JP3470908B2 - Dispersion nozzle, method for supplying solid fine particles using the same, and method for producing spheroidized particles - Google Patents
Dispersion nozzle, method for supplying solid fine particles using the same, and method for producing spheroidized particlesInfo
- Publication number
- JP3470908B2 JP3470908B2 JP04844293A JP4844293A JP3470908B2 JP 3470908 B2 JP3470908 B2 JP 3470908B2 JP 04844293 A JP04844293 A JP 04844293A JP 4844293 A JP4844293 A JP 4844293A JP 3470908 B2 JP3470908 B2 JP 3470908B2
- Authority
- JP
- Japan
- Prior art keywords
- diameter
- nozzle
- fine particles
- flow path
- solid fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Plasma Technology (AREA)
- Nozzles (AREA)
- Glanulating (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、特に粒子径が0.5〜
100μmの金属、非金属、無機化合物、または金属化
合物等の固体微粒子を気体とともに二相流で搬送し、均
一に分散させた状態で噴射するための分散ノズル、これ
を用いた固体微粒子の供給方法および球状化粒子の製造
方法に関する。FIELD OF THE INVENTION The present invention has a particle size of 0.5 to 0.5.
Dispersion nozzle for injecting 100 μm solid fine particles of metal, non-metal, inorganic compound, metal compound or the like with gas in a two-phase flow and jetting them in a uniformly dispersed state, and method of supplying solid fine particles using the same And a method for producing spherical particles.
【0002】[0002]
【従来の技術】近年、サブミクロン程度から数百ミクロ
ン程度の金属、非金属、無機または有機化合物、金属化
合物等の固体微粒子を湿式法、あるいは乾式法で製造
し、それを原料として射出成形材料、焼結材、導電ペー
スト、フィラー、フィルター、封止材、スペーサー、添
加材、触媒等が生産されている。これらの応用分野にお
いては、高品質化に伴い、微細化とともに高球状化が要
求されるようになってきた。2. Description of the Related Art In recent years, solid fine particles of metal, non-metal, inorganic or organic compound, metal compound, etc. having a size of submicron to several hundreds of micron are manufactured by a wet method or a dry method, and an injection molding material using the solid particles as a raw material. , Sintered materials, conductive pastes, fillers, filters, sealing materials, spacers, additives, catalysts, etc. are produced. In these application fields, along with the improvement in quality, there has been a demand for high spheroidization as well as miniaturization.
【0003】たとえば、固体微粒子の球状化方法として
は、近年種々の改良方法が試みられており、たとえば特
開平2−11704号公報に開示されるガスまたは水ア
トマイズ法(噴霧法)、特開昭63−230807号公
報に開示される回転噴霧法、特開平1−234506号
公報に開示される回転電極法、特開昭63−58799
号公報に開示されるプラズマアーク法などが提案されて
いる。For example, various methods for improving the spheroidizing of solid fine particles have been attempted in recent years. For example, the gas or water atomizing method (spraying method) disclosed in Japanese Patent Laid-Open No. 11704/1990 and the Japanese Patent Laid-Open Publication No. Sho. No. 63-230807, the rotary atomizing method disclosed in JP-A-1-234506, and the JP-A No. 63-58799.
The plasma arc method and the like disclosed in the publication are proposed.
【0004】前記特開昭63−58799号公報に開示
されるプラズマアーク法は、不定型粒子をアークプラズ
マフレーム中に挿入して粒状化する方法を開示する。The plasma arc method disclosed in Japanese Patent Laid-Open No. 63-58799 discloses a method in which amorphous particles are inserted into an arc plasma flame and granulated.
【0005】一方、本出願人においても、先の特開平4
−246104号公報において、発生したプラズマフレ
ームの先端領域に、このプラズマフレームの流れの方向
と向流的に不活性ガスとともに、処理物質を供給する方
法を開示している。On the other hand, the applicant of the present invention also discloses the above-mentioned Japanese Patent Laid-Open No.
Japanese Patent Publication No. 246104 discloses a method of supplying a treatment substance to an end region of a generated plasma flame together with an inert gas in a countercurrent direction to the flow direction of the plasma flame.
【0006】また、特願平4−178352号において
は、発生するプラズマフレームにおける前記高周波誘導
コイル配設領域外のテールフレーム領域に対して、前記
処理物質を前記プラズマフレーム軸からプラズマガス流
れ方向前方の±45°範囲を除く範囲から実質的に前記
プラズマフレーム軸に向けて活性ガスまたは不活性ガス
とともに供給する方法を提案している。Further, in Japanese Patent Application No. 4-178352, the treatment substance is directed forward from the plasma flame axis in the plasma gas flow direction to the tail flame region outside the high frequency induction coil placement region in the generated plasma flame. It is proposed that the gas is supplied together with the active gas or the inert gas toward the plasma flame axis from a range excluding the ± 45 ° range.
【0007】[0007]
【発明が解決しようとする課題】上記の例のように、発
生するプラズマフレームに対して不活性ガスとともに処
理物質を供給する方法においては、凝集性、集合性の強
い固体微粒子を、いかにして所望の分散状態でプラズマ
フレーム内に供給できるかが、得られる球状化粒子の品
質を左右する重要なカギとなる。As in the above example, in the method of supplying the treatment substance together with the inert gas to the generated plasma flame, the solid fine particles having strong cohesiveness and aggregation property are treated as follows. Whether or not the desired dispersion state can be supplied into the plasma flame is an important key to the quality of the obtained spheroidized particles.
