expected without causing any side reaction, and the target polydimethylsiloxane-poly-p-isopropenylphenol-polydimethylsiloxane copolymer is obtained. I was confirmed. Copolymer P-2 obtained in Example 2
The estimated structural formula of is shown in [X] below. In addition, 1 H-NMR spectrum data is shown below. 1 H-NMR [δ (ppm), internal standard: THF, solvent: THF-d 8 ]: 0
~0.3 (Si-CH 3), 0.0~0.8 (C-CH 3), 1.0~1.9 (C
H 2 ), 6.2 to 7.1 (C 6 H 4 ), 7.8 to 8.1 (OH) (Example 3) In a nitrogen atmosphere, 1000 g of a THF solution containing 0.01 mol of sec-butyllithium was stirred at -70 ° C. PTBST
After adding 130 g of a THF solution containing 0.25 mol over 1 hour and continuing the reaction for 3 hours, a THF solution containing 0.28 mol of styrene was added.
The F solution was added over 1 hour, and the reaction was continued for another 3 hours. A THF solution containing 0.67 mol of D3 was added to the reaction solution over 1 hour, and the reaction temperature was further raised to 30 ° C. to continue the reaction for 8 hours. Next, trimethylsilyl chloride was added to the reaction solution to stop the reaction, and then liquid separation was performed, and the solvent was distilled off from the organic layer under reduced pressure to obtain a precursor C. The obtained precursor C has Mn = 23100, Si content = 24.5%
Well, the GPC elution curve showed a unimodal peak, and Mw / Mn was 1.2. From this result, it was confirmed that the copolymerization was carried out as expected and a poly-PTBST-polystyrene-polydimethylsiloxane copolymer was produced. The thus-obtained precursor C10g was treated in the same manner as in Example 1 to obtain a copolymer P-3. When the precursor C and the copolymer P-3 used in this reaction were measured and compared with each other by 1 H-NMR, the former was 1.31 ppm derived from the p-tert-butyl group.
Peak disappears in the latter, and Mn = 2080
The value of 0 is in good agreement with the set value, and the GPC elution curve shows Mw / Mn =
It was 1.30 monodisperse polymer. From the above, the debutylation reaction from the precursor C proceeded as expected without causing any side reaction, and the target poly-p-vinylphenol-polystyrene-polydimethylsiloxane copolymer was obtained. It was confirmed. The estimated structural formula of the copolymer P-3 obtained in Example 3 is shown in [XI] below. In addition, 1 H-NMR spectrum data is shown below. 1 H-NMR [δ (ppm), internal standard: THF, solvent: THF-d 8 ]: 0
~0.3 (Si-CH 3), 1.3~2.0 (CH 2), 1.8~2.5 (CH), 6.
3 to 7.5 (C 6 H 4 , C 6 H 5 ) (Example 4) In a nitrogen atmosphere, 600 g of a THF solution in which a sodium-kerosene dispersion containing 0.02 mol of sodium was dissolved,
0.53 mol PTBMST and 1. Butadiene with stirring at -60 ° C.
480 g of THF solution containing 10 mol was added over 2 hours,
After continuing the reaction for another 2 hours, 90 g of a THF solution containing 0.20 mol of D3 was added to the reaction solution over 1 hour, and the reaction temperature was further raised to 30 ° C. and the reaction was continued for 8 hours. Then, the reaction solution was poured into a large amount of methanol, and the precipitated polymer was dried under reduced pressure to obtain a precursor D. The obtained precursor D was in good agreement with the set values at Mn = 21000 and Si content = 8.1%, the GPC elution curve showed a unimodal peak, and Mw / Mn = 1.28. From this result, the copolymerization was performed as expected, and polydimethylsiloxane- (polyPT
It was confirmed that a BMST / polybutadiene) -polydimethylsiloxane copolymer was produced. The thus obtained precursor D10 was treated in the same manner as in Example 1 to obtain a copolymer P-4. The precursor D and the copolymer P-4 used in this reaction were measured and compared by 1 H-NMR.
The peak around 1.31 ppm derived from the ert-butyl group disappeared in the latter, and the latter had a good match with the set value at Mn = 17500, and the GPC elution curve was a monodisperse polymer with Mw / Mn = 1.28. It was From the above, the debutylation reaction from the precursor D proceeds as expected without causing any side reaction, and the target polydimethylsiloxane- (poly-p-isopropenylphenol / polybutadiene) -polydimethylsiloxane It was confirmed that a polymer was obtained. The estimated structural formula of the copolymer P-4 obtained in Example 4 is shown in [XII] below. (In the formula, the p-isopropenylphenol block and the butadiene block are randomly copolymerized.) In addition, 1 H-NMR spectrum data is shown below. 1 H-NMR [δ (ppm), internal standard: THF, solvent: THF-d 8 ]: 0