【0008】従来、処理物質を分散状態で供給する方法
としては、たとえばプラズマフレーム内に供給する前
に、篩いに掛けたり、搬送用キャリヤガス量の変化によ
り分散させたりする方法などがある。Conventionally, as a method of supplying the treatment substance in a dispersed state, for example, there is a method of sieving it before supplying it into the plasma flame or dispersing it by changing the amount of carrier gas for transportation.
【0009】しかしながら、前述の方法では、固体微粒
子は、微粒子になる程、凝集性、集合性が強くなるた
め、篩いで分散された後再び搬送中に凝集化する。ま
た、キャリヤガス量の変化のみによる場合には、分散効
果が十分でないなどの問題を有する。現状では、粒子の
サイズがサブミクロン程度から数百ミクロン程度である
微粒子の場合には分散供給することが困難な状況にあ
り、後工程に支障をきたしている。However, in the above-mentioned method, the finer the solid particles, the stronger the cohesiveness and the cohesiveness. Therefore, the solid fine particles are dispersed by a sieve and then agglomerated again during transportation. Further, in the case of only changing the amount of carrier gas, there are problems such as insufficient dispersion effect. At present, it is difficult to disperse and supply fine particles having a size of submicron to several hundreds of microns, which hinders the post-process.
【0010】一方、固体微粒子の球状化に限らず、乾
燥、溶融、燃焼、蒸発処理等に際しても、固体微粒子を
分散させた状態で供給することが作業効率および品質等
を向上させる上で重要課題となっている。On the other hand, not only for spheroidizing the solid fine particles, but also for drying, melting, burning, evaporation treatment, etc., supplying the solid fine particles in a dispersed state is an important subject for improving work efficiency and quality. Has become.
【0011】そこで本発明の主たる課題は、特に粒子径
が0.5〜100μmの金属、非金属、無機または有機
化合物、あるいは金属化合物等の固体微粒子を、均一に
分散させた状態で噴霧供給するのに好適な分散ノズルを
提供すること等にある。Therefore, the main object of the present invention is to spray and supply solid fine particles such as metal, non-metal, inorganic or organic compound, or metal compound having a particle diameter of 0.5 to 100 μm in a uniformly dispersed state. To provide a dispersion nozzle suitable for the above.
【0012】[0012]
【課題を解決するための手段】前記課題は、ノズル内
に、このノズルに至るまでの一般部流路径に比して拡径
の流路を同心円的にノズル先端から所定範囲に渡って形
成するとともに、この拡径流路内であって前記一般部流
路の出口部に離間して搬送される固体微粒子が衝突する
ための衝壁部材を配設したことで解決できる。この場
合、前記衝壁部材の直径が一般部流路の直径の1.0〜
3.0倍であり、前記拡径流路の衝壁部材を除く流路断
面積が一般部流路断面積の2.0〜6.0倍であること
が高球状化のために最適である。SUMMARY OF THE INVENTION The above-mentioned problems are solved by forming a flow passage having a diameter larger than that of a general portion flow passage reaching the nozzle in a concentric manner over a predetermined range from the nozzle tip. At the same time, the problem can be solved by disposing an impact wall member for colliding with the solid fine particles that are conveyed while being separated from each other in the diameter-expanding flow path and at the outlet of the general part flow path. In this case, the diameter of the barrier wall member is 1.0 to the diameter of the flow path of the general portion.
It is 3.0 times, and the flow path cross-sectional area of the diameter-expanding flow path excluding the impact wall member is 2.0 to 6.0 times the flow path cross-sectional area of the general portion, which is optimal for achieving a high spherical shape. .
【0013】固体微粒子の供給に当たっては、粒子径が
0.5〜100μmの固体微粒子を対象とし、活性ガス
または不活性ガスとともに二相流状態で搬送し、二相流
中の固体微粒子を前記分散ノズル内において前記衝壁部
材に衝突させ分散させるとともに、運動エネルギーを減
衰させた状態で噴霧供給する。In supplying the solid fine particles, the solid fine particles having a particle diameter of 0.5 to 100 μm are targeted, and the solid fine particles in the two-phase flow are dispersed in the two-phase flow with the active gas or the inert gas. In the nozzle, the colliding wall member is collided and dispersed, and the kinetic energy is attenuated to be sprayed and supplied.
【0014】高周波誘導コイルにより高周波磁場を励磁
し、この高周波磁場内にプラズマガスを供給して誘導的
に高周波プラズマフレームを発生させ、供給管により前
記高周波プラズマフレーム内に活性ガスまたは不活性ガ
スとともに、処理物質を供給し球状化粒子を得るに当た
っては、請求項1記載の分散ノズルを前記供給管の先端
部に取付け、粒子径が0.5〜100μmの固体微粒子
を活性ガスまたは不活性ガスとともに二相流状態で搬送
し、前記固体微粒子を分散ノズル内の衝壁部材に衝突さ
せ分散させるとともに、運動エネルギーを減衰させた状
態で噴霧供給する。A high-frequency magnetic field is excited by a high-frequency induction coil, a plasma gas is supplied into the high-frequency magnetic field to inductively generate a high-frequency plasma flame, and a high-pressure plasma flame is generated in the high-frequency plasma flame by a supply pipe. When the treatment substance is supplied to obtain spheroidized particles, the dispersion nozzle according to claim 1 is attached to the tip of the supply pipe, and solid fine particles having a particle diameter of 0.5 to 100 μm are added together with an active gas or an inert gas. The solid fine particles are conveyed in a two-phase flow state, collide with the impingement wall member in the dispersion nozzle to disperse the solid fine particles, and the kinetic energy is attenuated to be sprayed and supplied.