~0.3 (Si-CH 3), 0.0~0.8 (C-CH 3), 1.0~1.9 (C
H 2 ), 1.8 to 2.2 (CH), 4.8 to 5.0 (CH = CH 2 ), 5.2 to 5.6
(CH = CH 2), 7.8~8.1 (C 6 H 4) ( Example 6) Under a nitrogen atmosphere, a THF solution 550g containing α- methylstyrene 0.15 mol, stirring n- butyllithium 0.01 at 25 ° C. 5 g of a hexane solution containing moles was added over 30 minutes, and the reaction was continued for another hour. The reaction solution is -70
After cooling to ℃ and continuing the reaction for another 3 hours, PTBST
1 g of 100 g of THF solution containing 0.15 mol and 0.10 mol of styrene
It was added over time and the reaction was continued for another 3 hours. Next, 300 g of a THF solution containing 0.45 mol of D3 was added to the reaction solution over 1 hour, the reaction temperature was set to 30 ° C., and the reaction was continued for 8 hours. After the reaction was stopped by adding water to the reaction solution, the solution was separated and the solvent was distilled off from the organic layer under reduced pressure to obtain a precursor F. The obtained precursor F was in good agreement with the set values at Mn = 15700 and Si content = 24.2%, the GPC elution curve showed a unimodal peak, and Mw / Mn = 1.28. From this result, it was confirmed that the copolymerization was carried out as expected and a poly-α-methylstyrene- (polystyrene / polyPTBST) -polydimethylsiloxane copolymer was produced. The thus obtained precursor F10 was treated in the same manner as in Example 1 to obtain a copolymer P-6. The precursor F and the copolymer P-6 used in this reaction were measured and compared by 1 H-NMR.
The peak around 1.31 ppm derived from et-butyl group disappeared in the latter, and the Mn of the latter was 15000, which was in good agreement with the set value, and the GPC elution curve was a monodisperse polymer with Mw / Mn = 1.28. . From the above, the debutylation reaction from the precursor F proceeds as expected without causing any side reaction, and the desired poly-α-methylstyrene- (polystyrene / poly-p
-Vinylphenol) It was confirmed that a polydimethylsiloxane polymer was obtained. The estimated structural formula of the copolymer P-6 obtained in Example 6 is shown in [XIV] below. (In the formula, the styrene block and the p-vinylphenol block are randomly copolymerized.) In addition, 1 H-NMR spectrum data is shown below. 1 H-NMR [δ (ppm), internal standard: THF, solvent: THF-d 8 ]: 0
~0.3 (Si-CH 3), 0.0~0.8 (C-CH 3), 1.3~2.0 (C
H 2), 1.8 to 2.5 (CH), in 6.3~7.5 (C 6 H 4, C 6 H 5) ( Example 7) Under a nitrogen atmosphere, a THF solution 600g containing n- butyllithium 0.01 mol, -70 PTBST 0.15 with stirring at ℃
100 g of THF solution containing 1 mol and 0.20 mol of butadiene was added over 1 hour and the reaction was continued for another 3 hours. Next, 300 g of a THF solution containing 0.45 mol of D3 was added to the reaction solution over 1 hour, the reaction temperature was set to 30 ° C., and the reaction was continued for 8 hours. After water was added to the reaction solution to stop the reaction, the solution was separated and the solvent was distilled off from the organic layer under reduced pressure to obtain a precursor G. The obtained precursor G had Mn = 15200 and Si content = 24.1%, which were in good agreement with the set values, and the GPC elution curve showed a unimodal peak, and Mw / Mn = 1.17. From this result, the copolymerization was carried out as expected, and (polybutadiene / polyPTBS
It was confirmed that a T) -polydimethylsiloxane copolymer was produced. Copolymer P-7 was obtained in the same manner as in Example 1 except that 10 g of the obtained precursor G was used. When the precursor G and the copolymer P-7 used in this reaction were measured and compared by 1 H-NMR, the peak around 1.31 ppm derived from t-butyl group in the former disappeared in the latter, and The latter Mn is 14
Good agreement with the set value at 500, GPC elution curve Mw / Mn = 1.17
Was a monodisperse polymer. From the above, the debutylation reaction from the precursor G proceeds as expected without producing any side reaction, and is aimed at.
It was confirmed that a (polybutadiene / poly-p-vinylphenol) -polydimethylsiloxane copolymer was obtained. The estimated structural formula of the copolymer P-7 obtained in Example 7 is shown in [XV] below. (In the formula, the butadiene block and the p-vinylphenol block are randomly copolymerized.) In addition, 1 H-NMR spectrum data is shown below. 1 H-NMR [δ (ppm), internal standard: THF, solvent: THF-d 8 ]: 0
~ 0.3 (Si-CH 3 ), 1.0 to 1.9 (CH 2 ), 1.8 to 2.2 (CH), 4.
8~5.0 (CH = CH 2), 7.8~8.1 (C 6 H 4)