【0015】[0015]
【作用】個々の粒子径が0.5〜100μmの金属、非
金属、無機または有機化合物、あるいは金属化合物等の
固体微粒子を活性ガスまたは不活性ガスによって二相流
にて搬送する場合、固体微粒子の比重は同伴気体の1000
〜10000 倍も大きいので、固体微粒子を気体に乗せて搬
送する場合には、固体微粒子が保有する運動エネルギー
は相対的に非常に大きなものとなる。When solid particles such as a metal, non-metal, inorganic or organic compound, or metal compound having an individual particle diameter of 0.5 to 100 μm are conveyed by an active gas or an inert gas in a two-phase flow, the solid particles are solid particles. Has a specific gravity of 1000
Since it is ~ 10,000 times larger, the kinetic energy held by solid fine particles is relatively large when the solid fine particles are carried on a gas.
【0016】そこで本発明においては、ノズル内に、こ
のノズルに至るまでの一般部流路径に比して拡径の流路
を同心円的にノズル先端から所定範囲に渡って形成す
る。二相流中の気体は、一般部流路を経て、この拡径流
路に達すると、流量一定の法則より急激に流速が低下し
て拡散する。一方、固体微粒子は、保有する運動エネル
ギーが非常に大きいため、流路断面積が大きくなっても
減速することなくほぼそのまま直進するため、拡径流路
内に衝壁部材を設け、これに衝突させる。すると、凝集
化状態にある固体微粒子は解砕され拡径流路内(一般部
流路出口と前記衝壁部材との間の空間)で分散するとと
もに、運動エネルギーが減衰され、前記減速した気体に
乗っかり、分散状態で放出されるようになる。Therefore, in the present invention, a flow passage having a diameter larger than the flow passage diameter of the general portion up to the nozzle is formed concentrically in the nozzle over a predetermined range from the tip of the nozzle. When the gas in the two-phase flow reaches the diameter-increasing flow passage through the general-portion flow passage, the flow velocity is rapidly reduced and diffuses according to the law of constant flow rate. On the other hand, the solid fine particles have a very large kinetic energy, and therefore, even if the cross-sectional area of the flow path becomes large, they travel straight as they are without slowing down. . Then, the solid particles in the agglomerated state are disintegrated and dispersed in the diameter-expanding flow path (the space between the general-portion flow path outlet and the abutment wall member), and the kinetic energy is attenuated into the decelerated gas. It gets on and is released in a dispersed state.
【0017】[0017]
【実施例】以下、本発明を図面に示す具体例に基づいて
詳説する。図1は本発明に係る分散ノズルNの縦断面図
であり、図2は分散ノズルNを正面から見た図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on specific examples shown in the drawings. FIG. 1 is a vertical sectional view of a dispersion nozzle N according to the present invention, and FIG. 2 is a view of the dispersion nozzle N seen from the front.
【0018】前記分散ノズルNは、導管6の先端に対し
て螺設されるノズル本体1と、このノズル本体1の先端
側に螺着される分散用カバー2とからなる。前記ノズル
本体1の先方部分には、導管6の流路に対し同心円的に
拡径する関係にある分散用ポケット空間Pが形成されて
おり、この分散用ポケット空間P内で、分散用カバー2
に一体的に固設された衝壁部材2aとの関係で搬送され
た固体微粒子を解砕し分散させる(詳細は後述する)。The dispersion nozzle N is composed of a nozzle body 1 screwed to the tip of the conduit 6, and a dispersion cover 2 screwed to the tip side of the nozzle body 1. A dispersion pocket space P having a relationship of concentrically expanding with respect to the flow path of the conduit 6 is formed in the tip portion of the nozzle body 1, and in the dispersion pocket space P, the dispersion cover 2 is formed.
The solid fine particles conveyed in the relationship with the wall member 2a integrally fixed to the above are crushed and dispersed (details will be described later).
【0019】前記分散用カバー2は、外リング部材2b
の内方に導管6の流路軸心と同一軸線上に位置する衝壁
部材2aが配設され、かつ外リング部材2bと衝壁部材
2aとが4つの繋ぎ部材2c、2c…によって連結され
ている。前記外リング部材2bと衝壁部材2aとの間に
は、固体微粒子を噴射するための噴射口Rが形成されて
いる。噴射口Rの外形線は、前記本体ノズル1内に形成
された分散用ポケット空間Pの外形線と一致している。
なお、前記衝壁部材2aを固定支持する繋ぎ材2cは、
十字方向に4本設ける必要はなく、上下方向に2本、ま
たは放射状に3本等でもよい。The dispersion cover 2 has an outer ring member 2b.
An inner wall of the conduit 6 is provided with an impact wall member 2a located on the same axis as the flow axis of the conduit 6, and the outer ring member 2b and the impact wall member 2a are connected by four connecting members 2c, 2c. ing. An injection port R for injecting solid fine particles is formed between the outer ring member 2b and the abutting wall member 2a. The outline of the injection port R coincides with the outline of the dispersion pocket space P formed in the main body nozzle 1.
In addition, the connecting member 2c for fixing and supporting the abutment wall member 2a is
It is not necessary to provide four in the cross direction, but may be two in the vertical direction or three in the radial direction.
【0020】また、前記衝壁部材2aの導管6の一般部
流路出口1aへの対向面Sは、円錐形状を成しており、
この円錐の頂角βは概ね90〜270°の範囲とされ
る。また、衝壁部材2aの前記対向面Sの形状について
は、他に図3に示される平面、または図4に示される割
球面形状、さらには図5に示される球面形状とすること
もでき、何らその形状が限定されるものではない。The facing surface S of the abutment wall member 2a facing the general portion flow path outlet 1a of the conduit 6 has a conical shape,
The apex angle β of this cone is in the range of approximately 90 to 270 °. Further, the shape of the facing surface S of the abutting wall member 2a may be a plane shown in FIG. 3, a split spherical surface shown in FIG. 4, or a spherical surface shown in FIG. The shape is not limited at all.
【0021】前記ノズルNに至るまでの一般部流路R1
の直径d1 と前記衝壁部材2aの直径dとの比d/d1
は1.0〜3.0、好ましくは1.2〜2.0の範囲と
するのがよい。導管6にて搬送されてくる二相流におい
て、固体微粒子は管内で均質状態になっていない場合が
あり、凝集状態、気体流速または固体微粒子の比重、形
状等により偏流した状態で搬送される場合が多くある。
この場合、d/d1 <1とすると、管壁に沿って搬送さ
れてくる固体微粒子が衝壁部材2aに衝突せず、すなわ
ちエネルギー減衰を受けずに凝集あるいは偏流したまま
の不均質な状態で噴射口Rより噴射されることになる。
また、固体微粒子は分散用ポケット空間P内で拡径と同
時に気体流速の減少および自重によりその分布域はd1
より拡がる傾向にあるが、d/d1 ≦3.0であれば十
分であり、これより大きくしても圧力損失が大きくなる
ばかりで、またノズル形状が必要以上に大きくなりコス
ト高となるためあまりメリットがない。また、前記一般
部流路R1 の流路面積A1と噴射口Rの面積Aとの比A
/A1 は、2.0〜6.0、好ましくは2.5〜5.0
の範囲とするのがよい。噴射口Rの面積は、二相流が分
散ノズルから排出される流速を規定するものであり、ノ
ズル内で解砕かつ分散された固体微粒子が均質に搬送さ
れる流速になるように選択される必要がある。また、固
体微粒子の比重、形状等の微粒子物性の影響を受けるフ
ァクターである。A/A1 <2.0とした場合には、せ
っかく分散したものが再度凝集が生じるばかりでなく、
球状化粒子を得る際の効率が低下する。A/A1 >6.
0の場合には、噴射口Rにおける二相流の流速を無用に
高めることとなり圧力損失が高くなるばかりでなく、ノ
ズルの磨耗が大となる。また、球状化粒子を得る際の効
率が低下する。なお、前述の寸法比から計算により導か
れる事項であるが、一般部流路R1 の直径d1 と分散用
ポケット空間Pの内径Dとの比D/d1 は、1.7〜
3.9、好ましくは1.9〜3.0の範囲となる。さら
に、一般部流路出口1aと衝壁部材2aの対向面Sとの
離間距離Lの好適な範囲は、d1 〜4d1 、好ましくは
1.5d1 〜3d1 とされる。一方、搬送固体微粒子の
流速との関係で言えば、搬送速度が高い程、低減率を高
める必要があるため、定性的にはD/d1 、A/A1 を
大きくするのがよい。General portion flow path R 1 leading to the nozzle N
The ratio d / d 1 diameter d 1 between the diameter d of the barrier wall means member 2a
Is in the range of 1.0 to 3.0, preferably 1.2 to 2.0. In the two-phase flow conveyed by the conduit 6, the solid fine particles may not be in a homogeneous state in the pipe, and the solid fine particles may be conveyed in a non-uniform state due to the agglomeration state, the gas flow velocity or the specific gravity and shape of the solid fine particles. There are many.
In this case, when d / d 1 <1, the solid fine particles conveyed along the tube wall do not collide with the collision wall member 2a, that is, the solid particles are aggregated or drifted without undergoing energy attenuation and are in an inhomogeneous state. Thus, it is injected from the injection port R.
Further, the solid fine particles are expanded in the dispersion pocket space P, and at the same time the distribution area thereof is d 1 due to the decrease of the gas flow velocity and the own weight.
Although it tends to spread more, it is sufficient if d / d 1 ≦ 3.0, and even if it is larger than this, the pressure loss only increases, and the nozzle shape becomes unnecessarily large and the cost increases. There is not much merit. Further, the ratio A of the flow passage area A 1 of the general portion flow passage R 1 and the area A of the injection port R
/ A 1 is 2.0 to 6.0, preferably 2.5 to 5.0.
It is better to set the range. The area of the injection port R defines the flow velocity at which the two-phase flow is discharged from the dispersion nozzle, and is selected so that the solid fine particles crushed and dispersed in the nozzle are uniformly conveyed. There is a need. Further, it is a factor that is influenced by physical properties of fine particles such as specific gravity and shape of solid fine particles. In the case of A / A 1 <2.0, not only the dispersed substance re-aggregates but also
The efficiency in obtaining the spheroidized particles decreases. A / A 1 > 6.