【産業上の利用可能性】[Industrial availability]

前記実施例に示したように、本発明の方法によれば、
分子量、構造が制御され、分子量分布の狭いフェノール
骨格を導入した変性ポリシロキサン化合物を容易に合成
することができる。 従って、該変性ポリシロキサン化合物は、超LSIの製
造に必要なサブミクロンの解像能力を有するレジスト材
料として、また、種々の熱硬化性樹脂や熱可塑性樹脂の
改質剤として、さらには分離膜や生体適合性材料として
広範な分野での利用が期待され、その産業的意義は極め
て大きい。
As shown in the above examples, according to the method of the present invention,
A modified polysiloxane compound in which a phenol skeleton having a narrow molecular weight distribution with controlled molecular weight and structure is introduced can be easily synthesized. Therefore, the modified polysiloxane compound is used as a resist material having a submicron resolution ability necessary for the production of VLSI, as a modifier of various thermosetting resins and thermoplastic resins, and further as a separation membrane. It is expected to be used as a biocompatible material in a wide range of fields, and its industrial significance is extremely large.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−277417(JP,A) 特開 昭59−199705(JP,A) 特開 平5−271518(JP,A) 特開 平5−170920(JP,A) 特開 昭47−4099(JP,A) 特開 昭47−4100(JP,A) 特開 昭47−4195(JP,A) 特開 昭48−28592(JP,A) 特開 昭50−44249(JP,A) 特公 昭46−9355(JP,B1) 米国特許3678125(US,A) 米国特許3483270(US,A) 米国特許3051684(US,A) 英国特許出願公開1267644(GB,A) 英国特許出願公開1308459(GB,A) (58)調査した分野(Int.Cl.7,DB名) C08G 77/00 - 77/62 CA(STN) REGISTRY(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 62-277417 (JP, A) JP 59-199705 (JP, A) JP 5-271518 (JP, A) JP 5- 170920 (JP, A) JP 47-4099 (JP, A) JP 47-4100 (JP, A) JP 47-4195 (JP, A) JP 48-28592 (JP, A) JP-A-50-44249 (JP, A) JP-B-46-9355 (JP, B1) US Patent 3678125 (US, A) US Patent 3483270 (US, A) US Patent 3051684 (US, A) UK Patent Application Publication 1267644 (GB, A) UK patent application publication 1308459 (GB, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08G 77/00-77/62 CA (STN) REGISTRY (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の一般式〔I〕 X(Y)n・・・〔I〕 (ここに、Xは下記一般式〔II〕で表されるp−アルケ
ニルフェノール単位を必須構成単位とする重合体ブロッ
ク、Yは下記一般式〔III〕で表されるオルガノシロキ
サンを繰返し単位とする重合体ブロックであり、nは1
又は2である。)で表され、XとYとの重量比が1/99≦
X/Y≦90/10、数平均分子量が、1,000〜100,000である変
性ポリシロキサン化合物。 (式中、R1は、水素原子又はメチル基を表し、R2は水素
原子を表す。) (式中、R3及びR4は、それぞれ炭素数1〜20の直鎖又は
分枝のアルキル基、シクロアルキル基、アリール基又は
アラルキル基を表す。又、R3及びR4は同一又は相異なっ
ていてもよい。)
1. A compound represented by the following general formula [I] X (Y) n ... [I] (where X is a p-alkenylphenol unit represented by the following general formula [II] as an essential constituent unit. A polymer block, Y is a polymer block having an organosiloxane represented by the following general formula [III] as a repeating unit, and n is 1