In the case of 0, the flow velocity of the two-phase flow at the injection port R is unnecessarily increased, which not only increases the pressure loss but also increases the wear of the nozzle. In addition, the efficiency in obtaining the spheroidized particles decreases. Although a matter derived by calculation from the dimensional ratio of the above, the ratio D / d 1 diameter d 1 of the general part flow path R 1 and the inner diameter D of the dispersed pocket space P is 1.7
The range is 3.9, preferably 1.9 to 3.0. Furthermore, a suitable range of the separation distance L between the general portion flow path outlet 1a and the facing surface S of the abutting wall member 2a is d 1 to 4d 1 , preferably 1.5d 1 to 3d 1 . On the other hand, in terms of the relationship with the flow rate of the transported solid fine particles, the higher the transportation speed, the higher the reduction rate needs to be. Therefore, it is qualitatively preferable to increase D / d 1 and A / A 1 .
【0022】なお、前記ノズル本体1と分散用カバー2
としては、砲金、ステンレス等の金属の他、好ましくは
ノズルの一部または全部にセラミック等の耐摩耗材が使
用される。また、処理される微細粒子による汚染が問題
となる場合には、微粒子と同質の材料が用いられる。Incidentally, the nozzle body 1 and the dispersion cover 2
In addition to metal such as gun metal and stainless steel, wear resistant material such as ceramic is preferably used for a part or all of the nozzle. Further, when contamination by fine particles to be treated poses a problem, a material of the same quality as the fine particles is used.
【0023】以上のように構成される分散ノズルNにお
いては、導管6内を活性または不活性ガスとともに固体
微粒子の一部が凝集化または集合化した状態で搬送さ
れ、分散ノズルN内に導入されると、二相流中の気体に
ついては、狭い導管6から広いノズル本体1内の分散用
ポケット空間Pに導入されると、A(流路面積)×v
(流速)=Q(流量)は一定の法則より、流路面積が広
がる結果、急激に流速が減じられ主として矢線4で示さ
れるように、半径方向に拡散した後、分散用カバー2の
噴射口Rから外部に放出される。In the dispersion nozzle N constructed as described above, a part of the solid fine particles is conveyed in the conduit 6 together with the active or inert gas in a state of being aggregated or collected and introduced into the dispersion nozzle N. Then, when the gas in the two-phase flow is introduced into the dispersion pocket space P in the wide nozzle body 1 from the narrow conduit 6, A (flow passage area) × v
(Velocity) = Q (Flow rate), according to a certain law, as a result of the widening of the flow passage area, the flow velocity is sharply reduced and diffused in the radial direction mainly as indicated by arrow 4, and then the jetting of the dispersion cover 2 is performed. It is discharged from the mouth R to the outside.
【0024】一方、二相流中の固体微粒子については、
その運動エネルギーは気体に対して1000〜10000 倍も大
きいので固体微粒子は導管6からノズル本体1内の分散
用ポケット空間Pに導入されても、気体のように急激に
拡散することなく、衝壁部材2aの対向面Sに対して直
接衝突する。凝集化または集合化した固体微粒子は、ほ
ぼ導管6内での流速をそのまま保持したままで前記対向
面Sに衝突するため、急激に運動エネルギーを失うと同
時に、衝突エネルギーによって凝集または集合状態が解
砕され、矢線5に示すように、四方に飛散する。飛散し
た固体微粒子は前記拡散した気体に乗っかり、減速され
かつ分散された状態で噴射口Rより外方に放出される。On the other hand, regarding the solid fine particles in the two-phase flow,
Since its kinetic energy is 1000 to 10000 times as large as that of gas, even if the solid fine particles are introduced from the conduit 6 into the dispersion pocket space P in the nozzle body 1, they will not diffuse rapidly like gas and will not collide. It directly collides with the facing surface S of the member 2a. The agglomerated or aggregated solid fine particles collide with the facing surface S while keeping the flow velocity in the conduit 6 as it is, so that the kinetic energy is rapidly lost and at the same time, the aggregated or aggregated state is released by the collision energy. It is crushed and scattered in all directions as shown by arrow 5. The scattered solid fine particles ride on the diffused gas, are decelerated, and are discharged outward from the injection port R in a dispersed state.
【0025】〔実施例1〕
以下、本発明の効果を実施例により明らかにする。図1
に示される本発明分散ノズルNを用いて、銀微細粒子を
アルゴンガスによって搬送し分散噴霧した場合と、本発
明ノズルNを装着しないで管口よりそのまま同一搬送条
件の下で銀微細粒子をアルゴンガスによって搬送し分散
噴霧した場合について分散状況を目視観察した。用いた
分散ノズルNの形状寸法は、導管6の流路面積A1 ;7.
07mm2 、衝壁部材2aの直径d;5mm、頂角180°、
分散ノズルの放射口Rの面積A;23.3mm2 、A/A1 =
3.3 である。分散噴霧は、アルゴンガス5l/min 中に銀
微細粒子(融点961 ℃、純度99.95 %、平均粒子径0.6
μm 、見掛け比重0.88g/cm3 の凝集した多孔質不定形微
粒子) を2g/min で連続供給し、銀微細粒子を気流輸
送して分散ノズルNまたは通常ノズルから噴射する。そ
の分散噴霧状況について、本発明に係る分散ノズルNの
場合を図6に、本発明ノズルを使用しないで管口より噴
射した場合を図7にそれぞれ示す。図より明らかなよう
に、図5の本発明分散ノズルNを用いた場合には、特に
ノズルNからの距離0mm〜200mm、特に100mm以上
の範囲において分散状態にあるが、通常ノズルの場合に
はノズルからの失速する距離200mmまでの範囲におい
て線状に微細粒子が噴射されていることが判明される。Example 1 Hereinafter, the effects of the present invention will be clarified by examples. Figure 1
In the case of using the dispersion nozzle N of the present invention shown in FIG. 1 to carry out dispersion spraying of fine silver particles by argon gas, the fine silver particles of argon are directly supplied from the tube mouth without the nozzle N of the present invention under the same transfer conditions. The state of dispersion was visually observed in the case of carrying by gas and dispersed and sprayed. The geometry of the dispersion nozzle N used is the flow passage area A 1 of the conduit 6;
07mm 2 , diameter d of the abutment wall member 2a; 5mm, apex angle 180 °,
Area of emission port R of dispersion nozzle A; 23.3 mm 2 , A / A 1 =
3.3. Dispersion atomization was carried out by using fine particles of silver (melting point 961 ° C, purity 99.95%, average particle size 0.6 in argon gas 5 l / min.
Aggregate of porous amorphous particles having an apparent specific gravity of 0.88 g / cm 3 ) is continuously supplied at 2 g / min, and silver fine particles are pneumatically transported and jetted from a dispersion nozzle N or a normal nozzle. Regarding the dispersed spray state, FIG. 6 shows the case of the dispersion nozzle N according to the present invention, and FIG. 7 shows the case of spraying from a pipe port without using the nozzle of the present invention. As is clear from the figure, when the dispersion nozzle N of the present invention in FIG. 5 is used, the dispersion state is in the range of 0 mm to 200 mm, particularly 100 mm or more, especially in the case of the normal nozzle. It is found that the fine particles are linearly jetted in the range of the stall distance from the nozzle up to 200 mm.
【0026】〔実施例2〕
次いで、図8に示される高周波プラズマ反応装置におい
て、実際に本発明分散ノズルNを供給管(導管)8の先
端に取付けて発生したプラズマフレームF中に実施例1
で使用した銀微細粒子を供給した場合と、通常ノズルに
よって銀微細粒子を供給した場合とについて、それぞれ
球状化処理を行い、球状化率の測定およびノズル状況観
察を行った。分散ノズルNは、d/d1(衝壁部材直径/
一般部流路の直径)、A/A1 (噴射口面積/一般部流
路面積)が異なる4種類のものを用意した。また、処理
物質の供給条件は、実施例1と同様にアルゴンガス5l/
min 中に銀微細粒子を2g/min で連続供給した。[Embodiment 2] Next, in the high frequency plasma reactor shown in FIG. 8, the embodiment 1 is carried out in the plasma flame F generated by actually attaching the dispersion nozzle N of the present invention to the tip of the supply pipe (conduit) 8.
The spheroidizing treatment was performed for each of the case where the silver fine particles used in 1) were supplied and the case where the silver fine particles were supplied by the normal nozzle, and the spheroidization rate was measured and the nozzle condition was observed. Dispersion nozzle N is d / d 1 (impact wall member diameter /
Four types were prepared with different diameters of the flow path of the general part) and A / A 1 (area of the injection port / area of the flow path of the general part). Further, the supply condition of the treatment substance is the same as in Example 1 such that the argon gas is 5 l / l.
Fine silver particles were continuously fed at 2 g / min during min.
【0027】[0027]
【表1】 [Table 1]
【0028】表1より、先ず本発明に係る分散ノズルN
を用いた場合は、通常ノズルの場合に比べると、球状化
率が格段に向上していることが判明される。また、分散
ノズルNを用いた場合であっても、分散ノズルNのd/
d1 およびA/A1 によって球状化率に大幅な変動が生
じることが判明した。From Table 1, first, the dispersion nozzle N according to the present invention is shown.
It was found that the spheroidization rate was markedly improved in the case of using No. 1 as compared with the case of using a normal nozzle. Even when the dispersion nozzle N is used, d /
It was found that d 1 and A / A 1 cause a large variation in the spheroidization rate.
【0029】なお、通常ノズルの場合は、ノズル近傍に
銀微細粒子が付着固化してしまい、連続安定処理が不可
能であった。これは、解砕されずに高い運動エネルギー
を保有したまま噴射されたため、プラズマフレームFを
突き抜け、対面のノズル周辺に衝突して付着固化したた
めである。In the case of a normal nozzle, fine silver particles adhered and solidified in the vicinity of the nozzle, making continuous stabilization impossible. This is because the particles were ejected without being crushed while retaining high kinetic energy, and thus penetrated through the plasma flame F, collided with the periphery of the nozzle on the opposite side, and adhered and solidified.