Or 2. ), And the weight ratio of X and Y is 1/99 ≦
A modified polysiloxane compound having X / Y ≦ 90/10 and a number average molecular weight of 1,000 to 100,000. (In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a hydrogen atom.) (In the formula, R 3 and R 4 each represent a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group. Further, R 3 and R 4 are the same or It may be different.)
【請求項2】Xが、p−アルケニルフェノール単位と一
種又は二種以上の共役ジエン及び/又はp−アルケニル
フェノール以外のビニル化合物の繰り返し単位からなる
ランダム又はブロック共重合体ブロックである請求項1
記載の変性ポリシロキサン化合物。
2. A random or block copolymer block in which X is a p-alkenylphenol unit and a repeating unit of one or more conjugated dienes and / or vinyl compounds other than p-alkenylphenol.
The modified polysiloxane compound described.
【請求項3】アニオン重合開始剤の存在下、下記一般式
〔IV〕で表されるフェノール残基の水酸基が飽和脂肪族
系保護基により保護された化合物を単独重合、又は、こ
れと共重合可能な化合物と共重合させ、次いで環状シロ
キサン化合物を加えて共重合させた後、脂肪族炭化水素
類、脂環族炭化水素類、芳香族炭化水素類、エーテル
類、または塩素系溶媒存在下、塩化水素ガスを用いて飽
和脂肪族系保護基を脱離処理してなることを特徴とする
請求項1に記載の変性ポリシロキサン化合物の製造方
法。 (ここに、R5は、水素原子又はメチル基を表し、R6は、
炭素数1〜6の直鎖又は分枝のアルキル基を表す。)
3. A compound in which a hydroxyl group of a phenol residue represented by the following general formula [IV] is protected by a saturated aliphatic protecting group in the presence of an anionic polymerization initiator, is homopolymerized, or is copolymerized therewith. In the presence of an aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, ethers, or a chlorine-based solvent, after copolymerizing with a possible compound and then copolymerizing with a cyclic siloxane compound. The method for producing a modified polysiloxane compound according to claim 1, wherein the saturated aliphatic protective group is eliminated by using hydrogen chloride gas. (Here, R 5 represents a hydrogen atom or a methyl group, and R 6 is
It represents a linear or branched alkyl group having 1 to 6 carbon atoms. )
【請求項4】共重合可能な化合物が、一種又は二種以上
の共役ジエン及び/又はp−アルケニルフェノール以外
のビニル化合物である請求項3記載の変性ポリシロキサ
ン化合物の製造方法。
4. The method for producing a modified polysiloxane compound according to claim 3, wherein the copolymerizable compound is a vinyl compound other than one or more kinds of conjugated dienes and / or p-alkenylphenols.
JP50989292A 1991-05-31 1992-05-27 Modified polysiloxane compound and method for producing the same Expired - Lifetime JP3471010B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3-156004 1991-05-31
JP15600491 1991-05-31
JP14338392A JPH05156023A (en) 1991-05-31 1992-05-08 Modified polysiloxane compound and its production
JP4-143383 1992-05-08
PCT/JP1992/000686 WO1992021712A1 (en) 1991-05-31 1992-05-27 Modified polysiloxane compound and production thereof