【0030】[0030]
【発明の効果】以上詳説のとおり、本発明によれば、凝
集化および集合化し易い固体微粒子を均一に分散させた
状態で供給することができるようになり、もってたとえ
ばプラズマ発生装置による球状化粒子の製造において
は、高い球状化率をもって製品を得ることができるよう
になる。As described above in detail, according to the present invention, it becomes possible to supply solid fine particles which are easily aggregated and aggregated in a state in which they are uniformly dispersed. Therefore, for example, spherical particles produced by a plasma generator are provided. In the production of, the product can be obtained with a high spheroidization rate.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係る分散ノズルの縦断面図である。FIG. 1 is a vertical cross-sectional view of a dispersion nozzle according to the present invention.
【図2】本発明に係る分散ノズルの正面からの視図であ
る。FIG. 2 is a front view of a dispersion nozzle according to the present invention.
【図3】他の分散ノズルの縦断面図である。FIG. 3 is a vertical cross-sectional view of another dispersion nozzle.
【図4】他の分散ノズルの縦断面図である。FIG. 4 is a vertical cross-sectional view of another dispersion nozzle.
【図5】他の分散ノズルの縦断面図である。FIG. 5 is a vertical cross-sectional view of another dispersion nozzle.
【図6】本発明分散ノズルによる噴霧状況写真である。FIG. 6 is a photograph of a spraying state by the dispersion nozzle of the present invention.
【図7】通常ノズルによる噴霧状況写真である。FIG. 7 is a photograph of a spraying state using a normal nozzle.
【図8】実施例2で使用したプラズマ発生装置の縦断面
図である。8 is a vertical cross-sectional view of the plasma generator used in Example 2. FIG.
1…ノズル本体、2…分散用カバー、2a…衝壁部材、
6…導管1 ... Nozzle body, 2 ... Dispersion cover, 2a ... Impact wall member,
6 ... conduit
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−59408(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 8/00 B05B 1/00 B05B 7/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-2-59408 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 8/00 B05B 1/00 B05B 7 / 14
Claims (2)
し、この高周波磁場内にプラズマガスを供給して誘導的
に高周波プラズマフレームを発生させ、供給管により前
記高周波プラズマフレーム内に活性ガスまたは不活性ガ
スとともに、処理物質を供給し球状化粒子を得る方法に
用いられ、 前記供給管の先端に取付けられ、粒子径が0.5〜10
0μmの固体微粒子を、活性ガスまたは不活性ガスとと
もに二相流状態で搬送し、二相流中の固体微粒子を前記
高周波プラズマフレーム内に供給するための分散ノズル
であって、 ノズル内に、このノズルに至るまでの一般部流路径に比
して拡径の流路を同心円的にノズル先端から所定範囲に
渡って形成するとともに、この拡径流路内であって前記
一般部流路の出口部に離間して搬送される固体微粒子が
衝突するための衝壁部材が配設され、 かつ、前記衝壁部材の直径が一般部流路の直径の1.0
〜3.0倍であり、前記拡径流路の衝壁部材を除く流路
断面積が一般部流路断面積の2.0〜6.0倍であり、 しかも、前記一般流路の出口部と衝突部材の対向面との
離間距離が、一般流路の直径の1〜4倍であることを特
徴とする分散ノズル。1. A high-frequency magnetic field is excited by a high-frequency induction coil, a plasma gas is supplied into the high-frequency magnetic field to inductively generate a high-frequency plasma flame, and an active gas or an inert gas is supplied into the high-frequency plasma flame by a supply pipe. It is used in a method of supplying spheroidized particles by supplying a treatment substance together with gas, and is attached to the tip of the supply pipe and has a particle diameter of 0.5 to 10
A dispersion nozzle for transporting 0 μm solid fine particles in a two-phase flow state together with an active gas or an inert gas, and supplying the solid fine particles in the two-phase flow into the high-frequency plasma flame. A flow passage having a diameter larger than that of the flow passage of the general portion up to the nozzle is formed concentrically over a predetermined range from the tip of the nozzle, and an outlet portion of the flow passage of the general portion within the diameter passage. Is provided with an impact wall member for colliding with the solid fine particles that are conveyed separately from each other, and the diameter of the impact wall member is 1.0 of the diameter of the flow path of the general portion.
˜3.0 times, the flow path cross-sectional area of the expanded diameter flow path excluding the impact wall member is 2.0 to 6.0 times the general part flow path cross-sectional area, and moreover, the outlet part of the general flow path. And a facing distance between the collision member and the facing surface of the collision member is 1 to 4 times the diameter of the general flow path.