Publications (1)

Publication Number Publication Date
JP3471010B2 true JP3471010B2 (en) 2003-11-25

Family

ID=26475133

Family Applications (2)

Application Number Title Priority Date Filing Date
JP14338392A Pending JPH05156023A (en) 1991-05-31 1992-05-08 Modified polysiloxane compound and its production
JP50989292A Expired - Lifetime JP3471010B2 (en) 1991-05-31 1992-05-27 Modified polysiloxane compound and method for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP14338392A Pending JPH05156023A (en) 1991-05-31 1992-05-08 Modified polysiloxane compound and its production

Country Status (2)

Country Link
JP (2) JPH05156023A (en)
WO (1) WO1992021712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021392A1 (en) * 2009-08-21 2011-02-24 日本曹達株式会社 Process for production of modified polysiloxane compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663146B2 (en) * 2009-05-29 2015-02-04 株式会社ブリヂストン Process for producing modified conjugated diene polymer, modified conjugated diene polymer, rubber composition, pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107227A (en) * 1976-12-09 1978-08-15 Dow Corning Corporation Method for preparing improved polyalphamethyls tyrene-polydiorganosiloxane block copolymers and products thereof
JPS59123502A (en) * 1982-12-28 1984-07-17 Nissan Motor Co Ltd Selective permeable membrane
DE3606983A1 (en) * 1986-03-04 1987-09-10 Bayer Ag Block copolymers containing polysiloxane segments

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021392A1 (en) * 2009-08-21 2011-02-24 日本曹達株式会社 Process for production of modified polysiloxane compound
CN102471491A (en) * 2009-08-21 2012-05-23 日本曹达株式会社 Process for production of modified polysiloxane compound
US8420744B2 (en) 2009-08-21 2013-04-16 Nippon Soda Co., Ltd. Process for the production of modified polysiloxanes
KR101375894B1 (en) 2009-08-21 2014-03-18 닛뽕소다 가부시키가이샤 Process for production of modified polysiloxane compound
CN102471491B (en) * 2009-08-21 2014-04-02 日本曹达株式会社 Process for production of modified polysiloxane compound
JP5503654B2 (en) * 2009-08-21 2014-05-28 日本曹達株式会社 Method for producing modified polysiloxane compound

Also Published As

Publication number Publication date
JPH05156023A (en) 1993-06-22
WO1992021712A1 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
US4803243A (en) Block-graft copolymer
US5212249A (en) Method for preparing asymmetric radial polymers
US4405754A (en) Haze-free, clear, impact-resistant resinous polymers
JPH08325325A (en) Method of synthesis of silyl-functional telechelic hydrocarbon polymer
US20040167292A1 (en) Conjugated diene polymers and copolymer blocks and process for preparing same
US5281666A (en) Process for making block copolymers of vinyl aromatic hydrocarbons and/or conjugated dienes and polydimethylsiloxane
EP2468799B1 (en) Process for production of modified polysiloxane compound
JP3471010B2 (en) Modified polysiloxane compound and method for producing the same
US6566480B2 (en) Multi-reactive polysiloxane compound having halogen substituents and synthetic method thereof
JPH05170920A (en) Production of modified polysiloxane compound
US6756448B2 (en) Styrene copolymer
CA2040457A1 (en) Block copolymers containing poly(1,3-conjugated dienes) and poly (vinylphenols), silyl protected poly (vinylphenols) or poly (metal phenolates)
US5360869A (en) Method of making fluorinated copolymers
WO2022044633A1 (en) Polymer composition containing modified polymer having boron-containing functional group, and method for producing same
EP0718330B1 (en) Process for manufacturing multiarmed asymmetrical radial block copolymers
JPH0551612B2 (en)
MXPA03002531A (en) Polymers with high vinyl end segments.
JP3558763B2 (en) Method for producing graft polymer
GB1345937A (en) Thermoplastic siloxane-containing block copolymer
JPH0229403A (en) Liquid terethieric polymers having high 1, 4-diene structure
JP2008214484A (en) Conjugated diene star polymer and its preparation method
JPH0892377A (en) Polymer having diphenylethylene unit at terminal, silane compound utilized for producing the same and method for producing block, graft or star type polymer from the polymer
Lim et al. Synthesis and properties of well-defined poly (dimethylsiloxane)-b-poly (2-hydroxyethyl methacrylate) copolymers
JPH04501883A (en) Process for producing functionalized (meth)acrylic acid macromonomer and obtained macromonomer
JP2727637B2 (en) Method for producing vinylsilane-based polymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9