し、この高周波磁場内にプラズマガスを供給して誘導的
に高周波プラズマフレームを発生させ、供給管により前
記高周波プラズマフレーム内に活性ガスまたは不活性ガ
スとともに、処理物質を供給し球状化粒子を得る方法に
おいて、 前記供給管の先端に; ノズル内に、このノズルに至るまでの一般部流路径に比
して拡径の流路を同心円的にノズル先端から所定範囲に
渡って形成するとともに、この拡径流路内であって前記
一般部流路の出口部に離間して搬送される固体微粒子が
衝突するための衝壁部材が配設され、かつ、前記衝壁部
材の直径が一般部流路の直径の1.0〜3.0倍であ
り、前記拡径流路の衝壁部材を除く流路断面積が一般部
流路断面積の2.0〜6.0倍であり、しかも、前記一
般流路の出口部と衝突部材の対向面との離間距離が、一
般流路の直径の1〜4倍である分散ノズルを取付け、 前記供給管から前記高周波プラズマフレーム内に、粒子
径が0.5〜100μmの固体微粒子を活性ガスまたは
不活性ガスとともに二相流状態で搬送し、前記固体微粒
子を分散ノズル内の衝壁部材に衝突させ分散させるとと
もに、運動エネルギーを減衰させた状態で噴霧供給する
ことを特徴とする球状化粒子の製造方法。2. A high frequency magnetic field is excited by a high frequency induction coil, a plasma gas is supplied into the high frequency magnetic field to inductively generate a high frequency plasma flame, and an active gas or an inert gas is supplied into the high frequency plasma flame by a supply pipe. In the method of supplying a treatment substance together with a gas to obtain spheroidized particles, at the tip of the supply pipe; in a nozzle, concentrically a flow path having a diameter larger than a flow path diameter of a general portion leading to the nozzle is provided. Formed over a predetermined range from the tip of the nozzle, and provided with an impact wall member for colliding with the solid fine particles that are conveyed while being separated in the diameter-expanding flow path to the outlet of the general part flow path, In addition, the diameter of the impingement wall member is 1.0 to 3.0 times the diameter of the general portion passage, and the passage cross-sectional area of the expanded diameter passage excluding the impingement wall member is 2 times the passage portion of the general portion. .0 to 6.0 times, Also, the separation distance between the outlet of the general flow channel and the facing surface of the collision member is a dispersion nozzle having a diameter 1 to 4 times the diameter of the general flow channel, and the particles are introduced from the supply pipe into the high-frequency plasma frame. Solid fine particles having a diameter of 0.5 to 100 μm were conveyed together with an active gas or an inert gas in a two-phase flow state, and the solid fine particles were collided with the collision wall member in the dispersion nozzle to disperse the kinetic energy. A method for producing spheroidized particles, which comprises supplying by spraying in a state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04844293A JP3470908B2 (en) | 1993-03-10 | 1993-03-10 | Dispersion nozzle, method for supplying solid fine particles using the same, and method for producing spheroidized particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04844293A JP3470908B2 (en) | 1993-03-10 | 1993-03-10 | Dispersion nozzle, method for supplying solid fine particles using the same, and method for producing spheroidized particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06262059A JPH06262059A (en) | 1994-09-20 |
JP3470908B2 true JP3470908B2 (en) | 2003-11-25 |
Family
ID=12803471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04844293A Expired - Fee Related JP3470908B2 (en) | 1993-03-10 | 1993-03-10 | Dispersion nozzle, method for supplying solid fine particles using the same, and method for producing spheroidized particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3470908B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4603800B2 (en) * | 2003-02-24 | 2010-12-22 | 日本ニューマチック工業株式会社 | Spheronization processing equipment |
WO2006092868A1 (en) * | 2005-03-01 | 2006-09-08 | Shinyu Giken Co., Ltd. | Fluid mixing injection apparatus |
WO2009107675A1 (en) * | 2008-02-28 | 2009-09-03 | 花王株式会社 | Component for dispersing raw material |
CN105543767B (en) * | 2016-01-21 | 2018-12-18 | 刘岗 | Intelligent meltallizing machine |
-
1993
- 1993-03-10 JP JP04844293A patent/JP3470908B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06262059A (en) | 1994-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2693244C2 (en) | Method and device for producing powder particles by atomisation of raw material in form of elongated element | |
JP6386091B2 (en) | Method for densifying and spheronizing solid material and solution precursor droplets of material using plasma | |
CN100415382C (en) | Continuous in-line manufacturing process for high speed coating deposition via kinetic spray process | |
EP3504020B1 (en) | Low melting point metal or alloy powders atomization manufacturing processes | |
CN101437605A (en) | Method and apparatus for nanopowder and micropowder production using axial injection plasma spray | |
JP3999938B2 (en) | Metal powder manufacturing method | |
US11607732B2 (en) | High melting point metal or alloy powders atomization manufacturing processes | |
JP3470908B2 (en) | Dispersion nozzle, method for supplying solid fine particles using the same, and method for producing spheroidized particles | |
JPH03202137A (en) | Method and apparatus for coating surface of powder | |
JPS6350404A (en) | Spray nozzle for producing metallic powder | |
JP6543753B2 (en) | Method of densifying and spheroidizing solution precursor droplets of solid materials and materials using plasma | |
JP4318288B2 (en) | Spherical powder production apparatus, powder processing burner, and spherical powder production method | |
CN117415324B (en) | Metal powder feeding device for microwave plasma powder spheroidizing equipment | |
JP2834348B2 (en) | Manufacturing method of metal powder | |
JP3280574B2 (en) | Powder surface coating method | |
CN114850481B (en) | Metal powder manufacturing device | |
EP0134808A1 (en) | Method for making ultrafine metal powder. | |
JP2606318Y2 (en) | Two-fluid spray nozzle | |
KR102597563B1 (en) | Apparatus for Manufacturing Metal Powder Using Fluid Spray | |
JPH05220376A (en) | Device for modifying surface of powder | |
GB2088274A (en) | Process for producing powdered wax | |
JPH04173906A (en) | Atomizing nozzle device | |
JP2547243Y2 (en) | Two-fluid injection nozzle | |
JP2967434B2 (en) | Method and apparatus for producing spheroidized particles by high-frequency plasma | |
JP2951414B2 (en) | Gas nozzle for atomization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070912 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080912 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080912 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090912 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090912 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100912 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100912 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120912 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |